Skip to main content

Phencyclidine-Based New Psychoactive Substances

Part of the Handbook of Experimental Pharmacology book series (HEP,volume 252)

Abstract

The serendipitous discovery of phencyclidine (PCP) in 1956 sets the stage for significant research efforts that resulted in a plethora of analogs and derivatives designed to explore the biological effects of this class. PCP soon became the prototypical dissociative agent that eventually sneaked through the doors of clinical laboratories and became an established street drug. Estimations suggest that around 14 PCP analogs were identified as “street drugs” in the period between the 1960s and 1990s. Fast forward to the 2000s, and largely facilitated by advancements in electronic forms of communication made possible through the Internet, a variety of new PCP analogs began to attract the attention of communities interested in the collaborative exploration of these substances. Traditionally, as was the case with the first-generation analogs identified in previous decades, the substances explored represented compounds already known in the scientific literature. As the decade of the noughties unfolded, a number of new PCP-derived substances appeared on the scene, which included some analogs that have not been previously recorded in the published literature. The aim of this chapter is to present a brief introductory overview of substances that have materialized as PCP-derived new psychoactive substances (NPS) in recent years and their known pharmacology. Since N-methyl-d-aspartate receptor (NMDAR) antagonism is implicated in mediating the subjective and mind-altering effects of many dissociative drugs, additional data are included from other analogs not presently identified as NPS.

Keywords

  • Clinical
  • Designer drugs
  • Dissociatives
  • Forensic
  • NMDA receptor
  • NPS
  • Pharmacology
  • Phencyclidine
  • Toxicology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/164_2018_124
  • Chapter length: 43 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-10561-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Abbreviations

2-MeO-PCMo:

4-[1-(2-Methoxyphenyl)cyclohexyl]morpholine

3,4-MD-PCE:

1-(1,3-Benzodioxol-5-yl)-N-ethylcyclohexanamine

3,4-MD-PCMo:

4-[1-(1,3-Benzodioxol-5-yl)cyclohexyl]morpholine

3,4-MD-PCPr:

1-(1,3-Benzodioxol-5-yl)-N-propylcyclohexanamine

3,4-MD-PCPy:

1-[1-(1,3-Benzodioxol-5-yl)cyclohexyl]pyrrolidine

3-HO-PCE:

3-[1-(Ethylamino)cyclohexyl]phenol

3-HO-PCMe:

1-3-Hydroxyphenyl)-N-methylcyclohexanamine

3-HO-PCP:

3-[1-(Piperidin-1-yl)cyclohexyl]phenol

3-HO-PCPr:

1-3-Hydroxyphenyl)-N-propylcyclohexanamine

3-Me-4-F-PCP:

1-[1-(4-Fluoro-3-methylphenyl)cyclohexyl]piperidine

3-Me-4-MeO-PCP:

1-[1-(4-Methoxy-3-methylphenyl)cyclohexyl]piperidine

3-MeO-PCE:

N-Ethyl-1-(3-methoxyphenyl)cyclohexan-1-amine

3-MeO-PCMe:

1-(3-Methoxyphenyl)-N-methylcyclohexan-1-amine

3-MeO-PCMMo:

4-{[1-(3-Methoxyphenyl)cyclohexyl]methyl}morpholine

3-MeO-PCMo:

4-[1-(3-Methoxyphenyl)cyclohexyl]morpholine

3-MeO-PCP:

1-[1-(3-Methoxyphenyl)cyclohexyl]piperidine

3-MeO-PCPr:

1-(3-Methoxyphenyl)-N-propylcyclohexan-1-amine

3-MeO-PCPy:

1-[1-(3-Methoxyphenyl)cyclohexyl]pyrrolidine

3-Me-PCMo:

4-[1-(3-Methylphenyl)cyclohexyl]morpholine

3-Me-PCPMe:

N-Methyl-1-(3-methylphenyl)cyclohexanamine

3-Me-PCPy:

1-[1-(3-Methylphenyl)cyclohexyl]pyrrolidine

4′-Me-PCP:

1-(4-Methyl-1-phenylcyclohexyl)piperidine

4-MeO-PCMo:

4-[1-(4-Methoxyphenyl)cyclohexyl]morpholine

4-MeO-PCP:

1-[1-(4-Methoxyphenyl)cyclohexyl]piperidine (methoxydine)

4-MeO-PCPy:

1-[1-(4-Methoxyphenyl)cyclohexyl]pyrrolidine

4-Me-PCP:

1-[1-(4-Methylphenyl)cyclohexyl]piperidine

AB-FUBINACA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-[(4-fluorophenyl)methyl]-1H-indazole-3-carboxamide

BnCP:

1-(1-Benzylcyclohexyl)piperidine

DXM:

Dextromethorphan

MDPV:

1-(2H-1,3-Benzodioxol-5-yl)-2-(pyrrolidin-1-yl)pentan-1-one

MK-801:

(+)-10,11-Dihydro-5H-5,10-epiminodibenzo[a,d][7]annulene (dizocilpine)

MXE:

2-(Ethylamino)-2-(3-methoxyphenyl)cyclohexan-1-one (methoxetamine)

PCE:

N-Ethyl-1-phenylcyclohexan-1-amine (eticyclidine)

PCEEA:

N-(2-Ethoxyethyl)-1-phenylcyclohexan-1-amine

PCHOEA:

2-[(1-Phenylcyclohexyl)amino]ethan-1-ol

PCiP:

1-Phenyl-N-(propan-2-yl)cyclohexan-1-amine

PCMEA:

N-(2-Methoxyethyl)-1-phenylcyclohexan-1-amine

PCMo:

4-(1-Phenylcyclohexyl)morpholine

PCMPA:

N-(3-Methoxypropyl)-1-phenylcyclohexan-1-amine

PCP:

1-(1-Phenylcyclohexyl)piperidine (phencyclidine)

PCPr:

1-Phenyl-N-propylcyclohexan-1-amine

PCPy:

1-(1-Phenylcyclohexyl)pyrrolidine (rolicyclidine)

TCP:

1-[1-(Thiophen-2-yl)cyclohexyl]piperidine (tenocyclidine)

TCPy:

1-[1-(Thiophen-2-yl)cyclohexyl]pyrrolidine

U-49900:

3,4-Dichloro-N-[(1R,2R)-2-(diethylamino)cyclohexyl]-N-methylbenzamide

References

  • Aguayo LG, Albuquerque EX (1986) Effects of phencyclidine and its analogs on the end-plate current of the neuromuscular junction. J Pharmacol Exp Ther 239:15–24

