Advertisement

Chronic Alcohol, Intrinsic Excitability, and Potassium Channels: Neuroadaptations and Drinking Behavior

  • Reginald Cannady
  • Jennifer A. Rinker
  • Sudarat Nimitvilai
  • John J. Woodward
  • Patrick J. MulhollandEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 248)

Abstract

Neural mechanisms underlying alcohol use disorder remain elusive, and this lack of understanding has slowed the development of efficacious treatment strategies for reducing relapse rates and prolonging abstinence. While synaptic adaptations produced by chronic alcohol exposure have been extensively characterized in a variety of brain regions, changes in intrinsic excitability of critical projection neurons are understudied. Accumulating evidence suggests that prolonged alcohol drinking and alcohol dependence produce plasticity of intrinsic excitability as measured by changes in evoked action potential firing and after-hyperpolarization amplitude. In this chapter, we describe functional changes in cell firing of projection neurons after long-term alcohol exposure that occur across species and in multiple brain regions. Adaptations in calcium-activated (KCa2), voltage-dependent (KV7), and G protein-coupled inwardly rectifying (Kir3 or GIRK) potassium channels that regulate the evoked firing and after-hyperpolarization parallel functional changes in intrinsic excitability induced by chronic alcohol. Moreover, there are strong genetic links between alcohol-related behaviors and genes encoding KCa2, KV7, and GIRK channels, and pharmacologically targeting these channels reduces alcohol consumption and alcohol-related behaviors. Together, these studies demonstrate that chronic alcohol drinking produces adaptations in KCa2, KV7, and GIRK channels leading to impaired regulation of the after-hyperpolarization and aberrant cell firing. Correcting the deficit in the after-hyperpolarization with positive modulators of KCa2 and KV7 channels and altering the GIRK channel binding pocket to block the access of alcohol represent a potentially highly effective pharmacological approach that can restore changes in intrinsic excitability and reduce alcohol consumption in affected individuals.

Keywords

After-hyperpolarization Alcohol drinking Alcohol use disorder Intrinsic excitability Potassium channels 

References

  1. Abbott GW, Goldstein SA (2001) Potassium channel subunits encoded by the KCNE gene family: physiology and pathophysiology of the MinK-related peptides (MiRPs). Mol Interv 1(2):95–107PubMedGoogle Scholar
  2. Abrahao KP et al (2017) Ethanol-sensitive pacemaker neurons in the mouse external globus pallidus. Neuropsychopharmacology 42(5):1070–1081PubMedGoogle Scholar
  3. Addolorato G et al (2012) Novel therapeutic strategies for alcohol and drug addiction: focus on GABA, ion channels and transcranial magnetic stimulation. Neuropsychopharmacology 37(1):163–177PubMedGoogle Scholar
  4. Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+-activated K+ channels: form and function. Annu Rev Physiol 74:245–269PubMedGoogle Scholar
  5. Agrawal A et al (2012) The genetics of addiction – a translational perspective. Transl Psychiatry 2:e140PubMedPubMedCentralGoogle Scholar
  6. Aguado C et al (2008) Cell type-specific subunit composition of G protein-gated potassium channels in the cerebellum. J Neurochem 105(2):497–511PubMedGoogle Scholar
  7. Alger BE, Williamson A (1988) A transient calcium-dependent potassium component of the epileptiform burst after-hyperpolarization in rat hippocampus. J Physiol 399:191–205PubMedPubMedCentralGoogle Scholar
  8. Aryal P et al (2009) A discrete alcohol pocket involved in GIRK channel activation. Nat Neurosci 12(8):988–995PubMedPubMedCentralGoogle Scholar
  9. Bachmanov AA et al (2002) Voluntary ethanol consumption by mice: genome-wide analysis of quantitative trait loci and their interactions in a C57BL/6ByJ × 129P3/J F2 intercross. Genome Res 12(8):1257–1268PubMedPubMedCentralGoogle Scholar
  10. Badanich KA et al (2013) Ethanol reduces neuronal excitability of lateral orbitofrontal cortex neurons via a glycine receptor dependent mechanism. Neuropsychopharmacology 38(7):1176–1188PubMedPubMedCentralGoogle Scholar
