Skip to main content

Evidence and Function Relevance of Native DOR–MOR Heteromers

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 247))

Abstract

Opioid receptors are the sites of action for morphine and most other clinically used opioid drugs. Abundant evidence now demonstrates that different opioid receptor types can physically associate to form heteromers. Owing to their constituent monomers’ involvement in analgesia, mu/delta opioid receptor (M/DOR) heteromers have been a particular focus of attention. Understandings of the physiological relevance and indisputable proof of M/DOR formation in vivo are still evolving. This aspect of the field has been slow to progress in large part by the limitations of most available experimental models; recently however, promising progress is being made. As a result, the long-repeated promise of opioid receptor heteromers as selective therapeutic targets is now being realized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelhamid EE, Sultana M, Portoghese PS, Takemori AE (1991) Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther 258(1):299–303

    CAS  PubMed  Google Scholar 

  • Abul-Husn NS, Sutak M, Milne B, Jhamandas K (2007) Augmentation of spinal morphine analgesia and inhibition of tolerance by low doses of mu- and delta-opioid receptor antagonists. Br J Pharmacol 151(6):877–887

    Article  CAS  Google Scholar 

  • Ananthan S et al (2012) 14-Alkoxy- and 14-acyloxypyridomorphinans: mu agonist/delta antagonist opioid analgesics with diminished tolerance and dependence side effects. J Med Chem 55(19):8350–8363

    Article  CAS  Google Scholar 

  • Bardo MT, Hughes RA (1979) Exposure to a nonfunctional hot plate as a factor in the assessment of morphine-induced analgesia and analgesic tolerance in rats. Pharmacol Biochem Behav 10(4):481–485

    Article  CAS  Google Scholar 

  • Beaudry H, Gendron L, Moron JA (2015) Implication of delta opioid receptor subtype 2 but not delta opioid receptor subtype 1 in the development of morphine analgesic tolerance in a rat model of chronic inflammatory pain. Eur J Neurosci 41(7):901–907

    Article  CAS  Google Scholar 

  • Breslin HJ et al (2012) Identification of a dual delta OR antagonist/mu OR agonist as a potential therapeutic for diarrhea-predominant Irritable Bowel Syndrome (IBS-d). Bioorg Med Chem Lett 22(14):4869–4872

    Article  CAS  Google Scholar 

  • Cahill CM et al (2001) Prolonged morphine treatment targets delta opioid receptors to neuronal plasma membranes and enhances delta-mediated antinociception. J Neurosci 21(19):7598–7607

    Article  CAS  Google Scholar 

  • Cahill CM, Morinville A, Hoffert C, O’Donnell D, Beaudet A (2003) Up-regulation and trafficking of delta opioid receptor in a model of chronic inflammation: implications for pain control. Pain 101:199–208

    Article  CAS  Google Scholar 

  • Cahill CM, Holdridge SV, Morinville A (2007) Trafficking of delta-opioid receptors and other G-protein-coupled receptors: implications for pain and analgesia. Trends Pharmacol Sci 28(1):23–31

    Article  CAS  Google Scholar 

  • Cai J et al (2014) Endomorphin analogues with mixed mu-opioid (MOP) receptor agonism/delta-opioid (DOP) receptor antagonism and lacking beta-arrestin2 recruitment activity. Bioorg Med Chem 22(7):2208–2219

    Article  CAS  Google Scholar 

  • Chefer VI, Shippenberg TS (2009) Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice. Neuropsychopharmacology 34(4):887–898

    Article  CAS  Google Scholar 

  • Chen H-J et al (2012) Disruption of delta-opioid receptor phosphorylation at threonine 161 attenuates morphine tolerance in rats with CFA-induced inflammatory hypersensitivity. Neurosci Bull 28(2):182–192

    Article  CAS  Google Scholar 

  • Chung PCS et al (2015) Delta opioid receptors expressed in forebrain GABAergic neurons are responsible for SNC80-induced seizures. Behav Brain Res 278:429–434

    Article  Google Scholar 

  • Costantino CM, Gomes I, Stockton SD, Lim MP, Devi LA (2012) Opioid receptor heteromers in analgesia. Expert Rev Mol Med 14(April):e9

    Article  Google Scholar 

  • Daniels DJ et al (2005) Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proc Natl Acad Sci U S A 102(52):19208–19213

    Article  CAS  Google Scholar 

  • Décaillot FM, Rozenfeld R, Gupta A, Devi LA (2008) Cell surface targeting of mu-delta opioid receptor heterodimers by RTP4. Proc Natl Acad Sci U S A 105(41):16045–16050

    Article  Google Scholar 

  • Egan TM, North RA (1981) Both mu and delta opiate receptors exist on the same neuron. Science 214(4523):923–924

    Article  CAS  Google Scholar 

  • Erbs E et al (2015) A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct 220(2):677–702

    Article  CAS  Google Scholar 

  • Espejo EF, Mir D (1994) Differential effects of weekly and daily exposure to the hot plate on the rat’s behavior. Physiol Behav 55(6):1157–1162