    CAS  PubMed  Google Scholar 

  • Ahmadi A, Khalili M, Hajikhani R, Naserbakht M (2011a) New morpholine analogues of phencyclidine: chemical synthesis and pain perception in rats. Pharmacol Biochem Behav 98:227–233

    CAS  PubMed  CrossRef  Google Scholar 

  • Ahmadi A, Khalili M, Hajikhani R, Naserbakht M (2011b) Synthesis and determination of acute and chronic pain activities of 1-[1-(4-methylphenyl) (cyclohexyl)] morpholine as a new phencyclidine derivative in rats. Arzneimittelforschung 61:92–97

    CAS  PubMed  CrossRef  Google Scholar 

  • Allard S, Deslandes G, Gaborit B, Lomenech H, Pineau A, Jolliet P, Garret C, Monteil-Ganiere C (2017) 3-MeO-PCP et 4-MeO-PCP: confusion des isomères et risque majeur de toxicité. Toxicol Anal Clin 29:S47–S48

    Google Scholar 

  • Aniline O, Pitts FN Jr (1982) Phencyclidine (PCP): a review and perspectives. Crit Rev Toxicol 10:145–177

    CAS  PubMed  CrossRef  Google Scholar 

  • Anonymous (1960) Cyclohexylamine compounds and methods for producing the same. Patent no. GB851782. Parke-Davis, Detroit

    Google Scholar 

  • Anonymous (2008) Bluelight. Thread: the Big & Dandy 4-MeO-PCP thread. http://bluelight.org/vb/threads/391328-The-Big-amp-Dandy-4-MeO-PCP-Thread. Accessed 3 Feb 2018

  • Anonymous (2012a) Bluelight. Psychedelic drugs. Thread: 3-ho-pcp. http://www.bluelight.org/vb/threads/623701-3-ho-pcp. Accessed 3 Feb 2018

  • Anonymous (2012b) Bluelight. Trip reports. Thread: a trial with 3-OH-PCP. http://www.bluelight.org/vb/threads/633737-3-HO-PCE-fumarate. Accessed 3 Feb 2018

  • Anonymous (2015a) 3-MeO-PCP’s little brother: an experience with 3-MeO-PCMo (exp106299). Erowid.org. 28 Aug 2015. https://erowid.org/experiences/exp_pdf.php?ID=106299&format=pdf. Accessed 3 Feb 2018

  • Anonymous (2015b) A novel dissociative but not a novel feeling: an experience with 3-MeO-PCMo (exp106459). Erowid.org. 28 Aug 2015. https://erowid.org/experiences/exp_pdf.php?ID=106459&format=pdf. Accessed 3 Feb 2018

  • Anonymous (2015c) UK chemical research, chemical discussion, psychedelics, 3-MeO-PCMo. https://www.ukchemicalresearch.org/Thread-3-MeO-PCMo. Accessed 3 Feb 2018

  • Anonymous (2017) Bluelight. Psychedelic drugs. Thread: the big & Dandy 3-HO-PCE thread. http://bluelight.org/vb/threads/812314-The-Big-amp-Dandy-3-HO-PCE-Thread. Accessed 3 Feb 2018

  • Anonymous (2018a) Bluelight psychedelic drugs index. Thread. Novel dissociative 3-MeO-PCMo. http://www.bluelight.org/vb/threads/758083-Novel-dissociative-3-MeO-PCMo. Accessed 3 Feb 2018

  • Anonymous (2018b) Erowid experience vaults report Id: 110467. Accessed 3 Feb 2018

    Google Scholar 

  • Backberg M, Beck O, Helander A (2015) Phencyclidine analog use in Sweden–intoxication cases involving 3-MeO-PCP and 4-MeO-PCP from the STRIDA project. Clin Toxicol (Phila) 53:856–864

    CrossRef  CAS  Google Scholar 

  • Bakota E, Arndt C, Romoser AA, Wilson SK (2016) Fatal intoxication involving 3-MeO-PCP: a case report and validated method. J Anal Toxicol 40:504–510

    CAS  PubMed  CrossRef  Google Scholar 

  • Balster RL, Chait LD (1976) The behavioral pharmacology of phencyclidine. Clin Toxicol (Phila) 9:513–528

    CAS  CrossRef  Google Scholar 

  • Balster RL, Woolverton WL (1980) Continuous-access phencyclidine self-administration by rhesus monkeys leading to physical dependence. Psychopharmacology 70:5–10

    CAS  PubMed  CrossRef  Google Scholar 

  • Barceloux DG (2012) Phencyclidine and phencyclidine analogues. In: Barceloux DG (ed) Medical toxicology of drugs abuse: synthesized chemicals and psychoactive plants. Wiley, Hoboken, pp 608–632

    CrossRef  Google Scholar 

  • Baselt RC (2011) Disposition of toxic drugs and chemicals in man, 9th edn. Biomedical Publications, Seal Beach, pp 1323–1325

    Google Scholar 

  • Bertol E, Pascali J, Palumbo D, Catalani V, Di Milia MG, Fioravanti A, Mari F, Vaiano F (2017) 3-MeO-PCP intoxication in two young men: first in vivo detection in Italy. Forensic Sci Int 274:7–12

    CAS  PubMed  CrossRef  Google Scholar 

  • Bey T, Patel A (2007) Phencyclidine intoxication and adverse effects: a clinical and pharmacological review of an illicit drug. Cal J Emerg Med 8:9–14

    PubMed  PubMed Central  Google Scholar 

  • Boldyrev AA, Carpenter DO, Johnson P (2005) Emerging evidence for a similar role of glutamate receptors in the nervous and immune systems. J Neurochem 95:913–918

    CAS  PubMed  CrossRef  Google Scholar 

  • Brady KT, Balster RL (1981) Discriminative stimulus properties of phencyclidine and five analogues in the squirrel monkey. Pharmacol Biochem Behav 14:213–218

    CAS  PubMed  CrossRef  Google Scholar 

  • Brine GA, Boldt KG, Coleman ML, Carroll FI (1984) Carbon-13 nuclear magnetic resonance spectra of phencyclidine analogs substituted in the piperidine and aromatic rings. J Heterocycl Chem 21:71–75

    CAS  CrossRef  Google Scholar 

  • Burns RS, Lerner SE (1976) Perspectives: acute phencyclidine intoxication. Clin Toxicol 9:477–501

