Advertisement

Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol

  • Rachel I. Anderson
  • David E. Moorman
  • Howard C. BeckerEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 248)

Abstract

Understanding the neural systems that drive alcohol motivation and are disrupted in alcohol use disorders is of critical importance in developing novel treatments. The dynorphin and orexin/hypocretin neuropeptide systems are particularly relevant with respect to alcohol use and misuse. Both systems are strongly associated with alcohol-seeking behaviors, particularly in cases of high levels of alcohol use as seen in dependence. Furthermore, both systems also play a role in stress and anxiety, indicating that disruption of these systems may underlie long-term homeostatic dysregulation seen in alcohol use disorders. These systems are also closely interrelated with one another – dynorphin/kappa opioid receptors and orexin/hypocretin receptors are found in similar regions and hypocretin/orexin neurons also express dynorphin – suggesting that these two systems may work together in the regulation of alcohol seeking and may be mutually disrupted in alcohol use disorders. This chapter reviews studies demonstrating a role for each of these systems in motivated behavior, with a focus on their roles in regulating alcohol-seeking and self-administration behaviors. Consideration is also given to evidence indicating that these neuropeptide systems may be viable targets for the development of potential treatments for alcohol use disorders.

Keywords

Alcohol Dynorphin Ethanol Hypocretin Kappa opioid receptor Orexin 

Notes

Acknowledgments

This work was supported by NIH grants F32 AA023700 (RIA), P50 AA010761 (HCB), U01 AA014095 (HCB), U01 AA020929 (HCB), AA024571 (DEM), AA025481 (DEM), DA041674 (DEM), VA Medical Research BLR&D BX000813 (HCB), and a NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation (DEM).

References

  1. Al-Hasani R, McCall JG, Shin G, Gomez AM, Schmitz GP, Bernardi JM, Pyo CO, Park SI, Marcinkiewcz CM, Crowley NA, Krashes MJ, Lowell BB, Kash TL, Rogers JA, Bruchas MR (2015) Distinct subpopulations of nucleus accumbens dynorphin neurons drive aversion and reward. Neuron 87:1063–1077PubMedPubMedCentralGoogle Scholar
  2. Anderson RI, Becker HC (2017) Role of the dynorphin/kappa opioid receptor system in the motivational effects of ethanol. Alcohol Clin Exp Res 41:1402–1418PubMedPubMedCentralGoogle Scholar
  3. Anderson RI, Agoglia AE, Morales M, Varlinskaya EI, Spear LP (2013) Stress, kappa manipulations, and aversive effects of ethanol in adolescent and adult male rats. Neuroscience 249:214–222PubMedGoogle Scholar
  4. Anderson RI, Becker HC, Adams BL, Jesudason CD, Rorick-Kehn LM (2014) Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models. Front Neurosci 8:33PubMedPubMedCentralGoogle Scholar
  5. Anderson RI, Lopez MF, Becker HC (2016) Stress-induced enhancement of ethanol intake in C57BL/6J mice with a history of chronic ethanol exposure: involvement of kappa opioid receptors. Front Cell Neurosci 10:45PubMedPubMedCentralGoogle Scholar
  6. Aston-Jones G, Smith RJ, Sartor GC, Moorman DE, Massi L, Tahsili-Fahadan P, Richardson KA (2010) Lateral hypothalamic orexin/hypocretin neurons: a role in reward-seeking and addiction. Brain Res 1314:74–90PubMedGoogle Scholar
  7. Atwood BK, Kupferschmidt DA, Lovinger DM (2014) Opioids induce dissociable forms of long-term depression of excitatory inputs to the dorsal striatum. Nat Neurosci 17:540–548PubMedPubMedCentralGoogle Scholar
  8. Baimel C, Borgland SL (2012) Hypocretin modulation of drug-induced synaptic plasticity. Prog Brain Res 198:123–131PubMedGoogle Scholar
  9. Baimel C, Borgland SL (2017) Hypocretin/orexin and plastic adaptations associated with drug abuse. Curr Top Behav Neurosci 33:283–304PubMedGoogle Scholar
  10. Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL (2015) Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol 172:334–348PubMedGoogle Scholar
  11. Baimel C, Lau BK, Qiao M, Borgland SL (2017) Projection-target-defined effects of orexin and dynorphin on VTA dopamine neurons. Cell Rep 18:1346–1355PubMedGoogle Scholar
  12. Barker JM, Corbit LH, Robinson DL, Gremel CM, Gonzales RA, Chandler LJ (2015) Corticostriatal circuitry and habitual ethanol seeking. Alcohol 49:817–824PubMedPubMedCentralGoogle Scholar
  13. Barson JR, Leibowitz SF (2016) Hypothalamic neuropeptide signaling in alcohol addiction. Prog Neuro-Psychopharmacol Biol Psychiatry 65:321–329Google Scholar
  14. Barson JR, Carr AJ, Soun JE, Sobhani NC, Leibowitz SF, Hoebel BG (2009) Opioids in the nucleus accumbens stimulate ethanol intake. Physiol Behav 98:453–459PubMedPubMedCentralGoogle Scholar
  15. Barson JR, Carr AJ, Soun JE, Sobhani NC, Rada P, Leibowitz SF, Hoebel BG (2010) Opioids in the hypothalamic paraventricular nucleus stimulate ethanol intake. Alcohol Clin Exp Res 34:214–222PubMedGoogle Scholar
  16. Barson JR, Ho HT, Leibowitz SF (2015) Anterior thalamic paraventricular nucleus is involved in intermittent access ethanol drinking: role of orexin receptor 2. Addict Biol 20:469–481PubMedGoogle Scholar
  17. Barson JR, Poon K, Ho HT, Alam MI, Sanzalone L, Leibowitz SF (2017) Substance P in the anterior thalamic paraventricular nucleus: promotion of ethanol drinking in response to orexin from the hypothalamus. Addict Biol 22:58–69PubMedGoogle Scholar
  18. Bayerlein K, Kraus T, Leinonen I, Pilniok D, Rotter A, Hofner B, Schwitulla J, Sperling W, Kornhuber J, Biermann T (2011) Orexin A expression and promoter methylation in patients with alcohol dependence comparing acute and protracted withdrawal. Alcohol 45:541–547PubMedGoogle Scholar
  19. Bazov I, Kononenko O, Watanabe H, Kuntic V, Sarkisyan D, Taqi MM, Hussain MZ, Nyberg F, Yakovleva T, Bakalkin G (2013) The endogenous opioid system in human alcoholics: molecular adaptations in brain areas involved in cognitive control of addiction. Addict Biol 18:161–169PubMedGoogle Scholar
  20. Becker HC (2017) Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology 122:115–126PubMedPubMedCentralGoogle Scholar