    Article  CAS  Google Scholar 

  • Fox-Threlkeld JE et al (1994) Identification of mechanisms and sites of actions of mu and delta opioid receptor activation in the canine intestine. J Pharmacol Exp Ther 268(2):689–700

    CAS  PubMed  Google Scholar 

  • Fujita W et al (2014) Molecular characterization of eluxadoline as a potential ligand targeting mu-delta opioid receptor heteromers. Biochem Pharmacol 92(3):448–456

    Article  CAS  Google Scholar 

  • Fundytus ME, Schiller PW, Shapiro M, Weltrowska G, Coderre TJ (1995) Attenuation of morphine tolerance and dependence with the highly selective delta-opioid receptor antagonist TIPP[psi]. Eur J Pharmacol 286(1):105–108

    Article  CAS  Google Scholar 

  • Gardon O et al (2014) Expression of mu opioid receptor in dorsal diencephalic conduction system: new insights for the medial habenula. Neuroscience 277:595–609

    Article  CAS  Google Scholar 

  • Gendron L, Pintar JE, Chavkin C (2007) Essential role of mu opioid receptor in the regulation of delta opioid receptor-mediated antihyperalgesia. Neuroscience 150(4):807–817

    Article  CAS  Google Scholar 

  • Gendron L, Cahill CM, Von Zastrow M, Schiller PW, Pineyro G (2016) Molecular pharmacology of δ-opioid receptors. Pharmacol Rev 68:631–700

    Article  CAS  Google Scholar 

  • Gilron I, Watson CPN, Cahill CM, Moulin DE (2006) Neuropathic pain: a practical guide for the clinician. CMAJ 175(3):265–275

    Article  Google Scholar 

  • Gomes I et al (2000) Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci 20(22):RC110

    Article  CAS  Google Scholar 

  • Gomes I et al (2004) A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci U S A 101(14):5135–5139

    Article  CAS  Google Scholar 

  • Gomes I et al (2013) Identification of a μ-δ opioid receptor heteromer-biased agonist with antinociceptive activity. Proc Natl Acad Sci U S A 110(29):12072–12077

    Article  CAS  Google Scholar 

  • Gomes I, Gupta A, Bushlin I, Devi LA (2014) Antibodies to probe endogenous G protein-coupled receptor heteromer expression, regulation, and function. Front Pharmacol 5:268

    Article  Google Scholar 

  • Gomes I et al (2016) G protein-coupled receptor heteromers. Annu Rev Pharmacol Toxicol 56:403–425

    Article  CAS  Google Scholar 

  • Gupta A et al (2010) Increased abundance of opioid receptor heteromers after chronic morphine administration. Sci Signal 3(131):ra54

    Article  Google Scholar 

  • Hack SP, Bagley EE, Chieng BCH, Christie MJ (2005) Induction of delta-opioid receptor function in the midbrain after chronic morphine treatment. J Neurosci 25(12):3192–3198

    Article  CAS  Google Scholar 

  • He S-Q et al (2011) Facilitation of mu-opioid receptor activity by preventing delta-opioid receptor-mediated codegradation. Neuron 69(1):120–131

    Article  CAS  Google Scholar 

  • Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399(6737):697–700

    Article  CAS  Google Scholar 

  • Kest B, Lee CE, McLemore GL, Inturrisi CE (1996) An antisense oligodeoxynucleotide to the delta opioid receptor (DOR-1) inhibits morphine tolerance and acute dependence in mice. Brain Res Bull 39(3):185–188

    Article  CAS  Google Scholar 

  • Law P-Y et al (2005) Heterodimerization of mu- and delta-opioid receptors occurs at the cell surface only and requires receptor-G protein interactions. J Biol Chem 280(12):11152–11164

    Article  CAS  Google Scholar 

  • Le Merrer J, Rezai X, Scherrer G, Becker JAJ, Kieffer BL (2013) Impaired hippocampus-dependent and facilitated striatum-dependent behaviors in mice lacking the delta opioid receptor. Neuropsychopharmacology 38(6):1050–1059

    Article  Google Scholar 

  • Lenard NR, Daniels DJ, Portoghese PS, Roerig SC (2007) Absence of conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores. Eur J Pharmacol 566(1–3):75–82

    Article  CAS  Google Scholar 

  • Levio S, Cash BD (2017) The place of eluxadoline in the management of irritable bowel syndrome with diarrhea. Ther Adv Gastroenterol 10(9):715–725

    Article  CAS  Google Scholar 

  • Lucido AL, Morinville A, Gendron L, Stroh T, Beaudet A (2005) Prolonged morphine treatment selectively increases membrane recruitment of delta-opioid receptors in mouse basal ganglia. J Mol Neurosci 25(3):207–214

    Article  CAS  Google Scholar 

  • Margolis EB, Fujita W, Devi LA, Fields HL (2017) Two delta opioid receptor subtypes are functional in single ventral tegmental area neurons, and can interact with the mu opioid receptor. Neuropharmacology 123:420–432