    CAS  PubMed  CrossRef  Google Scholar 

  • Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC (2017) NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2017.1011.1045

  • Carroll FI, Brine GA, Boldt KG, Mascarella SW, Moreland CG, Sumner SJ, Burgess JP, Stejskal EO (1988) Solid state conformation of phencyclidine and phencyclidine analogs. In: Domino EF, Kamenka JM (eds) Sigma and phencyclidine-like compounds as molecular probes in biology. NPP Books, Ann Arbor, pp 91–106

    Google Scholar 

  • Casale JF (2011) 4-Methoxyphencyclidine: an analytical profile. Microgram J 8:39–42

    CAS  Google Scholar 

  • Chang BN, Smith MP (2017) A case of unusual drug screening results. Clin Chem 63:958–961

    CAS  PubMed  CrossRef  Google Scholar 

  • Chaudieu I, Vignon J, Chicheportiche M, El Harfi A, Kamenka JM, Chicheportiche R (1987) Comparaison entre les sites de fixation de la [3H]phencyclidine (PCP) et de la [3H](thiényl-2)-1 cyclohexylpipéridine (TCP) dans le système nerveux central de rat. Eur J Med Chem 22:359–362

    CAS  CrossRef  Google Scholar 

  • Chaudieu I, Vignon J, Chicheportiche M, Kamenka JM, Trouiller G, Chicheportiche R (1989) Role of the aromatic group in the inhibition of phencyclidine binding and dopamine uptake by PCP analogs. Pharmacol Biochem Behav 32:699–705

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen G (1981) The neuropharmacology of phencyclidine. In: Domino EF (ed) PCP (phencyclidine): historical and current perspectives. NPP Books, Ann Arbor, pp 9–23

    Google Scholar 

  • Cho AK, Hallström G, Matsumotto RM, Kammerer RC (1983) The metabolism of the piperidine ring of phencyclidine. In: Kamenka JM, Domino EF, Geneste P (eds) Phencyclidine and related arylcyclohexylamines: present and future applications. NPP Books, Ann Arbor, pp 205–214

    Google Scholar 

  • Cho AK, Hiramatsu M, Schmitz DA, Nabeshima T, Kameyama T (1991) Pharmacokinetic and pharmacodynamic properties of some phencyclidine analogs in rats. Pharmacol Biochem Behav 39:947–953

    CAS  PubMed  CrossRef  Google Scholar 

  • Clouet DH (1986) Phencyclidine: an update, NIDA research monograph, vol 64. United States Department of Health and Human Services, National Institute on Drug Abuse, Rockville

    Google Scholar 

  • Colestock T, Wallach J, Mansi M, Filemban N, Morris H, Elliott SP, Westphal F, Brandt SD, Adejare A (2018) Syntheses, analytical and pharmacological characterizations of the ‘legal high’ 4-[1-(3-methoxyphenyl)cyclohexyl]morpholine (3-MeO-PCMo) and analogues. Drug Test Anal 10:272–283

    CAS  PubMed  CrossRef  Google Scholar 

  • Cone EJ, McQuinn RL, Shannon HE (1984) Structure-activity relationship studies of phencyclidine derivatives in rats. J Pharmacol Exp Ther 228:147–153

    CAS  PubMed  Google Scholar 

  • Cook CE, Brine DR, Jeffcoat AR, Hill JM, Wall ME, Perez-Reyes M, Di Guiseppi SR (1982) Phencyclidine disposition after intravenous and oral doses. Clin Pharmacol Ther 31:625–634

    CAS  PubMed  CrossRef  Google Scholar 

  • Coppola M, Mondola R (2013) Is methoxydine a new rapid acting antidepressant for the treatment of depression in alcoholics? Med Hypotheses 81:10–14

    CAS  PubMed  CrossRef  Google Scholar 

  • Costa JF, Speaker TJ (1983) Chromatographic and spectral properties of some aryl-substituted phencyclidine analogs. J Anal Toxicol 7:252–256

    CAS  PubMed  CrossRef  Google Scholar 

  • Cravey RH, Reed D, Ragle JL (1979) Phencyclidine-related deaths: a report of nine fatal cases. J Anal Toxicol 3:199–201

    CrossRef  Google Scholar 

  • Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335

    CAS  PubMed  CrossRef  Google Scholar 

  • De Paoli G, Brandt SD, Wallach J, Archer RP, Pounder DJ (2013) From the street to the laboratory: analytical profiles of methoxetamine, 3-methoxyeticyclidine and 3-methoxyphencyclidine and their determination in three biological matrices. J Anal Toxicol 37:277–283

    PubMed  CrossRef  CAS  Google Scholar 

  • Domino EF (1964) Neurobiology of phencyclidine (Sernyl), a drug with an unusual spectrum of pharmacological activity. Int Rev Neurobiol 6:303–347

    CAS  PubMed  CrossRef  Google Scholar 

  • Domino EF (ed) (1981) PCP (phencyclidine): historical and current perspectives. NPP Books, Ann Arbor

    Google Scholar 

  • Domino EF (2010) Taming the ketamine tiger. Anesthesiology 113:678–684

    PubMed  CrossRef  Google Scholar 

  • Domino EF, Kamenka JM (eds) (1988) Sigma and phencyclidine-like compounds as molecular probes in biology. NPP Books, Ann Arbor

    Google Scholar 

  • Domino EF, Rocki W, Holsztynska EJ, Lee S (1983) Structure-activity relationships of phencyclidine derivatives and related substances on mouse motor performance. In: Kamenka JM, Domino EF, Geneste P (eds) Phencyclidine and related arylcyclohexylamines: present and future applications. NPP Books, Ann Arbor, pp 397–409

    Google Scholar 

  • Done AK, Aronow R, Miceli JN (1978) The pharmacokinetics of phencyclidine in overdosage and its treatment. In: Petersen RC, Stillman RC (eds) Phencyclidine (PCP) abuse: an appraisal, NIDA research monograph, vol 21. United States Department of Health and Human Services, National Institute on Drug Abuse, Rockville, pp 210–217

    Google Scholar 

  • Dresen S, Blake D, Taylor A, Williams K (2014) Identification and quantitation of designer drugs in urine by LC-MS/MS. Technical note, AB SCIEX, Framingham. https://sciex.com.cn/Documents/Applications/RUO-MKT-02-1407-A_technote_designer_drugs.pdf. Accessed 3 Feb 2018