  11. Barnes SJ et al (2010) Stable mossy fiber long-term potentiation requires calcium influx at the granule cell soma, protein synthesis, and microtubule-dependent axonal transport. J Neurosci 30(39):12996–13004PubMedGoogle Scholar
  12. Bartels C et al (2007) Recovery of hippocampus-related functions in chronic alcoholics during monitored long-term abstinence. Alcohol Alcohol 42(2):92–102PubMedGoogle Scholar
  13. Beck H, Yaari Y (2008) Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 9(5):357–369PubMedGoogle Scholar
  14. Blatz AL, Magleby KL (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323(6090):718–720PubMedGoogle Scholar
  15. Bocksteins E (2016) Kv5, Kv6, Kv8, and Kv9 subunits: no simple silent bystanders. J Gen Physiol 147(2):105–125PubMedPubMedCentralGoogle Scholar
  16. Bodhinathan K, Slesinger PA (2013) Molecular mechanism underlying ethanol activation of G-protein-gated inwardly rectifying potassium channels. Proc Natl Acad Sci U S A 110(45):18309–18314PubMedPubMedCentralGoogle Scholar
  17. Bowen T et al (2001) Mutation screening of the KCNN3 gene reveals a rare frameshift mutation. Mol Psychiatry 6(3):259–260PubMedGoogle Scholar
  18. Brodie MS et al (1999) Pharmacological reduction of small conductance calcium-activated potassium current (SK) potentiates the excitatory effect of ethanol on ventral tegmental area dopamine neurons. J Pharmacol Exp Ther 290(1):325–333PubMedGoogle Scholar
  19. Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283(5748):673–676PubMedGoogle Scholar
  20. Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156(8):1185–1195PubMedPubMedCentralGoogle Scholar
  21. Buck KJ et al (2012) Discovering genes involved in alcohol dependence and other alcohol responses: role of animal models. Alcohol Res 34(3):367–374PubMedPubMedCentralGoogle Scholar
  22. Cannady R et al (2017) Prefrontal cortex KCa2 channels regulate mGlu5-dependent plasticity and extinction of alcohol-seeking behavior. J Neurosci 37(16):4359–4369PubMedPubMedCentralGoogle Scholar
  23. Cao Y et al (2001) Modulation of recombinant small-conductance Ca(2+)-activated K(+) channels by the muscle relaxant chlorzoxazone and structurally related compounds. J Pharmacol Exp Ther 296(3):683–689PubMedGoogle Scholar
  24. Cardno AG et al (1999) CAG repeat length in the hKCa3 gene and symptom dimensions in schizophrenia. Biol Psychiatry 45(12):1592–1596PubMedGoogle Scholar
  25. Carr LG et al (2003) Analyses of quantitative trait loci contributing to alcohol preference in HAD1/LAD1 and HAD2/LAD2 rats. Alcohol Clin Exp Res 27(11):1710–1717PubMedGoogle Scholar
  26. Carta M, Mameli M, Valenzuela CF (2004) Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J Neurosci 24(15):3746–3751PubMedGoogle Scholar
  27. Cavaliere S, Gillespie JM, Hodge JJ (2012) KCNQ channels show conserved ethanol block and function in ethanol behaviour. PLoS One 7(11):e50279PubMedPubMedCentralGoogle Scholar
  28. Cavaliere S, Malik BR, Hodge JJ (2013) KCNQ channels regulate age-related memory impairment. PLoS One 8(4):e62445PubMedPubMedCentralGoogle Scholar
  29. Chandy KG et al (1998) Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder? Mol Psychiatry 3(1):32–37PubMedGoogle Scholar
  30. Chen S, Benninger F, Yaari Y (2014) Role of small conductance Ca(2)(+)-activated K(+) channels in controlling CA1 pyramidal cell excitability. J Neurosci 34(24):8219–8230PubMedGoogle Scholar
  31. Chou R, Peterson K, Helfand M (2004) Comparative efficacy and safety of skeletal muscle relaxants for spasticity and musculoskeletal conditions: a systematic review. J Pain Symptom Manag 28(2):140–175Google Scholar
  32. Clarke TK et al (2011) KCNJ6 is associated with adult alcohol dependence and involved in gene x early life stress interactions in adolescent alcohol drinking. Neuropsychopharmacology 36(6):1142–1148PubMedPubMedCentralGoogle Scholar
  33. Coetzee WA et al (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–285PubMedGoogle Scholar
  34. Cook JB et al (2014) Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3alpha,5alpha-THP and reduces long-term operant ethanol self-administration. J Neurosci 34(17):5824–5834PubMedPubMedCentralGoogle Scholar