  21. Beczkowska IW, Bowen WD, Bodnar RJ (1992) Central opioid receptor subtype antagonists differentially alter sucrose and deprivation-induced water intake in rats. Brain Res 589:291–301PubMedGoogle Scholar
  22. Bentzley BS, Aston-Jones G (2015) Orexin-1 receptor signaling increases motivation for cocaine-associated cues. Eur J Neurosci 41:1149–1156PubMedPubMedCentralGoogle Scholar
  23. Berger B, Rothmaier AK, Wedekind F, Zentner J, Feuerstein TJ, Jackisch R (2006) Presynaptic opioid receptors on noradrenergic and serotonergic neurons in the human as compared to the rat neocortex. Br J Pharmacol 148:795–806PubMedPubMedCentralGoogle Scholar
  24. Berger AL, Williams AM, McGinnis MM, Walker BM (2013) Affective cue-induced escalation of alcohol self-administration and increased 22-kHz ultrasonic vocalizations during alcohol withdrawal: role of kappa-opioid receptors. Neuropsychopharmacology 38:647–654PubMedGoogle Scholar
  25. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A (2006) Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49:589–601PubMedGoogle Scholar
  26. Borgland SL, Storm E, Bonci A (2008) Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons. Eur J Neurosci 28:1545–1556PubMedGoogle Scholar
  27. Borgland SL, Chang SJ, Bowers MS, Thompson JL, Vittoz N, Floresco SB, Chou J, Chen BT, Bonci A (2009) Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 29:11215–11225PubMedPubMedCentralGoogle Scholar
  28. Brown RM, Lawrence AJ (2013) Ascending orexinergic pathways and alcohol-seeking. Curr Opin Neurobiol 23:467–472PubMedGoogle Scholar
  29. Brown RM, Kim AK, Khoo SY, Kim JH, Jupp B, Lawrence AJ (2016) Orexin-1 receptor signalling in the prelimbic cortex and ventral tegmental area regulates cue-induced reinstatement of ethanol-seeking in iP rats. Addict Biol 21:603–612PubMedGoogle Scholar
  30. Bruchas MR, Chavkin C (2010) Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology 210:137–147PubMedPubMedCentralGoogle Scholar
  31. Bruchas MR, Land BB, Aita M, Xu M, Barot SK, Li S, Chavkin C (2007) Stress-induced p38 mitogen-activated protein kinase activation mediates kappa-opioid-dependent dysphoria. J Neurosci 27:11614–11623PubMedPubMedCentralGoogle Scholar
  32. Bruchas MR, Land BB, Lemos JC, Chavkin C (2009) CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior. PLoS One 4:e8528PubMedPubMedCentralGoogle Scholar
  33. Bruijnzeel AW (2009) Kappa-opioid receptor signaling and brain reward function. Brain Res Rev 62:127–146PubMedPubMedCentralGoogle Scholar
  34. Calipari ES, Espana RA (2012) Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms. Front Behav Neurosci 6:54PubMedPubMedCentralGoogle Scholar
  35. Cannella N, Economidou D, Kallupi M, Stopponi S, Heilig M, Massi M, Ciccocioppo R (2009) Persistent increase of alcohol-seeking evoked by neuropeptide S: an effect mediated by the hypothalamic hypocretin system. Neuropsychopharmacology 34:2125–2134PubMedGoogle Scholar
  36. Carr GV, Lucki I (2010) Comparison of the kappa-opioid receptor antagonist DIPPA in tests of anxiety-like behavior between Wistar Kyoto and Sprague Dawley rats. Psychopharmacology 210:295–302PubMedPubMedCentralGoogle Scholar
  37. Carrive P, Kuwaki T (2017) Orexin and central modulation of cardiovascular and respiratory function. Curr Top Behav Neurosci 33:157–196PubMedGoogle Scholar
  38. Carvajal F, Alcaraz-Iborra M, Lerma-Cabrera JM, Valor LM, de la Fuente L, Sanchez-Amate Mdel C, Cubero I (2015) Orexin receptor 1 signaling contributes to ethanol binge-like drinking: pharmacological and molecular evidence. Behav Brain Res 287:230–237PubMedGoogle Scholar
  39. Cason AM, Smith RJ, Tahsili-Fahadan P, Moorman DE, Sartor GC, Aston-Jones G (2010) Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol Behav 100:419–428PubMedPubMedCentralGoogle Scholar
  40. Chang GQ, Karatayev O, Ahsan R, Avena NM, Lee C, Lewis MJ, Hoebel BG, Leibowitz SF (2007) Effect of ethanol on hypothalamic opioid peptides, enkephalin, and dynorphin: relationship with circulating triglycerides. Alcohol Clin Exp Res 31:249–259PubMedGoogle Scholar
  41. Chartoff EH, Ebner SR, Sparrow A, Potter D, Baker PM, Ragozzino ME, Roitman MF (2016) Relative timing between kappa opioid receptor activation and cocaine determines the impact on reward and dopamine release. Neuropsychopharmacology 41:989–1002PubMedGoogle Scholar
  42. Chavkin C (2013) Dynorphin – still an extraordinarily potent opioid peptide. Mol Pharmacol 83:729–736PubMedPubMedCentralGoogle Scholar
  43. Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF (2013) Opioids in the perifornical lateral hypothalamus suppress ethanol drinking. Alcohol 47:31–38PubMedGoogle Scholar
  44. Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF (2014) Hypothalamic peptides controlling alcohol intake: differential effects on microstructure of drinking bouts. Alcohol 48:657–664PubMedPubMedCentralGoogle Scholar
  45. Choi DL, Davis JF, Fitzgerald ME, Benoit SC (2010) The role of orexin-A in food motivation, reward-based feeding behavior and food-induced neuronal activation in rats. Neuroscience 167:11–20PubMedGoogle Scholar
  46. Chou TC, Lee CE, Lu J, Elmquist JK, Hara J, Willie JT, Beuckmann CT, Chemelli RM, Sakurai T, Yanagisawa M, Saper CB, Scammell TE (2001) Orexin (hypocretin) neurons contain dynorphin. J Neurosci 21:RC168PubMedGoogle Scholar
  47. Clegg DJ, Air EL, Woods SC, Seeley RJ (2002) Eating elicited by orexin-a, but not melanin-concentrating hormone, is opioid mediated. Endocrinology 143:2995–3000PubMedGoogle Scholar
  48. Cluderay JE, Harrison DC, Hervieu GJ (2002) Protein distribution of the orexin-2 receptor in the rat central nervous system. Regul Pept 104:131–144PubMedGoogle Scholar
  49. Conrad KL, Davis AR, Silberman Y, Sheffler DJ, Shields AD, Saleh SA, Sen N, Matthies HJ, Javitch JA, Lindsley CW, Winder DG (2012) Yohimbine depresses excitatory transmission in BNST and impairs extinction of cocaine place preference through orexin-dependent, norepinephrine-independent processes. Neuropsychopharmacology 37:2253–2266PubMedPubMedCentralGoogle Scholar