  • Driscoll JP, Kornecki K, Wolkowski JP, Chupak L, Kalgutkar AS, O’Donnell JP (2007) Bioactivation of phencyclidine in rat and human liver microsomes and recombinant P450 2B enzymes: evidence for the formation of a novel quinone methide intermediate. Chem Res Toxicol 20:1488–1497

    CAS  PubMed  CrossRef  Google Scholar 

  • El M’Barki C, Elhallaqui M (2017) Quantum calculations to construct a 3D-QSAR model based on PCP-TCP derivatives and molecular docking with NMDA receptor. J Mater Environ Sci 8:1391–1400

    Google Scholar 

  • EMCDDA–Europol (2011) EMCDDA–Europol 2010 annual report on the implementation of Council Decision 2005/387/JHA. In accordance with Article 10 of Council Decision 2005/387/JHA on the information exchange, risk assessment and control of new psychoactive substances. EMCDDA, Lisbon. http://www.emcdda.europa.eu/system/files/publications/644/EMCDDA-Europol_Annual_Report_2010A_281336.pdf. Accessed 3 Feb 2018

  • EMCDDA–Europol (2012) EMCDDA–Europol 2011 annual report on the implementation of Council Decision 2005/387/JHA. In accordance with Article 10 of Council Decision 2005/387/JHA on the information exchange, risk assessment and control of new psychoactive substances. EMCDDA, Lisbon. http://www.emcdda.europa.eu/system/files/publications/689/EMCDDA-Europol_Annual_Report_2011_2012_final_335568.pdf. Accessed 3 Feb 2018

  • EMCDDA–Europol (2013) New drugs in Europe, 2012. EMCDDA–Europol 2012 annual report on the implementation of Council Decision 2005/387/JHA. In accordance with Article 10 of Council Decision 2005/387/JHA on the information exchange, risk assessment and control of new psychoactive substances. EMCDDA, Lisbon. http://www.emcdda.europa.eu/system/files/publications/734/EMCDDA-Europol_2012_Annual_Report_final_439477.pdf. Accessed 3 Feb 2018

  • EMCDDA–Europol (2015) EMCDDA–Europol 2014 annual report on the implementation of Council Decision 2005/387/JHA. In accordance with Article 10 of Council Decision 2005/387/JHA on the information exchange, risk assessment and control of new psychoactive substances. EMCDDA, Lisbon. http://www.emcdda.europa.eu/system/files/publications/1018/TDAN15001ENN.pdf. Accessed 3 Feb 2018

  • EMCDDA–Europol (2016) EMCDDA–Europol 2015 annual report on the implementation of Council Decision 2005/387/JHA. In accordance with Article 10 of Council Decision 2005/387/JHA on the information exchange, risk assessment and control of new psychoactive substances. EMCDDA, Lisbon. http://www.emcdda.europa.eu/system/files/publications/2880/TDAS16001ENN.pdf. Accessed 3 Feb 2018

  • EMCDDA–Europol (2017) EMCDDA–Europol 2016 annual report on the implementation of Council Decision 2005/387/JHA. In accordance with Article 10 of Council Decision 2005/387/JHA on the information exchange, risk assessment and control of new psychoactive substances. EMCDDA, Lisbon. http://www.emcdda.europa.eu/system/files/publications/4724/TDAN17001ENN_PDFWEB.pdf. Accessed 3 Feb 2018

  • Feldman HW, Agar MH, Beschner GM (eds) (1979) Angel dust. An ethnographic study of phencyclidine users. Lexington Books, Lexington

    Google Scholar 

  • Frohlich J, Van Horn JD (2014) Reviewing the ketamine model for schizophrenia. J Psychopharmacol 28:287–302

    CAS  PubMed  CrossRef  Google Scholar 

  • Gable MS, Gavali S, Radner A, Tilley DH, Lee B, Dyner L, Collins A, Dengel A, Dalmau J, Glaser CA (2009) Anti-NMDA receptor encephalitis: report of ten cases and comparison with viral encephalitis. Eur J Clin Microbiol Infect Dis 28:1421–1429

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Geneste P, Kamenka JM, Ung SN, Herrmann P, Goudal R, Trouiller G (1979) Determination conformationelle de dérivés de la phencyclidine en vue d’une correlation structure-activité. Eur J Med Chem Chim Ther 14:301–308

    CAS  Google Scholar 

  • Giannini AJ, Castellani S (1982) A case of phenylcyclohexylpyrrolidine (PHP) intoxication treated with physostigmine. J Toxicol Clin Toxicol 19:505–508

    CAS  PubMed  CrossRef  Google Scholar 

  • Giannini AJ, Price WA, Loiselle RH, Malone DW (1985) Treatment of phenylcyclohexylpyrrolidine (PHP) psychosis with haloperidol. J Toxicol Clin Toxicol 23:185–189

    CAS  PubMed  CrossRef  Google Scholar 

  • Gintzler AR, Zukin RS, Zukin SR (1982) Effects of phencyclidine and its derivatives on enteric neurones. Br J Pharmacol 75:261–267

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Giros B, El Mestikawy S, Godinot N, Zheng K, Han H, Yang-Feng T, Caron MG (1992) Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 42:383–390

    CAS  PubMed  Google Scholar 

  • Gole DJ, Pirat JL, Domino EF (1988a) New aspects of phencyclidine (PCP) metabolism. In: Domino EF, Kamenka JM (eds) Sigma and phencyclidine-like compounds as molecular probes in biology. NPP Books, Ann Arbor, pp 625–641

    Google Scholar 

  • Gole DJ, Pirat JL, Kamenka JM, Domino EF (1988b) Hydroxy metabolites of phencyclidine. Identification and quantitation of two novel metabolites. Drug Metab Dispos 16:386–391

    CAS  PubMed  Google Scholar 

  • Gole DJ, Pirat JL, Kamenka JM, Kalir A, Domino EF (1988c) Analysis of phencyclidine (PCP) and other structurally related compounds by gas chromatography-mass spectrometry (GC-MS). In: Domino EF, Kamenka JM (eds) Sigma and phencyclidine-like compounds as molecular probes in biology. NPP Books, Ann Arbor, pp 79–89

    Google Scholar 

  • Greifenstein FE, Devault M, Yoshitake J, Gajewski JE (1958) A study of a 1-aryl cyclo hexyl amine for anesthesia. Anesth Analg 37:283–294