  35. Crabbe JC et al (1994) Quantitative trait loci mapping of genes that influence the sensitivity and tolerance to ethanol-induced hypothermia in BXD recombinant inbred mice. J Pharmacol Exp Ther 269(1):184–192PubMedGoogle Scholar
  36. Crean CS, Tompson DJ (2013) The effects of ethanol on the pharmacokinetics, pharmacodynamics, safety, and tolerability of ezogabine (retigabine). Clin Ther 35(1):87–93PubMedGoogle Scholar
  37. Criado-Marrero M, Santini E, Porter JT (2014) Modulating fear extinction memory by manipulating SK potassium channels in the infralimbic cortex. Front Behav Neurosci 8:96PubMedPubMedCentralGoogle Scholar
  38. Cuzon Carlson VC et al (2011) Synaptic and morphological neuroadaptations in the putamen associated with long-term, relapsing alcohol drinking in primates. Neuropsychopharmacology 36(12):2513–2528PubMedPubMedCentralGoogle Scholar
  39. Debanne D, Poo MM (2010) Spike-timing dependent plasticity beyond synapse – pre- and post-synaptic plasticity of intrinsic neuronal excitability. Front Synaptic Neurosci 2:21PubMedPubMedCentralGoogle Scholar
  40. Demarest K et al (1999) Identification of an acute ethanol response quantitative trait locus on mouse chromosome 2. J Neurosci 19(2):549–561PubMedGoogle Scholar
  41. Dopico AM, Bukiya AN, Bettinger JC (2017) Voltage-sensitive potassium channels of the BK type and their coding genes are alcohol targets in neurons. Handb Exp Pharmacol.  https://doi.org/10.1007/164_2017_78
  42. Doyle DA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77PubMedGoogle Scholar
  43. DSM-5 (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, ArlingtonGoogle Scholar
  44. Durand D, Carlen PL (1984) Decreased neuronal inhibition in vitro after long-term administration of ethanol. Science 224(4655):1359–1361PubMedGoogle Scholar
  45. Edenberg HJ et al (2010) Genome-wide association study of alcohol dependence implicates a region on chromosome 11. Alcohol Clin Exp Res 34(5):840–852PubMedPubMedCentralGoogle Scholar
  46. Evans SM, Bisaga A (2009) Acute interaction of baclofen in combination with alcohol in heavy social drinkers. Alcohol Clin Exp Res 33(1):19–30PubMedGoogle Scholar
  47. Federici M et al (2009) Ethanol enhances GABAB-mediated inhibitory postsynaptic transmission on rat midbrain dopaminergic neurons by facilitating GIRK currents. Eur J Neurosci 29(7):1369–1377PubMedGoogle Scholar
  48. Fonseca DS (2012) Potassium channels: types, structure, and blockers. In: Cell biology research progress. Nova Biomedical Books, New York, p xi, 145Google Scholar
  49. Foroud T et al (2000) Identification of quantitative trait loci influencing alcohol consumption in the high alcohol drinking and low alcohol drinking rat lines. Behav Genet 30(2):131–140PubMedGoogle Scholar
  50. Gallegos RA et al (1999) Adaptive responses of gamma-aminobutyric acid neurons in the ventral tegmental area to chronic ethanol. J Pharmacol Exp Ther 291(3):1045–1053PubMedGoogle Scholar
  51. Garbutt JC et al (2010) Efficacy and safety of baclofen for alcohol dependence: a randomized, double-blind, placebo-controlled trial. Alcohol Clin Exp Res 34(11):1849–1857PubMedPubMedCentralGoogle Scholar
  52. Garduno J et al (2005) 1-Ethyl-2-benzimidazolinone (EBIO) suppresses epileptiform activity in in vitro hippocampus. Neuropharmacology 49(3):376–388PubMedGoogle Scholar
  53. Gonzales RA, Job MO, Doyon WM (2004) The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 103(2):121–146PubMedGoogle Scholar
  54. Gonzalez C et al (2012) K(+) channels: function-structural overview. Compr Physiol 2(3):2087–2149PubMedGoogle Scholar
  55. Gorelova N et al (2012) The glutamatergic component of the mesocortical pathway emanating from different subregions of the ventral midbrain. Cereb Cortex 22(2):327–336PubMedGoogle Scholar
  56. Grube S et al (2011) A CAG repeat polymorphism of KCNN3 predicts SK3 channel function and cognitive performance in schizophrenia. EMBO Mol Med 3(6):309–319PubMedPubMedCentralGoogle Scholar
  57. Gu N et al (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 566(Pt 3):689–715PubMedPubMedCentralGoogle Scholar