  50. Crain SM, Shen KF (2000) Antagonists of excitatory opioid receptor functions enhance morphine’s analgesic potency and attenuate opioid tolerance/dependence liability. Pain 84:121–131PubMedGoogle Scholar
  51. Crocker A, Espana RA, Papadopoulou M, Saper CB, Faraco J, Sakurai T, Honda M, Mignot E, Scammell TE (2005) Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology 65:1184–1188PubMedPubMedCentralGoogle Scholar
  52. Crowley NA, Kash TL (2015) Kappa opioid receptor signaling in the brain: circuitry and implications for treatment. Prog Neuro-Psychopharmacol Biol Psychiatry 62:51–60Google Scholar
  53. Crowley NA, Bloodgood DW, Hardaway JA, Kendra AM, McCall JG, Al-Hasani R, McCall NM, Yu W, Schools ZL, Krashes MJ, Lowell BB, Whistler JL, Bruchas MR, Kash TL (2016) Dynorphin controls the gain of an amygdalar anxiety circuit. Cell Rep 14:2774–2783PubMedPubMedCentralGoogle Scholar
  54. D’Addario C, Caputi FF, Rimondini R, Gandolfi O, Del Borrello E, Candeletti S, Romualdi P (2013) Different alcohol exposures induce selective alterations on the expression of dynorphin and nociceptin systems related genes in rat brain. Addict Biol 18:425–433PubMedGoogle Scholar
  55. Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci U S A 96:748–753PubMedPubMedCentralGoogle Scholar
  56. Dayas CV, McGranahan TM, Martin-Fardon R, Weiss F (2008) Stimuli linked to ethanol availability activate hypothalamic CART and orexin neurons in a reinstatement model of relapse. Biol Psychiatry 63:152–157PubMedGoogle Scholar
  57. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327PubMedPubMedCentralGoogle Scholar
  58. Dhaher R, Hauser SR, Getachew B, Bell RL, McBride WJ, McKinzie DL, Rodd ZA (2010) The orexin-1 receptor antagonist SB-334867 reduces alcohol relapse drinking, but not alcohol-seeking, in alcohol-preferring (P) rats. J Addict Med 4:153–159PubMedPubMedCentralGoogle Scholar
  59. Di Chiara G, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080PubMedGoogle Scholar
  60. Dietis N, Rowbotham DJ, Lambert DG (2011) Opioid receptor subtypes: fact or artifact? Br J Anaesth 107:8–18PubMedGoogle Scholar
  61. Ehrich JM, Phillips PE, Chavkin C (2014) Kappa opioid receptor activation potentiates the cocaine-induced increase in evoked dopamine release recorded in vivo in the mouse nucleus accumbens. Neuropsychopharmacology 39:3036–3048PubMedPubMedCentralGoogle Scholar
  62. Erikson C, Walker BM (2016) Maladaptive behavioral regulation in alcohol dependence: role of dynorphin/kappa-opioid receptor modifications in the bed nucleus of the stria terminalis. In: 2016 neuroscience meeting planner, Society for Neuroscience, San Diego, Program No. 826.13 (Online)Google Scholar
  63. Espana RA, Oleson EB, Locke JL, Brookshire BR, Roberts DCS, Jones SR (2010) The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur J Neurosci 31:336–348PubMedGoogle Scholar
  64. Fallon JH, Leslie FM (1986) Distribution of dynorphin and enkephalin peptides in the rat brain. J Comp Neurol 249:293–336PubMedGoogle Scholar
  65. Ferrari LL, Agostinelli LJ, Krashes MJ, Lowell BB, Scammell TE, Arrigoni E (2016) Dynorphin inhibits basal forebrain cholinergic neurons by pre- and postsynaptic mechanisms. J Physiol 594:1069–1085PubMedPubMedCentralGoogle Scholar
  66. Flores A, Saravia R, Maldonado R, Berrendero F (2015) Orexins and fear: implications for the treatment of anxiety disorders. Trends Neurosci 38:550–559PubMedGoogle Scholar
  67. Ford CP, Beckstead MJ, Williams JT (2007) Kappa opioid inhibition of somatodendritic dopamine inhibitory postsynaptic currents. J Neurophysiol 97:883–891PubMedGoogle Scholar
  68. Funk D, Coen K, Le AD (2014) The role of kappa opioid receptors in stress-induced reinstatement of alcohol seeking in rats. Brain Behav 4:356–367PubMedPubMedCentralGoogle Scholar
  69. Giardino WJ, de Lecea L (2014) Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr Opin Neurobiol 29:103–108PubMedGoogle Scholar
  70. Gilpin NW, Roberto M, Koob GF, Schweitzer P (2014) Kappa opioid receptor activation decreases inhibitory transmission and antagonizes alcohol effects in rat central amygdala. Neuropharmacology 77:294–302PubMedGoogle Scholar
  71. Hamlin AS, Newby J, McNally GP (2007) The neural correlates and role of D1 dopamine receptors in renewal of extinguished alcohol-seeking. Neuroscience 146:525–536PubMedGoogle Scholar
  72. Hamlin AS, Clemens KJ, Choi EA, McNally GP (2009) Paraventricular thalamus mediates context-induced reinstatement (renewal) of extinguished reward seeking. Eur J Neurosci 29:802–812PubMedGoogle Scholar
  73. Harshberger E, Gilson EA, Gillett K, Stone JH, El Amrani L, Valdez GR (2016) Nor-BNI antagonism of kappa opioid agonist-induced reinstatement of ethanol-seeking behavior. J Addict 2016:1084235PubMedPubMedCentralGoogle Scholar
  74. Henderson-Redmond A, Czachowski C (2014) Effects of systemic opioid receptor ligands on ethanol- and sucrose seeking and drinking in alcohol-preferring (P) and Long Evans rats. Psychopharmacology 231:4309–4321PubMedPubMedCentralGoogle Scholar
  75. Hervieu GJ, Cluderay JE, Harrison DC, Roberts JC, Leslie RA (2001) Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord. Neuroscience 103:777–797PubMedGoogle Scholar
  76. Hjelmstad GO, Fields HL (2001) Kappa opioid receptor inhibition of glutamatergic transmission in the nucleus accumbens shell. J Neurophysiol 85:1153–1158PubMedGoogle Scholar
  77. Hjelmstad GO, Fields HL (2003) Kappa opioid receptor activation in the nucleus accumbens inhibits glutamate and GABA release through different mechanisms. J Neurophysiol 89:2389–2395PubMedGoogle Scholar
  78. Hollander JA, Lu Q, Cameron MD, Kamenecka TM, Kenny PJ (2008) Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci U S A 105:19480–19485PubMedPubMedCentralGoogle Scholar
  79. Hollander JA, Pham D, Fowler CD, Kenny PJ (2012) Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: pharmacological and behavioral genetics evidence. Front Behav Neurosci 6:47PubMedPubMedCentralGoogle Scholar
  80. Holter SM, Henniger MS, Lipkowski AW, Spanagel R (2000) Kappa-opioid receptors and relapse-like drinking in long-term ethanol-experienced rats. Psychopharmacology 153:93–102PubMedGoogle Scholar
