Skip to main content

Toxins That Affect Voltage-Gated Sodium Channels

  • Chapter
  • First Online:
Voltage-gated Sodium Channels: Structure, Function and Channelopathies

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 246))

Abstract

Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams ME (2004) Agatoxins: ion channel specific toxins from the American funnel web spider, Agelenopsis aperta. Toxicon 43:509–525

    Article  PubMed  CAS  Google Scholar 

  • Alami M, Vacher H, Bosmans F, Devaux C, Rosso JP, Bougis PE, Tytgat J et al (2003) Characterization of Amm VIII from Androctonus mauretanicus mauretanicus: a new scorpion toxin that discriminates between neuronal and skeletal sodium channels. Biochem J 375:551–560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baden DG, Bourdelais AJ, Jacocks H, Michelliza S, Naar J (2005) Natural and derivative brevetoxins: historical background, multiplicity, and effects. Environ Health Perspect 113:621–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bao L (2015) Trafficking regulates the subcellular distribution of voltage-gated sodium channels in primary sensory neurons. Mol Pain 11:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Billen B, Bosmans F, Tytgat J (2008) Animal peptides targeting voltage-activated sodium channels. Curr Pharm Des 14:2492–2502

    Article  PubMed  CAS  Google Scholar 

  • Billen B, Vassilevski A, Nikolsky A, Debaveye S, Tytgat J, Grishin E (2010) Unique bell-shaped voltage-dependent modulation of Na+ channel gating by novel insect-selective toxins from the spider Agelena orientalis. J Biol Chem 285:18545–18554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosmans F, Tytgat J (2007) Voltage-gated sodium channel modulation by scorpion alpha-toxins. Toxicon 49:142–158

    Article  PubMed  CAS  Google Scholar 

  • Bottein Dechraoui MY, Ramsdell JS (2003) Type B brevetoxins show tissue selectivity for voltage-gated sodium channels: comparison of brain, skeletal muscle and cardiac sodium channels. Toxicon 41:919–927

    Article  PubMed  CAS  Google Scholar 

  • Campbell DT (1982) Modified kinetics and selectivity of sodium channels in frog skeletal muscle fibers treated with aconitine. J Gen Physiol 80:713–731

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, George J, Gerwick WH, Baden DG, Rainier JD, Murray TF (2008) Influence of lipid-soluble gating modifier toxins on sodium influx in neocortical neurons. J Pharmacol Exp Ther 326:604–613

    Article  PubMed  CAS  Google Scholar 

  • Carnevale V, Klein ML (2017) Small molecule modulation of voltage gated sodium channels. Curr Opin Struct Biol 43:156–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cassell RT, Chen W, Thomas S, Liu L, Rein KS (2015) Brevetoxin, the dinoflagellate neurotoxin, localizes to thylakoid membranes and interacts with the Light-Harvesting Complex II (LHCII) of photosystem II. Chembiochem 16:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20:15–43

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev 72:S15–S48

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Cestele S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon 49:124–141

    Article  PubMed  CAS  Google Scholar 

  • Cestele S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883–892

    Article  PubMed  CAS  Google Scholar 

  • Cestele S, Qu Y, Rogers JC, Rochat H, Scheuer T, Catterall WA (1998) Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain II. Neuron 21:919–931

    Article  PubMed  CAS  Google Scholar 

  • Cestele S, Stankiewicz M, Mansuelle P, De Waard M, Dargent B, Gilles N, Pelhate M et al (1999) Scorpion alpha-like toxins, toxic to both mammals and insects, differentially interact with receptor site 3 on voltage-gated sodium channels in mammals and insects. Eur J Neurosci 11:975–985

    Article  PubMed  CAS  Google Scholar 

  • Cestele S, Scheuer T, Mantegazza M, Rochat H, Catterall WA (2001) Neutralization of gating charges in domain II of the sodium channel alpha subunit enhances voltage-sensor trapping by a beta-scorpion toxin. J Gen Physiol 118:291–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cestele S, Yarov-Yarovoy V, Qu Y, Sampieri F, Scheuer T, Catterall WA (2006) Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin. J Biol Chem 281:21332–21344

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Gordon D, Heinemann SH (2000) Modulation of cloned skeletal muscle sodium channels by the scorpion toxins Lqh II, Lqh III, and Lqh alphaIT. Pflugers Arch 439:423–432

    PubMed  CAS  Google Scholar 

  • Cohen L, Karbat I, Gilles N, Froy O, Corzo G, Angelovici R, Gordon D et al (2004) Dissection of the functional surface of an anti-insect excitatory toxin illuminates a putative “hot spot” common to all scorpion beta-toxins affecting Na+ channels. J Biol Chem 279:8206–8211