  58. Hansen HH et al (2008) Kv7 channels: interaction with dopaminergic and serotonergic neurotransmission in the CNS. J Physiol 586(7):1823–1832PubMedPubMedCentralGoogle Scholar
  59. Harrison NL et al (2017) Effects of acute alcohol on excitability in the CNS. Neuropharmacology 122:36–45PubMedPubMedCentralGoogle Scholar
  60. Heilig M et al (2011) Pharmacogenetic approaches to the treatment of alcohol addiction. Nat Rev Neurosci 12(11):670–684PubMedPubMedCentralGoogle Scholar
  61. Henze DA, Wittner L, Buzsaki G (2002) Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat Neurosci 5(8):790–795PubMedGoogle Scholar
  62. Herman MA et al (2015) GIRK3 gates activation of the mesolimbic dopaminergic pathway by ethanol. Proc Natl Acad Sci U S A 112(22):7091–7096PubMedPubMedCentralGoogle Scholar
  63. Hibino H et al (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90(1):291–366PubMedGoogle Scholar
  64. Hill KG et al (2003) Reduced ethanol-induced conditioned taste aversion and conditioned place preference in GIRK2 null mutant mice. Psychopharmacology 169(1):108–114PubMedGoogle Scholar
  65. Hopf FW et al (2007) Withdrawal from intermittent ethanol exposure increases probability of burst firing in VTA neurons in vitro. J Neurophysiol 98(4):2297–2310PubMedGoogle Scholar
  66. Hopf FW et al (2010) Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Neuron 65(5):682–694PubMedPubMedCentralGoogle Scholar
  67. Hopf FW et al (2011) Chlorzoxazone, an SK-type potassium channel activator used in humans, reduces excessive alcohol intake in rats. Biol Psychiatry 69(7):618–624PubMedGoogle Scholar
  68. Howard RJ et al (2007) Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron 53(5):663–675PubMedPubMedCentralGoogle Scholar
  69. Hu W et al (2015) Effects of acamprosate on attentional set-shifting and cellular function in the prefrontal cortex of chronic alcohol-exposed mice. Alcohol Clin Exp Res 39(6):953–961PubMedGoogle Scholar
  70. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391(6669):803–806PubMedGoogle Scholar
  71. Jenkinson DH (2006) Potassium channels – multiplicity and challenges. Br J Pharmacol 147(Suppl 1):S63–S71PubMedPubMedCentralGoogle Scholar
  72. Jentsch TJ (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 1(1):21–30PubMedGoogle Scholar
  73. Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol 588(Pt 17):3187–3200PubMedPubMedCentralGoogle Scholar
  74. Kang SJ et al (2012) Family-based genome-wide association study of frontal theta oscillations identifies potassium channel gene KCNJ6. Genes Brain Behav 11(6):712–719PubMedPubMedCentralGoogle Scholar
  75. Kang S et al (2017) Ethanol withdrawal drives anxiety-related behaviors by reducing M-type potassium channel activity in the lateral habenula. Neuropsychopharmacology 42(9):1813–1824PubMedPubMedCentralGoogle Scholar
  76. Karschin C et al (1996) IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J Neurosci 16(11):3559–3570PubMedGoogle Scholar
  77. Kaufmann K et al (2013) ML297 (VU0456810), the first potent and selective activator of the GIRK potassium channel, displays antiepileptic properties in mice. ACS Chem Neurosci 4(9):1278–1286PubMedPubMedCentralGoogle Scholar
  78. Kendler KS et al (2011) Genomewide association analysis of symptoms of alcohol dependence in the molecular genetics of schizophrenia (MGS2) control sample. Alcohol Clin Exp Res 35(5):963–975PubMedPubMedCentralGoogle Scholar
  79. Kenna GA et al (2012) Association of the 5-HTT gene-linked promoter region (5-HTTLPR) polymorphism with psychiatric disorders: review of psychopathology and pharmacotherapy. Pharmgenomics Pers Med 5:19–35PubMedPubMedCentralGoogle Scholar
  80. King BL et al (2016) Calcium activated K(+) channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing. Gene 578(1):63–73PubMedGoogle Scholar
  81. Knapp CM et al (2014) The Kv7 potassium channel activator retigabine decreases alcohol consumption in rats. Am J Drug Alcohol Abuse 40(3):244–250PubMedGoogle Scholar
  82. Kobayashi T et al (1999) Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat Neurosci 2(12):1091–1097PubMedGoogle Scholar