  81. Iyengar S, Kim HS, Wood PL (1986) Kappa opiate agonists modulate the hypothalamic-pituitary-adrenocortical axis in the rat. J Pharmacol Exp Ther 238:429–436PubMedGoogle Scholar
  82. James MH, Dayas CV (2013) What about me...? The PVT: a role for the paraventricular thalamus (PVT) in drug-seeking behavior. Front Behav Neurosci 7:18PubMedPubMedCentralGoogle Scholar
  83. James MH, Campbell EJ, Dayas CV (2017a) Role of the orexin/hypocretin system in stress-related psychiatric disorders. Curr Top Behav Neurosci 33:197–219PubMedGoogle Scholar
  84. James MH, Mahler SV, Moorman DE, Aston-Jones G (2017b) A decade of orexin/hypocretin and addiction: where are we now? Curr Top Behav Neurosci 33:247–281PubMedPubMedCentralGoogle Scholar
  85. Jarjour S, Bai L, Gianoulakis C (2009) Effect of acute ethanol administration on the release of opioid peptides from the midbrain including the ventral tegmental area. Alcohol Clin Exp Res 33:1033–1043PubMedGoogle Scholar
  86. Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A (2012) Orexin, stress, and anxiety/panic states. Prog Brain Res 198:133–161PubMedPubMedCentralGoogle Scholar
  87. Jupp B, Krstew E, Dezsi G, Lawrence AJ (2011a) Discrete cue-conditioned alcohol-seeking after protracted abstinence: pattern of neural activation and involvement of orexin(1) receptors. Br J Pharmacol 162:880–889PubMedPubMedCentralGoogle Scholar
  88. Jupp B, Krivdic B, Krstew E, Lawrence AJ (2011b) The orexin(1) receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Res 1391:54–59PubMedGoogle Scholar
  89. Kalivas PW (2008) Addiction as a pathology in prefrontal cortical regulation of corticostriatal habit circuitry. Neurotox Res 14:185–189PubMedGoogle Scholar
  90. Kalivas PW, Volkow N, Seamans J (2005) Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45:647–650PubMedGoogle Scholar
  91. Kang-Park M, Kieffer BL, Roberts AJ, Siggins GR, Moore SD (2013) Kappa-opioid receptors in the central amygdala regulate ethanol actions at presynaptic GABAergic sites. J Pharmacol Exp Ther 346:130–137PubMedPubMedCentralGoogle Scholar
  92. Karkhanis AN, Huggins KN, Rose JH, Jones SR (2016a) Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: role of kappa opioid receptors. Neuropharmacology 110:190–197PubMedPubMedCentralGoogle Scholar
  93. Karkhanis AN, Rose JH, Weiner JL, Jones SR (2016b) Early-life social isolation stress increases kappa opioid receptor responsiveness and downregulates the dopamine system. Neuropsychopharmacology 41:2263–2274PubMedPubMedCentralGoogle Scholar
  94. Kastman HE, Blasiak A, Walker L, Siwiec M, Krstew EV, Gundlach AL, Lawrence AJ (2016) Nucleus incertus orexin2 receptors mediate alcohol seeking in rats. Neuropharmacology 110:82–91PubMedGoogle Scholar
  95. Kemppainen H, Raivio N, Suo-Yrjo V, Kiianmaa K (2012) Opioidergic modulation of ethanol self-administration in the ventral pallidum. Alcohol Clin Exp Res 36:286–293PubMedGoogle Scholar
  96. Khachaturian H, Watson SJ, Lewis ME, Coy D, Goldstein A, Akil H (1982) Dynorphin immunocytochemistry in the rat central nervous system. Peptides 3:941–954PubMedGoogle Scholar
  97. Kissler JL, Sirohi S, Reis DJ, Jansen HT, Quock RM, Smith DG, Walker BM (2014) The one-two punch of alcoholism: role of central amygdala dynorphins/kappa-opioid receptors. Biol Psychiatry 75:774–782PubMedGoogle Scholar
  98. Knoll AT, Carlezon WA Jr (2010) Dynorphin, stress, and depression. Brain Res 1314:56–73PubMedGoogle Scholar
  99. Knoll AT, Meloni EG, Thomas JB, Carroll FI, Carlezon WA Jr (2007) Anxiolytic-like effects of kappa-opioid receptor antagonists in models of unlearned and learned fear in rats. J Pharmacol Exp Ther 323:838–845PubMedGoogle Scholar
  100. Korotkova TM, Brown RE, Sergeeva OA, Ponomarenko AA, Haas HL (2006) Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. Eur J Neurosci 23:2677–2685PubMedGoogle Scholar
  101. Kreibich A, Reyes BA, Curtis AL, Ecke L, Chavkin C, Van Bockstaele EJ, Valentino RJ (2008) Presynaptic inhibition of diverse afferents to the locus ceruleus by kappa-opiate receptors: a novel mechanism for regulating the central norepinephrine system. J Neurosci 28:6516–6525PubMedPubMedCentralGoogle Scholar
  102. Kudryavtseva N, Gerrits MA, Avgustinovich DF, Tenditnik MV, Van Ree JM (2006) Anxiety and ethanol consumption in victorious and defeated mice; effect of kappa-opioid receptor activation. Eur Neuropsychopharmacol 16:504–511PubMedGoogle Scholar
  103. Kukkonen JP (2017) Orexin/hypocretin signaling. Curr Top Behav Neurosci 33:17–50PubMedGoogle Scholar
  104. Kukkonen JP, Leonard CS (2014) Orexin/hypocretin receptor signalling cascades. Br J Pharmacol 171:314–331PubMedGoogle Scholar
  105. Kunii K, Yamanaka A, Nambu T, Matsuzaki I, Goto K, Sakurai T (1999) Orexins/hypocretins regulate drinking behaviour. Brain Res 842:256–261PubMedGoogle Scholar
  106. Kuwaki T (2015) Thermoregulation under pressure: a role for orexin neurons. Temperature 2:379–391Google Scholar
  107. Kuwaki T, Zhang W (2012) Orexin neurons and emotional stress. Vitam Horm 89:135–158PubMedGoogle Scholar
  108. Lam MP, Marinelli PW, Bai L, Gianoulakis C (2008) Effects of acute ethanol on opioid peptide release in the central amygdala: an in vivo microdialysis study. Psychopharmacology 201:261–271PubMedGoogle Scholar
  109. Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C (2008) The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci 28:407–414PubMedPubMedCentralGoogle Scholar
  110. Land BB, Bruchas MR, Schattauer S, Giardino WJ, Aita M, Messinger D, Hnasko TS, Palmiter RD, Chavkin C (2009) Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. Proc Natl Acad Sci U S A 106:19168–19173PubMedPubMedCentralGoogle Scholar
  111. Lawrence AJ (2010) Regulation of alcohol-seeking by orexin (hypocretin) neurons. Brain Res 1314:124–129PubMedGoogle Scholar
  112. Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B (2006) The orexin system regulates alcohol-seeking in rats. Br J Pharmacol 148:752–759PubMedPubMedCentralGoogle Scholar
  113. Le AD, Funk D, Coen K, Tamadon S, Shaham Y (2017) Role of kappa-opioid receptors in the bed nucleus of stria terminalis in reinstatement of alcohol seeking. Neuropsychopharmacology.  https://doi.org/10.1038/npp.2017.120