    Article  PubMed  CAS  Google Scholar 

  • Cohen L, Karbat I, Gilles N, Ilan N, Benveniste M, Gordon D, Gurevitz M (2005) Common features in the functional surface of scorpion beta-toxins and elements that confer specificity for insect and mammalian voltage-gated sodium channels. J Biol Chem 280:5045–5053

    Article  PubMed  CAS  Google Scholar 

  • Cohen L, Gilles N, Karbat I, Ilan N, Gordon D, Gurevitz M (2006) Direct evidence that receptor site-4 of sodium channel gating modifiers is not dipped in the phospholipid bilayer of neuronal membranes. J Biol Chem 281:20673–20679

    Article  PubMed  CAS  Google Scholar 

  • Cohen L, Troub Y, Turkov M, Gilles N, Ilan N, Benveniste M, Gordon D et al (2007a) Mammalian skeletal muscle voltage-gated sodium channels are affected by scorpion depressant “insect-selective” toxins when preconditioned. Mol Pharmacol 72:1220–1227

    Article  PubMed  CAS  Google Scholar 

  • Cohen L, Ilan N, Gur M, Stuhmer W, Gordon D, Gurevitz M (2007b) Design of a specific activator for skeletal muscle sodium channels uncovers channel architecture. J Biol Chem 282:29424–29430

    Article  PubMed  CAS  Google Scholar 

  • Cohen L, Lipstein N, Karbat I, Ilan N, Gilles N, Kahn R, Gordon D et al (2008) Miniaturization of scorpion beta-toxins uncovers a putative ancestral surface of interaction with voltage-gated sodium channels. J Biol Chem 283:15169–15176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corzo G, Escoubas P, Stankiewicz M, Pelhate M, Kristensen CP, Nakajima T (2000) Isolation, synthesis and pharmacological characterization of delta-palutoxins IT, novel insecticidal toxins from the spider Paracoelotes luctuosus (Amaurobiidae). Eur J Biochem 267:5783–5795

    Article  PubMed  CAS  Google Scholar 

  • Corzo G, Gilles N, Satake H, Villegas E, Dai L, Nakajima T, Haupt J (2003) Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel. FEBS Lett 547:43–50

    Article  PubMed  CAS  Google Scholar 

  • Corzo G, Escoubas P, Villegas E, Karbat I, Gordon D, Gurevitz M, Nakajima T et al (2005) A spider toxin that induces a typical effect of scorpion alpha-toxins but competes with beta-toxins on binding to insect sodium channels. Biochemistry 44:1542–1549

    Article  PubMed  CAS  Google Scholar 

  • Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cruz LJ, Gray WR, Olivera BM, Zeikus RD, Kerr L, Yoshikami D, Moczydlowski E (1985) Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J Biol Chem 260:9280–9288

    PubMed  CAS  Google Scholar 

  • Cummins TR, Sheets PL, Waxman SG (2007) The roles of sodium channels in nociception: implications for mechanisms of pain. Pain 131:243–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daly JW, Gusovsky F, Myers CW, Yotsu-Yamashita M, Yasumoto T (1994) First occurrence of tetrodotoxin in a dendrobatid frog (Colostethus inguinalis), with further reports for the bufonid genus Atelopus. Toxicon 32:279–285

    Article  PubMed  CAS  Google Scholar 

  • de Dianous S, Hoarau F, Rochat H (1987) Re-examination of the specificity of the scorpion Androctonus australis hector insect toxin towards arthropods. Toxicon 25:411–417

    Article  PubMed  Google Scholar 

  • de la Vega RC, Possani LD (2007) Novel paradigms on scorpion toxins that affects the activating mechanism of sodium channels. Toxicon 49:171–180

    Article  PubMed  CAS  Google Scholar 

  • Dechraoui MY, Wacksman JJ, Ramsdell JS (2006) Species selective resistance of cardiac muscle voltage gated sodium channels: characterization of brevetoxin and ciguatoxin binding sites in rats and fish. Toxicon 48:702–712

    Article  PubMed  CAS  Google Scholar 

  • Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (2010) Sodium channels in normal and pathological pain. Annu Rev Neurosci 33:325–347