    CAS  PubMed  CrossRef  Google Scholar 

  • Hallstrom G, Kammerer RC, Nguyen CH, Schmitz DA, Di Stefano EW, Cho AK (1983) Phencyclidine metabolism in vitro. The formation of a carbinolamine and its metabolites by rabbit liver preparations. Drug Metab Dispos 11:47–53

    CAS  PubMed  Google Scholar 

  • Hamon J, Vignon J, Kamenka JM (1996) Effect of lowered lipophilicity on the affinity of PCP analogs for the PCP receptor and the dopamine transporter. Eur J Med Chem 31:489–495

    CAS  CrossRef  Google Scholar 

  • Haradahira T, Sasaki S, Maeda M, Kobayashi K, Inoue O, Tomita U, Nishikawa T, Suzuki K (1998) Synthesis and brain distribution of carbon-11 labeled analogs of antagonists for the NMDA receptor coupled PCP-binding site. J Label Compd Radiopharm 41:843–858

    CAS  CrossRef  Google Scholar 

  • Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26:81–89

    CAS  PubMed  CrossRef  Google Scholar 

  • Haring R, Theomy S, Kalir A, Sokolovsky M (1983) Characterization of the interaction of phencyclidine and its derivatives with the ionic channel of the nicotinic receptor. In: Chambers CM, Chambers PL, Gitter S (eds) Toxicology in the use, misuse, and abuse of food, drugs, and chemicals, Archives of Toxicology (supplement), vol 6. Springer, Berlin, pp 81–90

    CrossRef  Google Scholar 

  • Hearne E, Van Hout MC (2016) “Trip-sitting” in the black hole: a netnographic study of dissociation and indigenous harm reduction. J Psychoactive Drugs 48:233–242

    PubMed  CrossRef  Google Scholar 

  • Holsztynska EJ, Domino EF (1983) Overview of phencyclidine biotransformation. In: Kamenka JM, Domino EF, Geneste P (eds) Phencyclidine and related arylcyclohexylamines: present and future applications. NPP Books, Ann Arbor, pp 157–194

    Google Scholar 

  • Holsztynska EJ, Domino EF (1985) Biotransformation of phencyclidine. Drug Metab Rev 16:285–320

    PubMed  CrossRef  Google Scholar 

  • Hori T, Suzuki T, Baba A, Abe S, Yamamoto T, Moroji T, Shiraishi H (1996) Effects of phencyclidine metabolites on serotonin uptake in rat brain. Neurosci Lett 209:153–156

    CAS  PubMed  CrossRef  Google Scholar 

  • Hundt W, Danysz W, Holter SM, Spanagel R (1998) Ethanol and N-methyl-D-aspartate receptor complex interactions: a detailed drug discrimination study in the rat. Psychopharmacology (Berl) 135:44–51

    CAS  CrossRef  Google Scholar 

  • Itzhak Y (1988) Pharmacological specificity of some psychotomimetic and antipsychotic agents for the sigma and PCP binding sites. Life Sci 42:745–752

    CAS  PubMed  CrossRef  Google Scholar 

  • Itzhak Y, Kalir A, Sarne Y (1981a) On the opioid nature of phencyclidine and its 3-hydroxy derivative. Eur J Pharmacol 73:229–233

    CAS  PubMed  CrossRef  Google Scholar 

  • Itzhak Y, Kalir A, Weissman BA, Cohen S (1981b) Receptor binding and antinociceptive properties of phencyclidine opiate-like derivatives. Eur J Pharmacol 72:305–311

    CAS  PubMed  CrossRef  Google Scholar 

  • Jackson JE (1989) Phencyclidine pharmacokinetics after a massive overdose. Ann Intern Med 111:613–615

    CAS  PubMed  CrossRef  Google Scholar 

  • Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78:69–108

    CAS  PubMed  CrossRef  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    CAS  PubMed  CrossRef  Google Scholar 

  • Johansson A, Lindstedt D, Roman M, Thelander G, Nielsen EI, Lennborn U, Sandler H, Rubertsson S, Ahlner J, Kronstrand R, Kugelberg FC (2017) A non-fatal intoxication and seven deaths involving the dissociative drug 3-MeO-PCP. Forensic Sci Int 275:76–82

    CAS  PubMed  CrossRef  Google Scholar 

  • Johnson N, Itzhak Y, Pasternak GW (1984) Interaction of two phencyclidine opiate-like derivatives with 3H-opioid binding sites. Eur J Pharmacol 101:281–284

    CAS  PubMed  CrossRef  Google Scholar 

  • Jordan S, Chen R, Fernalld R, Johnson J, Regardie K, Kambayashi J, Tadori Y, Kitagawa H, Kikuchi T (2006) In vitro biochemical evidence that the psychotomimetics phencyclidine, ketamine and dizocilpine (MK-801) are inactive at cloned human and rat dopamine D2 receptors. Eur J Pharmacol 540:53–56

    CAS  PubMed  CrossRef  Google Scholar 

  • Kalir A (1981) Structure activity relationships of phencyclidine derivatives. In: Domino EF (ed) PCP (phencyclidine), historical and current perspectives. NPP Books, Ann Arbor, pp 31–46

    Google Scholar 

  • Kalir A, Edery H, Pelah Z, Balderman D, Porath G (1969) 1-Phenylcycloalkylamine derivatives. II. Synthesis and pharmacological activity. J Med Chem 12:473–477

    CAS  PubMed  CrossRef  Google Scholar 

  • Kalir A, Elkavets R, Pri-Bar I, Buchman O (1978) Structure-activity relationship of some phencyclidine derivatives: in vivo studies in mice. Eur J Med Chem Chim Ther 13:17–24

    CAS  Google Scholar 

  • Kamenka JM, Geneste P (1981) Synthesis, conformation, and physical properties of phencyclidine and its derivatives. In: Domino EF (ed) PCP (phencyclidine): historical and current perspectives. NPP Books, Ann Arbor, pp 47–82

    Google Scholar 

  • Kamenka JM, Geneste P (1983) The biologically active conformation of PCP and its consequences: a hypothesis. In: Kamenka JM, Domino EF, Geneste P (eds) Phencyclidine and related arylcyclohexylamines: present and future applications. NPP Books, Ann Arbor, pp 1–12

    Google Scholar 

  • Kamenka JM, Chiche B, Goudal R, Geneste P, Vignon J, Vincent JP, Lazdunski M (1982) Chemical synthesis and molecular pharmacology of hydroxylated 1-(1-phenylcyclohexyl-piperidine derivatives. J Med Chem 25:431–435