  83. Kobayashi K et al (2008) K(+)-channel openers suppress epileptiform activities induced by 4-aminopyridine in cultured rat hippocampal neurons. J Pharmacol Sci 108(4):517–528PubMedGoogle Scholar
  84. Koob GF (2013) Addiction is a reward deficit and stress surfeit disorder. Front Psych 4:72Google Scholar
  85. Kourrich S, Thomas MJ (2009) Similar neurons, opposite adaptations: psychostimulant experience differentially alters firing properties in accumbens core versus shell. J Neurosci 29(39):12275–12283PubMedPubMedCentralGoogle Scholar
  86. Kourrich S, Calu DJ, Bonci A (2015) Intrinsic plasticity: an emerging player in addiction. Nat Rev Neurosci 16(3):173–184PubMedGoogle Scholar
  87. Koyama S, Appel SB (2006) Characterization of M-current in ventral tegmental area dopamine neurons. J Neurophysiol 96(2):535–543PubMedGoogle Scholar
  88. Koyama S, Brodie MS, Appel SB (2007) Ethanol inhibition of m-current and ethanol-induced direct excitation of ventral tegmental area dopamine neurons. J Neurophysiol 97(3):1977–1985PubMedGoogle Scholar
  89. Kozell LB et al (2009) Mapping a barbiturate withdrawal locus to a 0.44 Mb interval and analysis of a novel null mutant identify a role for Kcnj9 (GIRK3) in withdrawal from pentobarbital, zolpidem, and ethanol. J Neurosci 29(37):11662–11673PubMedPubMedCentralGoogle Scholar
  90. Kranzler HR, McKay JR (2012) Personalized treatment of alcohol dependence. Curr Psychiatry Rep 14(5):486–493PubMedPubMedCentralGoogle Scholar
  91. Kranzler HR et al (2017) Precision medicine and pharmacogenetics: what does oncology have that addiction medicine does not? Addiction 112(12):2086–2094.  https://doi.org/10.1111/add.13818 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Kuo MM et al (2005) Prokaryotic K(+) channels: from crystal structures to diversity. FEMS Microbiol Rev 29(5):961–985PubMedGoogle Scholar
  93. Lawrence JJ et al (2006) Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. J Neurosci 26(47):12325–12338PubMedGoogle Scholar
  94. Leggio L, Garbutt JC, Addolorato G (2010) Effectiveness and safety of baclofen in the treatment of alcohol dependent patients. CNS Neurol Disord Drug Targets 9(1):33–44PubMedGoogle Scholar
  95. Leggio L et al (2012) Baclofen promotes alcohol abstinence in alcohol dependent cirrhotic patients with hepatitis C virus (HCV) infection. Addict Behav 37(4):561–564PubMedGoogle Scholar
  96. Leggio L et al (2013) A human laboratory pilot study with baclofen in alcoholic individuals. Pharmacol Biochem Behav 103(4):784–791PubMedGoogle Scholar
  97. Lewohl JM et al (1999) G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action. Nat Neurosci 2(12):1084–1090PubMedGoogle Scholar
  98. Llamosas N et al (2015) Deletion of GIRK2 subunit of GIRK channels alters the 5-HT1A receptor-mediated signaling and results in a depression-resistant behavior. Int J Neuropsychopharmacol 18(11):pyv051PubMedPubMedCentralGoogle Scholar
  99. Lo CL et al (2016) High resolution genomic scans reveal genetic architecture controlling alcohol preference in bidirectionally selected rat model. PLoS Genet 12(8):e1006178PubMedPubMedCentralGoogle Scholar
  100. Logothetis DE et al (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325(6102):321–326PubMedGoogle Scholar
  101. Lowery-Gionta EG, Marcinkiewcz CA, Kash TL (2015) Functional alterations in the dorsal raphe nucleus following acute and chronic ethanol exposure. Neuropsychopharmacology 40(3):590–600PubMedGoogle Scholar
  102. Luscher C, Slesinger PA (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 11(5):301–315PubMedPubMedCentralGoogle Scholar
  103. Maccioni P, Colombo G (2009) Role of the GABA(B) receptor in alcohol-seeking and drinking behavior. Alcohol 43(7):555–558PubMedGoogle Scholar
  104. Maffie J, Rudy B (2008) Weighing the evidence for a ternary protein complex mediating A-type K+ currents in neurons. J Physiol 586(23):5609–5623PubMedPubMedCentralGoogle Scholar
  105. Maguire EP et al (2014) Extrasynaptic glycine receptors of rodent dorsal raphe serotonergic neurons: a sensitive target for ethanol. Neuropsychopharmacology 39(5):1232–1244PubMedPubMedCentralGoogle Scholar