  114. Lei K, Wegner SA, Yu JH, Hopf FW (2016a) Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharmacology 110:431–437PubMedPubMedCentralGoogle Scholar
  115. Lei K, Wegner SA, Yu JH, Mototake A, Hu B, Hopf FW (2016b) Nucleus accumbens shell and mPFC but not insula orexin-1 receptors promote excessive alcohol drinking. Front Neurosci 10:400PubMedPubMedCentralGoogle Scholar
  116. Li Y, van den Pol AN (2006) Differential target-dependent actions of coexpressed inhibitory dynorphin and excitatory hypocretin/orexin neuropeptides. J Neurosci 26:13037–13047PubMedGoogle Scholar
  117. Li Y, van den Pol AN (2008) Mu-opioid receptor-mediated depression of the hypothalamic hypocretin/orexin arousal system. J Neurosci 28:2814–2819PubMedGoogle Scholar
  118. Li Y, Gao XB, Sakurai T, van den Pol AN (2002) Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron – a potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36:1169–1181PubMedGoogle Scholar
  119. Li C, Pleil KE, Stamatakis AM, Busan S, Vong L, Lowell BB, Stuber GD, Kash TL (2012) Presynaptic inhibition of gamma-aminobutyric acid release in the bed nucleus of the stria terminalis by kappa opioid receptor signaling. Biol Psychiatry 71:725–732PubMedPubMedCentralGoogle Scholar
  120. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376PubMedGoogle Scholar
  121. Lindholm S, Ploj K, Franck J, Nylander I (2000) Repeated ethanol administration induces short- and long-term changes in enkephalin and dynorphin tissue concentrations in rat brain. Alcohol 22:165–171PubMedGoogle Scholar
  122. Lindholm S, Werme M, Brene S, Franck J (2001) The selective kappa-opioid receptor agonist U50,488H attenuates voluntary ethanol intake in the rat. Behav Brain Res 120:137–146PubMedGoogle Scholar
  123. Lindholm S, Rosin A, Dahlin I, Georgieva J, Franck J (2007) Ethanol alters the effect of kappa receptor ligands on dopamine release in the nucleus accumbens. Physiol Behav 92:167–171PubMedGoogle Scholar
  124. Liu RJ, van den Pol AN, Aghajanian GK (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci 22:9453–9464PubMedGoogle Scholar
  125. Logrip ML, Janak PH, Ron D (2008) Dynorphin is a downstream effector of striatal BDNF regulation of ethanol intake. FASEB J 22:2393–2404PubMedGoogle Scholar
  126. Logrip ML, Janak PH, Ron D (2009) Blockade of ethanol reward by the kappa opioid receptor agonist U50,488H. Alcohol 43:359–365PubMedPubMedCentralGoogle Scholar
  127. Lopez MF, Moorman DE, Aston-Jones G, Becker HC (2016) The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Res 1636:74–80PubMedPubMedCentralGoogle Scholar
  128. Lovell KM, Frankowski KJ, Stahl EL, Slauson SR, Yoo E, Prisinzano TE, Aube J, Bohn LM (2015) Structure-activity relationship studies of functionally selective kappa opioid receptor agonists that modulate ERK 1/2 phosphorylation while preserving G protein over betaarrestin2 signaling bias. ACS Chem Neurosci 6:1411–1419PubMedPubMedCentralGoogle Scholar
  129. Lu YL, Richardson HN (2014) Alcohol, stress hormones, and the prefrontal cortex: a proposed pathway to the dark side of addiction. Neuroscience 277:139–151PubMedGoogle Scholar
  130. Lumeng L, Hawkins TD, Li T-K (1977) New strains of rats with alcohol preference and nonpreference. In: Thurman RG, Williamson JR, Drott H, Chance B (eds) Alcohol and aldehyde metabolizing systems. Academic, New York, pp 537–544Google Scholar
  131. Macedo GC, Kawakami SE, Vignoli T, Sinigaglia-Coimbra R, Suchecki D (2013) The influence of orexins on ethanol-induced behavioral sensitization in male mice. Neurosci Lett 551:84–88PubMedGoogle Scholar
  132. Madden CJ, Tupone D, Morrison SF (2012) Orexin modulates brown adipose tissue thermogenesis. Biomol Concepts 3:381–386PubMedPubMedCentralGoogle Scholar
  133. Mague SD, Pliakas AM, Todtenkopf MS, Tomasiewicz HC, Zhang Y, Stevens WC Jr, Jones RM, Portoghese PS, Carlezon WA Jr (2003) Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther 305:323–330PubMedGoogle Scholar
  134. Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G (2012) Multiple roles for orexin/hypocretin in addiction. Prog Brain Res 198:79–121PubMedPubMedCentralGoogle Scholar
  135. Mahler SV, Moorman DE, Smith RJ, James MH, Aston-Jones G (2014) Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 17:1298–1303PubMedPubMedCentralGoogle Scholar
  136. Mansour A, Fox CA, Akil H, Watson SJ (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 18:22–29PubMedGoogle Scholar
  137. Marchant NJ, Densmore VS, Osborne PB (2007) Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala: evidence of two distinct endogenous opioid systems in the lateral division. J Comp Neurol 504:702–715PubMedGoogle Scholar
  138. Marchant NJ, Kaganovsky K, Shaham Y, Bossert JM (2015) Role of corticostriatal circuits in context-induced reinstatement of drug seeking. Brain Res 1628:219–232PubMedGoogle Scholar
  139. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25PubMedGoogle Scholar
  140. Margolis EB, Hjelmstad GO, Bonci A, Fields HL (2003) Kappa-opioid agonists directly inhibit midbrain dopaminergic neurons. J Neurosci 23:9981–9986PubMedGoogle Scholar
  141. Margolis EB, Hjelmstad GO, Bonci A, Fields HL (2005) Both kappa and mu opioid agonists inhibit glutamatergic input to ventral tegmental area neurons. J Neurophysiol 93:3086–3093PubMedGoogle Scholar
  142. Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL (2006) Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc Natl Acad Sci U S A 103:2938–2942PubMedPubMedCentralGoogle Scholar
  143. Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28:8908–8913PubMedGoogle Scholar
  144. Marinelli PW, Lam M, Bai L, Quirion R, Gianoulakis C (2006) A microdialysis profile of dynorphin A(1-8) release in the rat nucleus accumbens following alcohol administration. Alcohol Clin Exp Res 30:982–990PubMedGoogle Scholar
  145. Martin-Fardon R, Boutrel B (2012) Orexin/hypocretin (Orx/Hcrt) transmission and drug-seeking behavior: is the paraventricular nucleus of the thalamus (PVT) part of the drug seeking circuitry? Front Behav Neurosci 6:75PubMedPubMedCentralGoogle Scholar