    Article  PubMed  CAS  Google Scholar 

  • Donatsch P, Lowe DA, Richardson BP, Taylor P (1977) The functional significance of sodium channels in pancreatic beta-cell membranes. J Physiol 267:357–376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du Y, Garden DP, Wang L, Zhorov BS, Dong K (2011) Identification of new batrachotoxin-sensing residues in segment IIIS6 of the sodium channel. J Biol Chem 286:13151–13160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eitan M, Fowler E, Herrmann R, Duval A, Pelhate M, Zlotkin E (1990) A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: purification, primary structure, and mode of action. Biochemistry 29:5941–5947

    Article  PubMed  CAS  Google Scholar 

  • Ekberg J, Craik DJ, Adams DJ (2008) Conotoxin modulation of voltage-gated sodium channels. Int J Biochem Cell Biol 40:2363–2368

    Article  PubMed  CAS  Google Scholar 

  • Emery EC, Luiz AP, Wood JN (2016) Na1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 20:975–983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faber CG, Hoeijmakers JG, Ahn HS, Cheng X, Han C, Choi JS, Estacion M et al (2012) Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 71:26–39

    Article  PubMed  CAS  Google Scholar 

  • Fainzilber M, Kofman O, Zlotkin E, Gordon D (1994) A new neurotoxin receptor site on sodium channels is identified by a conotoxin that affects sodium channel inactivation in molluscs and acts as an antagonist in rat brain. J Biol Chem 269:2574–2580

    PubMed  CAS  Google Scholar 

  • Fainzilber M, Lodder JC, Kits KS, Kofman O, Vinnitsky I, Van Rietschoten J, Zlotkin E et al (1995) A new conotoxin affecting sodium current inactivation interacts with the delta-conotoxin receptor site. J Biol Chem 270:1123–1129

    Article  PubMed  CAS  Google Scholar 

  • Feng YJ, Feng Q, Tao J, Zhao R, Ji YH (2015) Allosteric interactions between receptor site 3 and 4 of voltage-gated sodium channels: a novel perspective for the underlying mechanism of scorpion sting-induced pain. J Venom Anim Toxins Incl Trop Dis 21:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B, Ostman J et al (2006) SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52:767–774

    Article  PubMed  CAS  Google Scholar 

  • Froy O, Zilberberg N, Gordon D, Turkov M, Gilles N, Stankiewicz M, Pelhate M et al (1999) The putative bioactive surface of insect-selective scorpion excitatory neurotoxins. J Biol Chem 274:5769–5776

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman FA (1967) Tetrodotoxin. It is a powerful poison that is found in two almost totally unrelated kinds of animal: puffer fish and newts. It has been serving as a tool in nerve physiology and may provide a model for new local anesthetics. Sci Am 217:60–71

    Article  PubMed  CAS  Google Scholar 

  • Gawley RE, Rein KS, Jeglitsch G, Adams DJ, Theodorakis EA, Tiebes J, Nicolaou KC et al (1995) The relationship of brevetoxin ‘length’ and A-ring functionality to binding and activity in neuronal sodium channels. Chem Biol 2:533–541

    Article  PubMed  CAS  Google Scholar 

  • George AL Jr (2005) Inherited disorders of voltage-gated sodium channels. J Clin Invest 115:1990–1999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilles N, Leipold E, Chen H, Heinemann SH, Gordon D (2001) Effect of depolarization on binding kinetics of scorpion alpha-toxin highlights conformational changes of rat brain sodium channels. Biochemistry 40:14576–14584

    Article  PubMed  CAS  Google Scholar 

  • Goldin AL (1999) Diversity of mammalian voltage-gated sodium channels. Ann N Y Acad Sci 868:38–50

    Article  PubMed  CAS  Google Scholar 

  • Goldin AL (2002) Evolution of voltage-gated Na(+) channels. J Exp Biol 205:575–584

    PubMed  CAS  Google Scholar 

  • Gordon D, Gurevitz M (2003) The selectivity of scorpion alpha-toxins for sodium channel subtypes is determined by subtle variations at the interacting surface. Toxicon 41:125–128

    Article  PubMed  CAS  Google Scholar 

  • Gur M, Kahn R, Karbat I, Regev N, Wang J, Catterall WA, Gordon D et al (2011) Elucidation of the molecular basis of selective recognition uncovers the interaction site for the core domain of scorpion alpha-toxins on sodium channels. J Biol Chem 286:35209–35217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurevitz M (2012) Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. Toxicon 60:502–511

    Article  PubMed  CAS  Google Scholar 

  • Gurevitz M, Karbat I, Cohen L, Ilan N, Kahn R, Turkov M, Stankiewicz M et al (2007) The insecticidal potential of scorpion beta-toxins. Toxicon 49:473–489