    CAS  PubMed  CrossRef  Google Scholar 

  • Kammerer RC, Schmitz DA, Hwa JJ, Cho AK (1984) Induction of phencyclidine metabolism by phencyclidine, ketamine, ethanol, phenobarbital and isosafrole. Biochem Pharmacol 33:599–604

    CAS  PubMed  CrossRef  Google Scholar 

  • Kapur S, Seeman P (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D2 and serotonin 5-HT2 receptors-implications for models of schizophrenia. Mol Psychiatry 7:837–844

    CAS  PubMed  CrossRef  Google Scholar 

  • Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344:992–997

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kemp JA, McKernan RM (2002) NMDA receptor pathways as drug targets. Nat Neurosci 5(Suppl):1039–1042

    CAS  PubMed  CrossRef  Google Scholar 

  • Kozlowski MR, Browne RG, Vinick FJ (1986) Discriminative stimulus properties of phencyclidine (PCP)-related compounds: correlations with 3H-PCP binding potency measured autoradiographically. Pharmacol Biochem Behav 25:1051–1058

    CAS  PubMed  CrossRef  Google Scholar 

  • Krotulski AJ, Papsun DM, Friscia M, Swartz JL, Holsey BD, Logan BK (2017) Fatality following ingestion of tetrahydrofuranylfentanyl, U-49900 and methoxy-phencyclidine. J Anal Toxicol 42:e27–e32

    CrossRef  CAS  Google Scholar 

  • Krystal JH, Petrakis IL, Webb E, Cooney NL, Karper LP, Namanworth S, Stetson P, Trevisan LA, Charney DS (1998) Dose-related ethanol-like effects of the NMDA antagonist, ketamine, in recently detoxified alcoholics. Arch Gen Psychiatry 55:354–360

    CAS  PubMed  Google Scholar 

  • Krystal JH, Petrakis IL, Krupitsky E, Schutz C, Trevisan L, D’Souza DC (2003) NMDA receptor antagonism and the ethanol intoxication signal: from alcoholism risk to pharmacotherapy. Ann N Y Acad Sci 1003:176–184

    CAS  PubMed  CrossRef  Google Scholar 

  • Largent BL, Gundlach AL, Snyder SH (1986) Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J Pharmacol Exp Ther 238:739–748

    CAS  PubMed  Google Scholar 

  • Leander JD, Rathbun RC, Zimmerman DM (1988) Anticonvulsant effects of phencyclidine-like drugs: relation to N-methyl-D-aspartic acid antagonism. Brain Res 454:368–372

    CAS  PubMed  CrossRef  Google Scholar 

  • Leccese AP, Marquis KL, Mattia A, Moreton JE (1986) The convulsant and anticonvulsant effects of phencyclidine (PCP) and PCP analogues in the rat. Behav Brain Res 19:163–169

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511:191–197

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lehmann S, Kieliba T, Beike J, Thevis M, Mercer-Chalmers-Bender K (2017) Determination of 74 new psychoactive substances in serum using automated in-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 1064:124–138

    CAS  PubMed  CrossRef  Google Scholar 

  • Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5:160–170

    CAS  PubMed  CrossRef  Google Scholar 

  • Lodge D, Mercier MS (2015) Ketamine and phencyclidine: the good, the bad and the unexpected. Br J Pharmacol 172:4254–4276

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lomenech H, Schreck B, Caillet P, Ganiere C, Allard S, Jolliet P, Victorri-Vigneau C (2017) Coma following AB-FUBINACA and 3-MeO-PCP consumption: a case report [poster abstract]. Fundam Clin Pharmacol 31:S55

    Google Scholar 

  • Lü W et al (2017) Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 355(6331):eaal3729

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 81:363–369

    CAS  PubMed  CrossRef  Google Scholar 

  • Maayani S, Weinstein H, Ben-zvi N, Cohen S, Sokolovsky M (1974) Psychotomimetics as anticholinergic agents. I. 1-Cyclohexylpiperidine derivatives. Anticholinesterase activity and antagonistic activity to acetylcholine. Biochem Pharmacol 23:1263–1281

    CAS  PubMed  CrossRef  Google Scholar 

  • Maddox VH, Godefroi EF, Parcell RF (1965) The synthesis of phencyclidine and other 1-arylcyclohexylamines. J Med Chem 8:230–235

    CAS  PubMed  CrossRef  Google Scholar 

  • Marquis KL, Moreton JE (1987) Animal models of intravenous phencyclinoid self-administration. Pharmacol Biochem Behav 27:385–389

    CAS  PubMed  CrossRef  Google Scholar 

  • McCarron MM, Schulze BW, Thompson GA, Conder MC, Goetz WA (1981) Acute phencyclidine intoxication: incidence of clinical findings in 1,000 cases. Ann Emerg Med 10:237–242

    CAS  PubMed  CrossRef  Google Scholar 

  • McIntyre IM, Trochta A, Gary RD, Storey A, Corneal J, Schaber B (2015) A fatality related to two novel hallucinogenic compounds: 4-methoxyphencyclidine and 4-hydroxy-N-methyl-N-ethyltryptamine. J Anal Toxicol 39:751–755

    CAS  PubMed  CrossRef  Google Scholar 

  • McMillan DE, Evans EB, Wessinger WD, Owens SM (1988) Structure-activity relationships of arylcyclohexylamines as discriminative stimuli in pigeons. J Pharmacol Exp Ther 247:1086–1092

    CAS  PubMed  Google Scholar 

  • Mendelsohn LG, Kerchner GA, Kalra V, Zimmerman DM, Leander JD (1984) Phencyclidine receptors in rat brain cortex. Biochem Pharmacol 33:3529–3535

    CAS  PubMed  CrossRef  Google Scholar 

  • Meyer JS, Greifenstein F, Devault M (1959) A new drug causing symptoms of sensory deprivation. Neurological, electroencephalographic and pharmacological effects of Sernyl. J Nerv Ment Dis 129:54–61

    CrossRef  Google Scholar 

  • Michely JA, Manier SK, Caspar AT, Brandt SD, Wallach J, Maurer HH (2017) New psychoactive substances 3-methoxyphencyclidine (3-MeO-PCP) and 3-methoxyrolicyclidine (3-MeO-PCPy): metabolic fate elucidated with rat urine and human liver preparations and their detectability in urine by GC-MS, “LC-(high resolution)-MSn” and “LC-(high resolution)-MS/MS”. Curr Neuropharmacol 15:692–712