  106. Marcinkiewcz CA et al (2015) Ethanol induced adaptations in 5-HT2c receptor signaling in the bed nucleus of the stria terminalis: implications for anxiety during ethanol withdrawal. Neuropharmacology 89:157–167PubMedGoogle Scholar
  107. Marrion NV (1997) Control of M-current. Annu Rev Physiol 59:483–504PubMedGoogle Scholar
  108. Marty A, Neher E (1985) Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol 367:117–141PubMedPubMedCentralGoogle Scholar
  109. Marty VN, Spigelman I (2012) Long-lasting alterations in membrane properties, k(+) currents, and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence. Front Neurosci 6:86PubMedPubMedCentralGoogle Scholar
  110. Mateos-Aparicio P, Murphy R, Storm JF (2014) Complementary functions of SK and Kv7/M potassium channels in excitability control and synaptic integration in rat hippocampal dentate granule cells. J Physiol 592(4):669–693PubMedPubMedCentralGoogle Scholar
  111. McCrossan ZA, Abbott GW (2004) The MinK-related peptides. Neuropharmacology 47(6):787–821PubMedGoogle Scholar
  112. McGeary J (2009) The DRD4 exon 3 VNTR polymorphism and addiction-related phenotypes: a review. Pharmacol Biochem Behav 93(3):222–229PubMedPubMedCentralGoogle Scholar
  113. McGuier NS et al (2016) Kv7 channels in the nucleus accumbens are altered by chronic drinking and are targets for reducing alcohol consumption. Addict Biol 21(6):1097–1112PubMedGoogle Scholar
  114. Metten P et al (2014) Dual-trait selection for ethanol consumption and withdrawal: genetic and transcriptional network effects. Alcohol Clin Exp Res 38(12):2915–2924PubMedPubMedCentralGoogle Scholar
  115. Miller C (2000) An overview of the potassium channel family. Genome Biol 1(4):REVIEWS0004PubMedPubMedCentralGoogle Scholar
  116. Miller MJ et al (2001) Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identified in a patient with schizophrenia. J Biol Chem 276(30):27753–27756PubMedGoogle Scholar
  117. Moore SD, Madamba SG, Siggins GR (1990) Ethanol diminishes a voltage-dependent K+ current, the M-current, in CA1 hippocampal pyramidal neurons in vitro. Brain Res 516(2):222–228PubMedGoogle Scholar
  118. Morley KC et al (2014) Baclofen for the treatment of alcohol dependence and possible role of comorbid anxiety. Alcohol Alcohol 49(6):654–660PubMedPubMedCentralGoogle Scholar
  119. Mrejeru A et al (2015) A subset of ventral tegmental area dopamine neurons responds to acute ethanol. Neuroscience 290:649–658PubMedPubMedCentralGoogle Scholar
  120. Mulholland PJ (2012) K(Ca)2 channels: novel therapeutic targets for treating alcohol withdrawal and escalation of alcohol consumption. Alcohol 46(4):309–315PubMedPubMedCentralGoogle Scholar
  121. Mulholland PJ et al (2009) Sizing up ethanol-induced plasticity: the role of small and large conductance calcium-activated potassium channels. Alcohol Clin Exp Res 33(7):1125–1135PubMedPubMedCentralGoogle Scholar
  122. Mulholland PJ et al (2011) Small conductance calcium-activated potassium type 2 channels regulate alcohol-associated plasticity of glutamatergic synapses. Biol Psychiatry 69(7):625–632PubMedGoogle Scholar
  123. Mulholland PJ, Chandler LJ, Kalivas PW (2016) Signals from the fourth dimension regulate drug relapse. Trends Neurosci 39(7):472–485PubMedPubMedCentralGoogle Scholar
  124. Ngo-Anh TJ et al (2005) SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat Neurosci 8(5):642–649PubMedGoogle Scholar
  125. NIAAA (2016) Alcohol facts and statistics. www.niaaa.nih.gov/alcohol-health/ Google Scholar
  126. Nimitvilai S et al (2016) Chronic intermittent ethanol exposure enhances the excitability and synaptic plasticity of lateral orbitofrontal cortex neurons and induces a tolerance to the acute inhibitory actions of ethanol. Neuropsychopharmacology 41(4):1112–1127PubMedGoogle Scholar
  127. Nimitvilai S et al (2017a) Orbitofrontal neuroadaptations and cross-species synaptic biomarkers in heavy-drinking macaques. J Neurosci 37(13):3646–3660PubMedPubMedCentralGoogle Scholar
  128. Nimitvilai S et al (2017b) Ethanol dependence abolishes monoamine and GIRK (Kir3) channel inhibition of orbitofrontal cortex excitability. Neuropsychopharmacology 42(9):1800–1812PubMedPubMedCentralGoogle Scholar