  146. Martin-Fardon R, Weiss F (2014) N-(2-methyl-6-benzoxazolyl)-N′-1,5-naphthyridin-4-yl urea (SB334867), a hypocretin receptor-1 antagonist, preferentially prevents ethanol seeking: comparison with natural reward seeking. Addict Biol 19:233–236PubMedGoogle Scholar
  147. Matsuzawa S, Suzuki T, Misawa M, Nagase H (1999) Different roles of mu-, delta- and kappa-opioid receptors in ethanol-associated place preference in rats exposed to conditioned fear stress. Eur J Pharmacol 368:9–16PubMedGoogle Scholar
  148. Matzeu A, Zamora-Martinez ER, Martin-Fardon R (2014) The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior. Front Behav Neurosci 8:117PubMedPubMedCentralGoogle Scholar
  149. Matzeu A, Kerr TM, Weiss F, Martin-Fardon R (2016) Orexin-A/hypocretin-1 mediates cocaine-seeking behavior in the posterior paraventricular nucleus of the thalamus via orexin/hypocretin receptor-2. J Pharmacol Exp Ther 359:273–279PubMedPubMedCentralGoogle Scholar
  150. Mayannavar S, Rashmi KS, Rao YD, Yadav S, Ganaraja B (2016) Effect of orexin A antagonist (SB-334867) infusion into the nucleus accumbens on consummatory behavior and alcohol preference in Wistar rats. Indian J Pharmacol 48:53–58PubMedPubMedCentralGoogle Scholar
  151. Millan EZ, Furlong TM, McNally GP (2010) Accumbens shell-hypothalamus interactions mediate extinction of alcohol seeking. J Neurosci 30:4626–4635PubMedGoogle Scholar
  152. Mitchell JM, Liang MT, Fields HL (2005) A single injection of the kappa opioid antagonist norbinaltorphimine increases ethanol consumption in rats. Psychopharmacology 182:384–392PubMedGoogle Scholar
  153. Moorman DE, Aston-Jones G (2009) Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol--preferring Sprague--Dawley rats. Alcohol 43:379–386PubMedPubMedCentralGoogle Scholar
  154. Moorman DE, Aston-Jones G (2010) Orexin/hypocretin modulates response of ventral tegmental dopamine neurons to prefrontal activation: diurnal influences. J Neurosci 30:15585–15599PubMedPubMedCentralGoogle Scholar
  155. Moorman DE, James MH, Kilroy EA, Aston-Jones G (2016) Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner. Eur J Neurosci 43:710–720PubMedPubMedCentralGoogle Scholar
  156. Moorman DE, James MH, Kilroy EA, Aston-Jones G (2017) Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res 1654:34–42PubMedGoogle Scholar
  157. Morales M, Anderson RI, Spear LP, Varlinskaya EI (2014) Effects of the kappa opioid receptor antagonist, nor-binaltorphimine, on ethanol intake: impact of age and sex. Dev Psychobiol 56:700–712PubMedGoogle Scholar
  158. Morganstern I, Chang GQ, Barson JR, Ye Z, Karatayev O, Leibowitz SF (2010) Differential effects of acute and chronic ethanol exposure on orexin expression in the perifornical lateral hypothalamus. Alcohol Clin Exp Res 34:886–896PubMedPubMedCentralGoogle Scholar
  159. Morley JE, Levine AS (1983) Involvement of dynorphin and the kappa opioid receptor in feeding. Peptides 4:797–800PubMedGoogle Scholar
  160. Mucha RF, Herz A (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86:274–280PubMedGoogle Scholar
  161. Muroya S, Funahashi H, Yamanaka A, Kohno D, Uramura K, Nambu T, Shibahara M, Kuramochi M, Takigawa M, Yanagisawa M, Sakurai T, Shioda S, Yada T (2004) Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci 19:1524–1534PubMedGoogle Scholar
  162. Muschamp JW, Dominguez JM, Sato SM, Shen RY, Hull EM (2007) A role for hypocretin (orexin) in male sexual behavior. J Neurosci 27:2837–2845PubMedGoogle Scholar
  163. Muschamp JW, Hollander JA, Thompson JL, Voren G, Hassinger LC, Onvani S, Kamenecka TM, Borgland SL, Kenny PJ, Carlezon WA Jr (2014) Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc Natl Acad Sci U S A 111:E1648–E1655PubMedPubMedCentralGoogle Scholar
  164. Nair SG, Golden SA, Shaham Y (2008) Differential effects of the hypocretin 1 receptor antagonist SB 334867 on high-fat food self-administration and reinstatement of food seeking in rats. Br J Pharmacol 154:406–416PubMedPubMedCentralGoogle Scholar
  165. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827:243–260PubMedGoogle Scholar
  166. Nealey KA, Smith AW, Davis SM, Smith DG, Walker BM (2011) Kappa-opioid receptors are implicated in the increased potency of intra-accumbens nalmefene in ethanol-dependent rats. Neuropharmacology 61:35–42PubMedPubMedCentralGoogle Scholar
  167. Nestby P, Schoffelmeer AN, Homberg JR, Wardeh G, De Vries TJ, Mulder AH, Vanderschuren LJ (1999) Bremazocine reduces unrestricted free-choice ethanol self-administration in rats without affecting sucrose preference. Psychopharmacology 142:309–317PubMedGoogle Scholar
  168. Nguyen K, Tseng A, Marquez P, Hamid A, Lutfy K (2012) The role of endogenous dynorphin in ethanol-induced state-dependent CPP. Behav Brain Res 227:58–63PubMedGoogle Scholar
  169. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39–40PubMedGoogle Scholar
  170. Nixon JP, Smale L (2007) A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents. Behav Brain Funct 3:28PubMedPubMedCentralGoogle Scholar
  171. Olney JJ, Navarro M, Thiele TE (2015) Binge-like consumption of ethanol and other salient reinforcers is blocked by orexin-1 receptor inhibition and leads to a reduction of hypothalamic orexin immunoreactivity. Alcohol Clin Exp Res 39:21–29PubMedPubMedCentralGoogle Scholar
  172. Olney JJ, Navarro M, Thiele TE (2017) The role of orexin signaling in the ventral tegmental area and central amygdala in modulating binge-like ethanol drinking behavior. Alcohol Clin Exp Res 41:551–561PubMedPubMedCentralGoogle Scholar
  173. Peckys D, Landwehrmeyer GB (1999) Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience 88:1093–1135PubMedGoogle Scholar
  174. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015PubMedGoogle Scholar
  175. Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by kappa opiate receptors. Science 233:774–776PubMedGoogle Scholar
  176. Pina MM, Young EA, Ryabinin AE, Cunningham CL (2015) The bed nucleus of the stria terminalis regulates ethanol-seeking behavior in mice. Neuropharmacology 99:627–638PubMedPubMedCentralGoogle Scholar