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Misselbrook GP, Hamilton EJ (2012) Out with the old, in with the new? Case reports of the clinical features and acute management of two novel designer drugs. Acute Med 11:157–160

    CAS  PubMed  CrossRef  Google Scholar 

  • Mitchell-Mata C, Thomas B, Peterson B, Couper F (2017) Two fatal intoxications involving 3-methoxyphencyclidine. J Anal Toxicol 41:503–507

    CAS  PubMed  CrossRef  Google Scholar 

  • Morris H, Wallach J (2014) From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs. Drug Test Anal 6:614–632

    CAS  PubMed  CrossRef  Google Scholar 

  • Murray JB (2002) Phencyclidine (PCP): a dangerous drug, but useful in schizophrenia research. J Psychol 136:319–327

    PubMed  CrossRef  Google Scholar 

  • Nishimura M, Sato K, Okada T, Yoshiya I, Schloss P, Shimada S, Tohyama M (1998) Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells. Anesthesiology 88:768–774

    CAS  PubMed  CrossRef  Google Scholar 

  • Ogden KK, Traynelis SF (2011) New advances in NMDA receptor pharmacology. Trends Pharmacol Sci 32:726–733

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ohta S, Masumoto H, Takeuchi K, Hirobe M (1987) A phenolic metabolite of phencyclidine: the formation of a pharmacologically active metabolite by rat liver microsomes. Drug Metab Dispos 15:583–584

    CAS  PubMed  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    CAS  PubMed  CrossRef  Google Scholar 

  • Petersen RC, Stillman RC (1978) Phencyclidine (PCP) abuse: an appraisal, NIDA research monograph, vol 21. United States Department of Health and Human Services, National Institute on Drug Abuse, Rockville

    Google Scholar 

  • Pollard JC, Uhr L, Stern E (1965) Drugs and phantasy: the effects of LSD, psilocybin, and Sernyl on college students. Little, Brown, Boston

    Google Scholar 

  • Ponchant M, Dreux Y, Kamenka JM, Chicheportiche R, Beaucourt JP (1990) Synthesis of iodine-125-labeled 3-[125I]-iodophencyclidine for biological studies. J Label Compd Radiopharm 28:1059–1064

    CAS  CrossRef  Google Scholar 

  • Pradhan SN (1984) Phencyclidine (PCP): some human studies. Neurosci Biobehav Rev 8:493–501

    CAS  PubMed  CrossRef  Google Scholar 

  • Quirion R, Hammer RP Jr, Herkenham M, Pert CB (1981) Phencyclidine (angel dust)/sigma “opiate” receptor: visualization by tritium-sensitive film. Proc Natl Acad Sci U S A 78:5881–5885

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Reel JK, Leander JD, Mendelsohn LG, Schoepp DD, Ornstein PL, Evrard DA, Hermann RB, Zimmerman DM (1988) The search for a PCP antagonist: synthesis and characterization of novel arylcyclohexylamine derivatives. In: Domino EF, Kamenka JM (eds) Sigma and phencyclidine-like compounds as molecular probes in biology. NPP Books, Ann Arbor, pp 27–33

    Google Scholar 

  • Risner ME (1982) Intravenous self-administration of phencyclidine and related compounds in the dog. J Pharmacol Exp Ther 221:637–644

    CAS  PubMed  Google Scholar 

  • Rogawski MA, Thurkauf A, Yamaguchi S, Rice KC, Jacobson AE, Mattson MV (1989) Anticonvulsant activities of 1-phenylcyclohexylamine and its conformationally restricted analog 1,1-pentamethylenetetrahydroisoquinoline. J Pharmacol Exp Ther 249:708–712

    CAS  PubMed  Google Scholar 

  • Roth BL, Gibbons S, Arunotayanun W, Huang XP, Setola V, Treble R, Iversen L (2013) The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor. PLoS One 8:e59334

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Roth BL, Gibbons S, Arunotayanun W, Huang XP, Setola V, Treble R, Iversen L (2018) Correction: the ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor. PLoS One 13:e0194984

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Seeman P, Ko F, Tallerico T (2005) Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics. Mol Psychiatry 10:877–883

    CAS  PubMed  CrossRef  Google Scholar 

  • Shannon HE (1981a) Discriminative stimulus effects of phencyclidine: structure-activity relationships. In: Domino EF (ed) PCP (phencyclidine): historical and current perspectives. NPP Books, Ann Arbor, pp 311–335

    Google Scholar 

  • Shannon HE (1981b) Evaluation of phencyclidine analogs on the basis of their discriminative stimulus properties in the rat. J Pharmacol Exp Ther 216:543–551

    CAS  PubMed  Google Scholar 

  • Shannon HE, DeGregorio CM (1981) Effects of N-substituted analogs and metabolites of phencyclidine on avoidance behavior in the rat. J Pharmacol Exp Ther 218:55–62

    CAS  PubMed  Google Scholar 

  • Shao L, Hewitt MC, Wang F, Malcolm SC, Ma J, Campbell JE, Campbell UC, Engel SR, Spicer NA, Hardy LW, Schreiber R, Spear KL, Varney MA (2011) Discovery of N-methyl-1-(1-phenylcyclohexyl)methanamine, a novel triple serotonin, norepinephrine, and dopamine reuptake inhibitor. Bioorg Med Chem Lett 21:1438–1441

    CAS  PubMed  CrossRef  Google Scholar 

  • Showalter CV, Thornton WE (1977) Clinical pharmacology of phencyclidine toxicity. Am J Psychiatry 134:1234–1238

    CAS  PubMed  CrossRef  Google Scholar 

  • Shulgin AT, MacLean DE (1976) Illicit synthesis of phencyclidine (PCP) and several of its analogs. Clin Toxicol 9:553–560

    CAS  PubMed  CrossRef  Google Scholar 

  • Siegel RK (1978) Phencyclidine and ketamine intoxication: a study of four populations of recreational users. In: Petersen RC, Stillman RC (eds) Phencyclidine (PCP) abuse: an appraisal, NIDA research monograph, vol 21. United States Department of Health and Human Services, National Institute on Drug Abuse, Rockville, pp 119–147

    Google Scholar 

  • Smith RC, Meltzer HY, Arora RC, Davis JM (1977) Effects of phencyclidine on [3H]catecholamine and [3H]serotonin uptake in synaptosomal preparations from rat brain. Biochem Pharmacol 26:1435–1439