  129. Otis JM et al (2017) Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543(7643):103–107PubMedPubMedCentralGoogle Scholar
  130. Padula AE et al (2013) Novel anticonvulsants for reducing alcohol consumption: a review of evidence from preclinical rodent drinking models. OA Alcohol 1(1):2PubMedPubMedCentralGoogle Scholar
  131. Padula AE et al (2015) KCNN genes that encode small-conductance Ca2+-activated K+ channels influence alcohol and drug addiction. Neuropsychopharmacology 40(8):1928–1939PubMedPubMedCentralGoogle Scholar
  132. Patil N et al (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 11(2):126–129PubMedGoogle Scholar
  133. Perra S et al (2011) In vivo ethanol experience increases D(2) autoinhibition in the ventral tegmental area. Neuropsychopharmacology 36(5):993–1002PubMedPubMedCentralGoogle Scholar
  134. Perry CA et al (2008) Predisposition to late-onset obesity in GIRK4 knockout mice. Proc Natl Acad Sci U S A 105(23):8148–8153PubMedPubMedCentralGoogle Scholar
  135. Philip VM et al (2010) High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. Genes Brain Behav 9(2):129–159PubMedPubMedCentralGoogle Scholar
  136. Pleil KE et al (2015) Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala. Neuropharmacology 99:735–749PubMedPubMedCentralGoogle Scholar
  137. Ponomarev I et al (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci 32(5):1884–1897PubMedPubMedCentralGoogle Scholar
  138. Radcliffe RA et al (2004) Quantitative trait loci mapping for ethanol sensitivity and neurotensin receptor density in an F2 intercross derived from inbred high and low alcohol sensitivity selectively bred rat lines. Alcohol Clin Exp Res 28(12):1796–1804PubMedGoogle Scholar
  139. Renteria R, Buske TR, Morrisett RA (2017) Long-term subregion-specific encoding of enhanced ethanol intake by D1DR medium spiny neurons of the nucleus accumbens. Addict Biol.  https://doi.org/10.1111/adb.12526
  140. Reuveny E et al (1994) Activation of the cloned muscarinic potassium channel by G protein beta gamma subunits. Nature 370(6485):143–146PubMedGoogle Scholar
  141. Rinker JA, Mulholland PJ (2017) Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 18(6):555–570PubMedPubMedCentralGoogle Scholar
  142. Rinker JA et al (2017) Differential potassium channel gene regulation in BXD mice reveals novel targets for pharmacogenetic therapies to reduce heavy alcohol drinking. Alcohol 58:33–45PubMedGoogle Scholar
  143. Risinger FO, Cunningham CL (1998) Ethanol-induced conditioned taste aversion in BXD recombinant inbred mice. Alcohol Clin Exp Res 22(6):1234–1244PubMedGoogle Scholar
  144. Roura-Ferrer M et al (2010) Impact of KCNE subunits on KCNQ1 (Kv7.1) channel membrane surface targeting. J Cell Physiol 225(3):692–700PubMedGoogle Scholar
  145. Saccone SF et al (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16(1):36–49PubMedGoogle Scholar
  146. Schilaty ND et al (2014) Acute ethanol inhibits dopamine release in the nucleus accumbens via alpha6 nicotinic acetylcholine receptors. J Pharmacol Exp Ther 349(3):559–567PubMedPubMedCentralGoogle Scholar
  147. Schroeder BC et al (1998) Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396(6712):687–690PubMedGoogle Scholar
  148. Schroeder BC et al (2000) KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem 275(31):24089–24095PubMedGoogle Scholar
  149. Schulz R et al (2012) Network excitability in a model of chronic temporal lobe epilepsy critically depends on SK channel-mediated AHP currents. Neurobiol Dis 45(1):337–347PubMedGoogle Scholar
  150. Schumacher MA et al (2001) Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410(6832):1120–1124PubMedGoogle Scholar
  151. Sehgal M et al (2013) Learning to learn – intrinsic plasticity as a metaplasticity mechanism for memory formation. Neurobiol Learn Mem 105:186–199PubMedGoogle Scholar
  152. Shah M et al (2002) Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol 544(Pt 1):29–37PubMedPubMedCentralGoogle Scholar