  177. Prasad AA, McNally GP (2014) Effects of vivo morpholino knockdown of lateral hypothalamus orexin/hypocretin on renewal of alcohol seeking. PLoS One 9:e110385PubMedPubMedCentralGoogle Scholar
  178. Prince CD, Rau AR, Yorgason JT, Espana RA (2015) Hypocretin/orexin regulation of dopamine signaling and cocaine self-administration is mediated predominantly by hypocretin receptor 1. ACS Chem Neurosci 6:138–146PubMedGoogle Scholar
  179. Przewlocka B, Turchan J, Lason W, Przewlocki R (1997) Ethanol withdrawal enhances the prodynorphin system activity in the rat nucleus accumbens. Neurosci Lett 238:13–16PubMedGoogle Scholar
  180. Rao Y, Mineur YS, Gan G, Wang AH, Liu ZW, Wu X, Suyama S, de Lecea L, Horvath TL, Picciotto MR, Gao XB (2013) Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice. J Physiol 591:1951–1966PubMedPubMedCentralGoogle Scholar
  181. Richards JK, Simms JA, Steensland P, Taha SA, Borgland SL, Bonci A, Bartlett SE (2008) Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long-Evans rats. Psychopharmacology 199:109–117PubMedPubMedCentralGoogle Scholar
  182. Rimoy GH, Wright DM, Bhaskar NK, Rubin PC (1994) The cardiovascular and central nervous system effects in the human of U-62066E. A selective opioid receptor agonist. Eur J Clin Pharmacol 46:203–207PubMedGoogle Scholar
  183. Robinson JD, McDonald PH (2015) The orexin 1 receptor modulates kappa opioid receptor function via a JNK-dependent mechanism. Cell Signal 27:1449–1456PubMedPubMedCentralGoogle Scholar
  184. Rodberg EM, den Hartog CR, Anderson RI, Becker HC, Moorman DE, Vazey EM (2017) Stress facilitates the development of cognitive dysfunction after chronic ethanol exposure. Alcohol Clin Exp Res 41:1574–1583PubMedPubMedCentralGoogle Scholar
  185. Roma PG, Rinker JA, Serafine KM, Chen SA, Barr CS, Cheng K, Rice KC, Riley AL (2008) Genetic and early environmental contributions to alcohol’s aversive and physiological effects. Pharmacol Biochem Behav 91:134–139PubMedPubMedCentralGoogle Scholar
  186. Rorick-Kehn LM et al (2014) LY2456302 is a novel, potent, orally-bioavailable small molecule kappa-selective antagonist with activity in animal models predictive of efficacy in mood and addictive disorders. Neuropharmacology 77:131–144PubMedGoogle Scholar
  187. Rose JH, Karkhanis AN, Chen R, Gioia D, Lopez MF, Becker HC, McCool BA, Jones SR (2016) Supersensitive kappa opioid receptors promotes ethanol withdrawal-related behaviors and reduce dopamine signaling in the nucleus accumbens. Int J Neuropsychopharmacol 19Google Scholar
  188. Rosin A, Lindholm S, Franck J, Georgieva J (1999) Downregulation of kappa opioid receptor mRNA levels by chronic ethanol and repetitive cocaine in rat ventral tegmentum and nucleus accumbens. Neurosci Lett 275:1–4PubMedGoogle Scholar
  189. Rosin DL, Weston MC, Sevigny CP, Stornetta RL, Guyenet PG (2003) Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J Comp Neurol 465:593–603PubMedGoogle Scholar
  190. Roth KA, Weber E, Barchas JD, Chang D, Chang JK (1983) Immunoreactive dynorphin-(1-8) and corticotropin-releasing factor in subpopulation of hypothalamic neurons. Science 219:189–191PubMedGoogle Scholar
  191. Ryan PJ, Krstew EV, Sarwar M, Gundlach AL, Lawrence AJ (2014) Relaxin-3 mRNA levels in nucleus incertus correlate with alcohol and sucrose intake in rats. Drug Alcohol Depend 140:8–16PubMedGoogle Scholar
  192. Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181PubMedGoogle Scholar
  193. Sakurai T (2014) The role of orexin in motivated behaviours. Nat Rev Neurosci 15:719–731PubMedGoogle Scholar
  194. Sakurai T et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585. (see comments)PubMedGoogle Scholar
  195. Sandi C, Borrell J, Guaza C (1988) Involvement of kappa type opioids on ethanol drinking. Life Sci 42:1067–1075PubMedGoogle Scholar
  196. Sandi C, Borrell J, Guaza C (1990) Effects of the kappa opioid receptor antagonist MR-2266-BS on the acquisition of ethanol preference. Life Sci 46:1119–1129PubMedGoogle Scholar
  197. Schank JR, Goldstein AL, Rowe KE, King CE, Marusich JA, Wiley JL, Carroll FI, Thorsell A, Heilig M (2012) The kappa opioid receptor antagonist JDTic attenuates alcohol seeking and withdrawal anxiety. Addict Biol 17:634–647PubMedPubMedCentralGoogle Scholar
  198. Schneider ER, Rada P, Darby RD, Leibowitz SF, Hoebel BG (2007) Orexigenic peptides and alcohol intake: differential effects of orexin, galanin, and ghrelin. Alcohol Clin Exp Res 31:1858–1865PubMedGoogle Scholar
  199. Schone C, Burdakov D (2017) Orexin/hypocretin and organizing principles for a diversity of wake-promoting neurons in the brain. Curr Top Behav Neurosci 33:51–74PubMedPubMedCentralGoogle Scholar
  200. Schone C, Venner A, Knowles D, Karnani MM, Burdakov D (2011) Dichotomous cellular properties of mouse orexin/hypocretin neurons. J Physiol 589:2767–2779PubMedPubMedCentralGoogle Scholar
  201. Schone C, Cao ZF, Apergis-Schoute J, Adamantidis A, Sakurai T, Burdakov D (2012) Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J Neurosci 32:12437–12443PubMedGoogle Scholar
  202. Schone C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D (2014) Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep 7:697–704PubMedPubMedCentralGoogle Scholar
  203. Seif T, Chang SJ, Simms JA, Gibb SL, Dadgar J, Chen BT, Harvey BK, Ron D, Messing RO, Bonci A, Hopf FW (2013) Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat Neurosci 16:1094–1100PubMedPubMedCentralGoogle Scholar
  204. Shoblock JR, Welty N, Aluisio L, Fraser I, Motley ST, Morton K, Palmer J, Bonaventure P, Carruthers NI, Lovenberg TW, Boggs J, Galici R (2011) Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement. Psychopharmacology 215:191–203PubMedGoogle Scholar
  205. Siciliano CA, Calipari ES, Cuzon Carlson VC, Helms CM, Lovinger DM, Grant KA, Jones SR (2015) Voluntary ethanol intake predicts kappa-opioid receptor supersensitivity and regionally distinct dopaminergic adaptations in macaques. J Neurosci 35:5959–5968PubMedPubMedCentralGoogle Scholar