    CAS  PubMed  CrossRef  Google Scholar 

  • Stefek M, Ransom RW, DiStefano EW, Cho AK (1990) The alpha carbon oxidation of some phencyclidine analogues by rat tissue and its pharmacological implications. Xenobiotica 20:591–600

    CAS  PubMed  CrossRef  Google Scholar 

  • Steinpreis RE (1996) The behavioral and neurochemical effects of phencyclidine in humans and animals: some implications for modeling psychosis. Behav Brain Res 74:45–55

    CAS  PubMed  CrossRef  Google Scholar 

  • Stevenson R, Tuddenham L (2014) Novel psychoactive substance intoxication resulting in attempted murder. J Forensic Legal Med 25:60–61

    CrossRef  Google Scholar 

  • Stillman R, Petersen RC (1979) The paradox of phencyclidine (PCP) abuse. Ann Intern Med 90:428–430

    CAS  PubMed  CrossRef  Google Scholar 

  • Suzuki T, Yamamoto T, Hori T, Baba A, Shiraishi H, Ito T, Piletz JE, Ho IK (1996) Autoradiographic study on the pharmacological characteristics of [3H]3-OH-PCP binding sites in rat brain. Eur J Pharmacol 310:243–255

    CAS  PubMed  CrossRef  Google Scholar 

  • Thornton S, Lisbon D, Lin T, Gerona R (2017) Beyond ketamine and phencyclidine: analytically confirmed use of multiple novel arylcyclohexylamines. J Psychoactive Drugs 49:289–293

    PubMed  CrossRef  Google Scholar 

  • Thurkauf A, de Costa B, Yamaguchi S, Mattson MV, Jacobson AE, Rice KC, Rogawski MA (1990) Synthesis and anticonvulsant activity of 1-phenylcyclohexylamine analogues. J Med Chem 33:1452–1458

    CAS  PubMed  CrossRef  Google Scholar 

  • Tikhonova IG, Baskin II, Palyulin VA, Zefirov NS (2004) 3D-model of the ion channel of NMDA receptor: qualitative and quantitative modeling of the blocker binding. Dokl Biochem Biophys 396:181–186

    CAS  PubMed  CrossRef  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vaupel DB (1983) Phencyclidine studies in the dog. Pharmacology of PCP, profiles of eight analogues abused by man and the similarity of PCP to the opioid NANM (N-allylnormetazocine or SKF 10,047). In: Domino EF (ed) Phencyclidine and related arylcyclohexylamines: present and future applications. NPP Books, Ann Arbor, pp 347–367

    Google Scholar 

  • Vaupel DB, McCoun D, Cone EJ (1984) Phencyclidine analogs and precursors: rotarod and lethal dose studies in the mouse. J Pharmacol Exp Ther 230:20–27

    CAS  PubMed  Google Scholar 

  • Vignon J, Vincent JP, Bidard JN, Kamenka JM, Geneste P, Monier S, Lazdunski M (1982) Biochemical properties of the brain phencyclidine receptor. Eur J Pharmacol 81:531–542

    CAS  PubMed  CrossRef  Google Scholar 

  • Vignon J, Cerruti C, Chaudieu I, Pinet V, Chicheportiche M, Kamenka JM, Chicheportiche R (1988) Interaction of molecules in the phencyclidine series with the dopamine uptake system: correlation with their binding properties to the phencyclidine receptor. Binding properties of [3H]BTCP, a new PCP analog, to the dopamine uptake complex. In: Domino EF, Kamenka JM (eds) Sigma and phencyclidine-like compounds as molecular probes in biology. NPP Books, Ann Arbor, pp 199–208

    Google Scholar 

  • Walberg CB, McCarron MM, Schulze BN (1983) Quantitation of phencyclidine in serum by enzyme immunoassay: results in 405 patients. J Anal Toxicol 7:106–110

    CAS  PubMed  CrossRef  Google Scholar 

  • Wall ME, Brine DR, Jeffcoat AR, Cook CE (1981) Phencyclidine metabolism and disposition in man following a 100 μg intravenous dose. Res Commun Subst Abuse 2:161–172

    CAS  Google Scholar 

  • Wallach JV (2014) Structure activity relationship (SAR) studies of arylcyclohexylamines as N-methyl-D-aspartate receptor antagonists. PhD dissertation, University of the Sciences, Philadelphia

    Google Scholar 

  • Wallach J, De Paoli G, Adejare A, Brandt SD (2014) Preparation and analytical characterization of 1-(1-phenylcyclohexyl)piperidine (PCP) and 1-(1-phenylcyclohexyl)pyrrolidine (PCPy) analogues. Drug Test Anal 6:633–650

    CAS  PubMed  CrossRef  Google Scholar 

  • Wallach J, Kang H, Colestock T, Morris H, Bortolotto ZA, Collingridge GL, Lodge D, Halberstadt AL, Brandt SD, Adejare A (2016a) Pharmacological investigations of the dissociative ‘legal highs’ diphenidine, methoxphenidine and analogues. PLoS One 11:e0157021

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Wallach J, Colestock T, Cicali B, Elliott SP, Kavanagh PV, Adejare A, Dempster NM, Brandt SD (2016b) Syntheses and analytical characterizations of N-alkyl-arylcyclohexylamines. Drug Test Anal 8:801–815

    CAS  PubMed  CrossRef  Google Scholar 

  • Zarantonello P, Bettini E, Paio A, Simoncelli C, Terreni S, Cardullo F (2011) Novel analogues of ketamine and phencyclidine as NMDA receptor antagonists. Bioorg Med Chem Lett 21:2059–2063

    CAS  PubMed  CrossRef  Google Scholar 

  • Zidkova M, Hlozek T, Balik M, Kopecky O, Tesinsky P, Svanda J, Balikova MA (2017) Two cases of non-fatal intoxication with a novel street hallucinogen: 3-methoxy-phencyclidine. J Anal Toxicol 41:350–354

    CAS  PubMed  CrossRef  Google Scholar 

  • Zukin SR, Zukin RS (1979) Specific [3H]phencyclidine binding in rat central nervous system. Proc Natl Acad Sci U S A 76:5372–5376

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason Wallach or Simon D. Brandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Wallach, J., Brandt, S.D. (2018). Phencyclidine-Based New Psychoactive Substances. In: Maurer, H., Brandt, S. (eds) New Psychoactive Substances . Handbook of Experimental Pharmacology, vol 252. Springer, Cham. https://doi.org/10.1007/164_2018_124

Download citation