    Article  CAS  Google Scholar 

  • Mattia A, Vanderah T, Mosberg HI, Porreca F (1991) Lack of antinociceptive cross-tolerance between [D-Pen2, D-Pen5]enkephalin and [D-Ala2]deltorphin II in mice: evidence for delta receptor subtypes. J Pharmacol Exp Ther 258(2):583–587

    CAS  PubMed  Google Scholar 

  • Morinville A, Cahill CM, Kieffer B, Collier B, Beaudet A (2004a) Mu-opioid receptor knockout prevents changes in delta-opioid receptor trafficking induced by chronic inflammatory pain. Pain 109(3):266–273

    Article  CAS  Google Scholar 

  • Morinville A et al (2004b) Morphine-induced changes in delta opioid receptor trafficking are linked to somatosensory processing in the rat spinal cord. J Neurosci 24:5549–5559

    Article  CAS  Google Scholar 

  • Nakama-Kitamura M, Doe N (2003) The influence of contextual cue on antinociceptive tolerance and facilitation of memory with morphine. J Pharmacol Sci 92(3):237–244

    Article  CAS  Google Scholar 

  • Pinello C et al (2010) Characterization of an agonist probe for opioid receptor mu 1 (OPRM1)-opioid receptor delta 1 (OPRD1) heterodimerization. National Center for Biotechnology Information, Bethesda

    Google Scholar 

  • Poole DP et al (2011) Localization and regulation of fluorescently labeled delta opioid receptor, expressed in enteric neurons of mice. Gastroenterology 141(3):982–991.e18

    Article  CAS  Google Scholar 

  • Porreca F, Heyman JS, Mosberg HI, Omnaas JR, Vaught JL (1987) Role of mu and delta receptors in the supraspinal and spinal analgesic effects of [D-Pen2, D-Pen5]enkephalin in the mouse. J Pharmacol Exp Ther 241(2):393–400

    CAS  PubMed  Google Scholar 

  • Provasi D, Boz MB, Johnston JM, Filizola M (2015) Preferred supramolecular organization and dimer interfaces of opioid receptors from simulated self-association. PLoS Comput Biol 11(3):e1004148

    Article  Google Scholar 

  • Rothman RB et al (1992) Probing the opioid receptor complex with (+)-trans-SUPERFIT. II. Evidence that mu ligands are noncompetitive inhibitors of the delta cx opioid peptide binding site. Peptides 13(6):1137–1143

    Article  CAS  Google Scholar 

  • Rozenfeld R, Devi LA (2007) Receptor heterodimerization leads to a switch in signaling: beta-arrestin2-mediated ERK activation by mu-delta opioid receptor heterodimers. FASEB J 21(10):2455–2465

    Article  CAS  Google Scholar 

  • Scherrer G et al (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci U S A 103(25):9691–9696

    Article  CAS  Google Scholar 

  • Scherrer G et al (2009) Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137(6):1148–1159

    Article  CAS  Google Scholar 

  • Siuda ER, Carr R 3rd, Rominger DH, Violin JD (2017) Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics. Curr Opin Pharmacol 32:77–84

    Article  CAS  Google Scholar 

  • Spahn V, Stein C (2017) Targeting delta opioid receptors for pain treatment: drugs in phase I and II clinical development. Expert Opin Investig Drugs 26(2):155–160

    Article  CAS  Google Scholar 

  • Stockton SD, Devi LA (2012) Functional relevance of μ-δ opioid receptor heteromerization: a role in novel signaling and implications for the treatment of addiction disorders: from a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend 121(3):167–172

    Article  CAS  Google Scholar 

  • van Rijn RM, Whistler JL (2009) The delta(1) opioid receptor is a heterodimer that opposes the actions of the delta(2) receptor on alcohol intake. Biol Psychiatry 66(8):777–784

    Article  Google Scholar 

  • Waldhoer M et al (2005) A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proc Natl Acad Sci U S A 102(25):9050–9055

    Article  CAS  Google Scholar 

  • Williams D, Devi LA (2010) Escorts take the lead molecular chaperones as therapeutic targets. Prog Mol Biol Transl Sci 91:121–149

    Article  CAS  Google Scholar 

  • Xie W-Y et al (2009) Disruption of Cdk5-associated phosphorylation of residue threonine-161 of the delta-opioid receptor: impaired receptor function and attenuated morphine antinociceptive tolerance. J Neurosci 29(11):3551–3564

    Article  CAS  Google Scholar 

  • Yekkirala AS, Kalyuzhny AE, Portoghese PS (2013) An immunocytochemical-derived correlate for evaluating the bridging of heteromeric mu-delta opioid protomers by bivalent ligands. ACS Chem Biol 8(7):1412–1416

    Article  CAS  Google Scholar 

  • Zhu Y et al (1999) Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron 24(1):243–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Cahill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cahill, C.M., Ong, E. (2018). Evidence and Function Relevance of Native DOR–MOR Heteromers. In: Jutkiewicz, E. (eds) Delta Opioid Receptor Pharmacology and Therapeutic Applications. Handbook of Experimental Pharmacology, vol 247. Springer, Cham. https://doi.org/10.1007/164_2018_112

Download citation

Publish with us

Policies and ethics