  206. Simonin F, Gaveriaux-Ruff C, Befort K, Matthes H, Lannes B, Micheletti G, Mattei MG, Charron G, Bloch B, Kieffer B (1995) Kappa-opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system. Proc Natl Acad Sci U S A 92:7006–7010PubMedPubMedCentralGoogle Scholar
  207. Sirohi S, Bakalkin G, Walker BM (2012) Alcohol-induced plasticity in the dynorphin/kappa-opioid receptor system. Front Mol Neurosci 5:95PubMedPubMedCentralGoogle Scholar
  208. Sperling RE, Gomes SM, Sypek EI, Carey AN, McLaughlin JP (2010) Endogenous kappa-opioid mediation of stress-induced potentiation of ethanol-conditioned place preference and self-administration. Psychopharmacology 210:199–209PubMedGoogle Scholar
  209. Srinivasan S, Simms JA, Nielsen CK, Lieske SP, Bito-Onon JJ, Yi H, Hopf FW, Bonci A, Bartlett SE (2012) The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration. PLoS One 7:e44726PubMedPubMedCentralGoogle Scholar
  210. Sterling ME, Karatayev O, Chang GQ, Algava DB, Leibowitz SF (2015) Model of voluntary ethanol intake in zebrafish: effect on behavior and hypothalamic orexigenic peptides. Behav Brain Res 278:29–39PubMedGoogle Scholar
  211. Sutcliffe JG, de Lecea L (2002) The hypocretins: setting the arousal threshold. Nat Rev Neurosci 3:339–349PubMedGoogle Scholar
  212. Tang J, Chen J, Ramanjaneya M, Punn A, Conner AC, Randeva HS (2008) The signalling profile of recombinant human orexin-2 receptor. Cell Signal 20:1651–1661PubMedGoogle Scholar
  213. Tejeda HA, Counotte DS, Oh E, Ramamoorthy S, Schultz-Kuszak KN, Backman CM, Chefer V, O’Donnell P, Shippenberg TS (2013) Prefrontal cortical kappa-opioid receptor modulation of local neurotransmission and conditioned place aversion. Neuropsychopharmacology 38:1770–1779PubMedPubMedCentralGoogle Scholar
  214. Tejeda HA, Hanks AN, Scott L, Mejias-Aponte C, Hughes ZA, O’Donnell P (2015) Prefrontal cortical kappa opioid receptors attenuate responses to amygdala inputs. Neuropsychopharmacology 40:2856–2864PubMedPubMedCentralGoogle Scholar
  215. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474PubMedGoogle Scholar
  216. Todtenkopf MS, Marcus JF, Portoghese PS, Carlezon WA Jr (2004) Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats. Psychopharmacology 172:463–470PubMedGoogle Scholar
  217. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438:71–75PubMedGoogle Scholar
  218. Ubaldi M, Giordano A, Severi I, Li H, Kallupi M, de Guglielmo G, Ruggeri B, Stopponi S, Ciccocioppo R, Cannella N (2016) Activation of hypocretin-1/orexin-A neurons projecting to the bed nucleus of the stria terminalis and paraventricular nucleus is critical for reinstatement of alcohol seeking by neuropeptide S. Biol Psychiatry 79:452–462PubMedGoogle Scholar
  219. Valdez GR, Harshberger E (2012) Kappa opioid regulation of anxiety-like behavior during acute ethanol withdrawal. Pharmacol Biochem Behav 102:44–47PubMedPubMedCentralGoogle Scholar
  220. van den Pol AN (1999) Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci 19:3171–3182PubMedGoogle Scholar
  221. Van’t Veer A, Carlezon WA Jr (2013) Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacology 229:435–452PubMedPubMedCentralGoogle Scholar
  222. Vittoz NM, Berridge CW (2006) Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology 31:384–395PubMedGoogle Scholar
  223. von der Goltz C, Koopmann A, Dinter C, Richter A, Grosshans M, Fink T, Wiedemann K, Kiefer F (2011) Involvement of orexin in the regulation of stress, depression and reward in alcohol dependence. Horm Behav 60:644–650PubMedGoogle Scholar
  224. Voorhees CM, Cunningham CL (2011) Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacology 214:805–818PubMedGoogle Scholar
  225. Walker BM, Koob GF (2008) Pharmacological evidence for a motivational role of kappa-opioid systems in ethanol dependence. Neuropsychopharmacology 33:643–652PubMedGoogle Scholar
  226. Walker LC, Lawrence AJ (2017) The role of orexins/hypocretins in alcohol use and abuse. Curr Top Behav Neurosci 33:221–246PubMedGoogle Scholar
  227. Walker BM, Zorrilla EP, Koob GF (2011) Systemic kappa-opioid receptor antagonism by nor-binaltorphimine reduces dependence-induced excessive alcohol self-administration in rats. Addict Biol 16:116–119PubMedPubMedCentralGoogle Scholar
  228. Walsh SL, Strain EC, Abreu ME, Bigelow GE (2001) Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology 157:151–162PubMedGoogle Scholar
  229. Williams RH, Alexopoulos H, Jensen LT, Fugger L, Burdakov D (2008) Adaptive sugar sensors in hypothalamic feeding circuits. Proc Natl Acad Sci U S A 105:11975–11980PubMedPubMedCentralGoogle Scholar
  230. Willie JT, Chemelli RM, Sinton CM, Yanagisawa M (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 24:429–458PubMedGoogle Scholar
  231. Wittmann W, Schunk E, Rosskothen I, Gaburro S, Singewald N, Herzog H, Schwarzer C (2009) Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 34:775–785PubMedGoogle Scholar
  232. Yeoh JW, James MH, Jobling P, Bains JS, Graham BA, Dayas CV (2012) Cocaine potentiates excitatory drive in the perifornical/lateral hypothalamus. J Physiol 590:3677–3689PubMedPubMedCentralGoogle Scholar
  233. Zhou L, Lovell KM, Frankowski KJ, Slauson SR, Phillips AM, Streicher JM, Stahl E, Schmid CL, Hodder P, Madoux F, Cameron MD, Prisinzano TE, Aube J, Bohn LM (2013) Development of functionally selective, small molecule agonists at kappa opioid receptors. J Biol Chem 288:36703–36716PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rachel I. Anderson
    • 1
    • 2
  • David E. Moorman
    • 3
  • Howard C. Becker
    • 1
    • 4
    • 5
    • 6
    Email author
  1. 1.Department of Psychiatry and Behavioral SciencesMedical University of South CarolinaCharlestonUSA
  2. 2.Science and Technology Policy FellowshipsAmerican Association for the Advancement of ScienceWashington, DCUSA
  3. 3.Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate ProgramUniversity of Massachusetts AmherstAmherstUSA
  4. 4.Charleston Alcohol Research CenterMedical University of South CarolinaCharlestonUSA
  5. 5.Department of NeuroscienceMedical University of South CarolinaCharlestonUSA
  6. 6.Department of Veterans AffairsRalph H. Johnson VA Medical CenterCharlestonUSA

Personalised recommendations