  153. Shah A et al (2017) The lateral habenula and alcohol: role of glutamate and M-type potassium channels. Pharmacol Biochem Behav 162:94–102PubMedGoogle Scholar
  154. Signorini S et al (1997) Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc Natl Acad Sci U S A 94(3):923–927PubMedPubMedCentralGoogle Scholar
  155. Singh NA et al (2008) Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization. J Physiol 586(14):3405–3423PubMedPubMedCentralGoogle Scholar
  156. Stocker M (2004) Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nat Rev Neurosci 5(10):758–770PubMedGoogle Scholar
  157. Sturgess JE et al (2011) Pharmacogenetics of alcohol, nicotine and drug addiction treatments. Addict Biol 16(3):357–376PubMedGoogle Scholar
  158. Substance Abuse and Mental Health Administration (SAMHSA) (2015) National Survey on Drug Use and Health (NSDUH) 2015Google Scholar
  159. Syme CA et al (2000) Pharmacological activation of cloned intermediate- and small-conductance Ca(2+)-activated K(+) channels. Am J Physiol Cell Physiol 278(3):C570–C581PubMedGoogle Scholar
  160. Tarantino LM et al (1998) Confirmation of quantitative trait loci for alcohol preference in mice. Alcohol Clin Exp Res 22(5):1099–1105PubMedGoogle Scholar
  161. Trantham-Davidson H et al (2014) Chronic alcohol disrupts dopamine receptor activity and the cognitive function of the medial prefrontal cortex. J Neurosci 34(10):3706–3718PubMedPubMedCentralGoogle Scholar
  162. Vandenberg JN, Mann C, Perry S (2015) Reference module in biomedical sciences. Choice: Curr Rev Acad Libraries 52(10):1633–1634Google Scholar
  163. Vergara C et al (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8(3):321–329PubMedGoogle Scholar
  164. Wang HS, McKinnon D (1995) Potassium currents in rat prevertebral and paravertebral sympathetic neurones: control of firing properties. J Physiol 485(Pt 2):319–335PubMedPubMedCentralGoogle Scholar
  165. Wang HS et al (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282(5395):1890–1893PubMedGoogle Scholar
  166. Wittekindt OH et al (2004) An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel. Mol Pharmacol 65(3):788–801PubMedGoogle Scholar
  167. Wu X et al (2013) Effects of morphine withdrawal on the membrane properties of medium spiny neurons in the nucleus accumbens shell. Brain Res Bull 90:92–99PubMedGoogle Scholar
  168. Wydeven N et al (2014) Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297. Proc Natl Acad Sci U S A 111(29):10755–10760PubMedPubMedCentralGoogle Scholar
  169. Xia XM et al (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395(6701):503–507PubMedGoogle Scholar
  170. Xiao J, Zhen XG, Yang J (2003) Localization of PIP2 activation gate in inward rectifier K+ channels. Nat Neurosci 6(8):811–818PubMedGoogle Scholar
  171. Yamada K et al (2012) Association study of the KCNJ3 gene as a susceptibility candidate for schizophrenia in the Chinese population. Hum Genet 131(3):443–451PubMedGoogle Scholar
  172. Zaika O et al (2006) Angiotensin II regulates neuronal excitability via phosphatidylinositol 4,5-bisphosphate-dependent modulation of Kv7 (M-type) K+ channels. J Physiol 575(Pt 1):49–67PubMedPubMedCentralGoogle Scholar
  173. Zandany N et al (2015) Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism. Nat Commun 6:6488PubMedGoogle Scholar
  174. Zhang X et al (2009) Divalent cations slow activation of EAG family K+ channels through direct binding to S4. Biophys J 97(1):110–120PubMedPubMedCentralGoogle Scholar
  175. Zwierzynska E, Krupa A, Pietrzak B (2015) A pharmaco-EEG study of the interaction between ethanol and retigabine in rabbits. Am J Drug Alcohol Abuse 41(2):153–160PubMedGoogle Scholar
  176. Zwierzynska E, Andrzejczak D, Pietrzak B (2016) Does retigabine affect the development of alcohol dependence? – a pharmaco-EEG study. Neurosci Lett 611:6–13PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Reginald Cannady
    • 1
  • Jennifer A. Rinker
    • 1
  • Sudarat Nimitvilai
    • 1
  • John J. Woodward
    • 1
  • Patrick J. Mulholland
    • 1
    Email author
  1. 1.Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences DivisionMedical University of South CarolinaCharlestonUSA

Personalised recommendations