    Article  PubMed  CAS  Google Scholar 

  • Hampl M, Eberhardt E, O'Reilly AO, Lampert A (2016) Sodium channel slow inactivation interferes with open channel block. Sci Rep 6:25974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasson A, Fainzilber M, Gordon D, Zlotkin E, Spira ME (1993) Alteration of sodium currents by new peptide toxins from the venom of a molluscivorous Conus snail. Eur J Neurosci 5:56–64

    Article  PubMed  CAS  Google Scholar 

  • He H, Liu Z, Dong B, Zhou J, Zhu H, Ji Y (2010) Molecular determination of selectivity of the site 3 modulator (BmK I) to sodium channels in the CNS: a clue to the importance of Nav1.6 in BmK I-induced neuronal hyperexcitability. Biochem J 431:289–298

    Article  PubMed  CAS  Google Scholar 

  • He H, Liu Z, Dong B, Zhang J, Shu X, Zhou J, Ji Y (2011) Localization of receptor site on insect sodium channel for depressant beta-toxin BmK IT2. PLoS One 6:e14510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1968) Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol 51:199–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hille B (1975) The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. Biophys J 15:615–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hogg RC, Lewis RJ, Adams DJ (2002) Ciguatoxin-induced oscillations in membrane potential and action potential firing in rat parasympathetic neurons. Eur J Neurosci 16:242–248

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Morrow TJ, Paulson PE, Isom LL, Wiley JW (2004) Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J Biol Chem 279:29341–29350

    Article  PubMed  CAS  Google Scholar 

  • Inserra MC, Israel MR, Caldwell A, Castro J, Deuis JR, Harrington AM, Keramidas A et al (2017) Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Sci Rep 7:42810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishii H, Kinoshita E, Kimura T, Yakehiro M, Yamaoka K, Imoto K, Mori Y et al (1999) Point-mutations related to the loss of batrachotoxin binding abolish the grayanotoxin effect in Na(+) channel isoforms. Jpn J Physiol 49:457–461

    Article  PubMed  CAS  Google Scholar 

  • Jeglitsch G, Rein K, Baden DG, Adams DJ (1998) Brevetoxin-3 (PbTx-3) and its derivatives modulate single tetrodotoxin-sensitive sodium channels in rat sensory neurons. J Pharmacol Exp Ther 284:516–525

    PubMed  CAS  Google Scholar 

  • Ji YH, Mansuelle P, Xu K, Granier C, Kopeyan C, Terakawa S, Rochat H (1994) Amino acid sequence of an excitatory insect-selective toxin (BmK IT) from venom of the scorpion Buthus martensi Karsch. Sci China B 37:42–49

    PubMed  CAS  Google Scholar 

  • Ji YH, Li YJ, Zhang JW, Song BL, Yamaki T, Mochizuki T, Hoshino M et al (1999) Covalent structures of BmK AS and BmK AS-1, two novel bioactive polypeptides purified from Chinese scorpion Buthus martensi Karsch. Toxicon 37:519–536

    Article  PubMed  CAS  Google Scholar 

  • Karbat I, Cohen L, Gilles N, Gordon D, Gurevitz M (2004) Conversion of a scorpion toxin agonist into an antagonist highlights an acidic residue involved in voltage sensor trapping during activation of neuronal Na+ channels. FASEB J 18:683–689

    Article  PubMed  CAS  Google Scholar 

  • Karbat I, Turkov M, Cohen L, Kahn R, Gordon D, Gurevitz M, Frolow F (2007) X-ray structure and mutagenesis of the scorpion depressant toxin LqhIT2 reveals key determinants crucial for activity and anti-insect selectivity. J Mol Biol 366:586–601

    Article  PubMed  CAS  Google Scholar 

  • Keizer DW, West PJ, Lee EF, Yoshikami D, Olivera BM, Bulaj G, Norton RS (2003) Structural basis for tetrodotoxin-resistant sodium channel binding by mu-conotoxin SmIIIA. J Biol Chem 278:46805–46813

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Kinoshita E, Yamaoka K, Yuki T, Yakehiro M, Seyama I (2000) On site of action of grayanotoxin in domain 4 segment 6 of rat skeletal muscle sodium channel. FEBS Lett 465:18–22

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Yamaoka K, Kinoshita E, Maejima H, Yuki T, Yakehiro M, Seyama I (2001) Novel site on sodium channel alpha-subunit responsible for the differential sensitivity of grayanotoxin in skeletal and cardiac muscle. Mol Pharmacol 60:865–872

    PubMed  CAS  Google Scholar 

  • Kohling R (2002) Voltage-gated sodium channels in epilepsy. Epilepsia 43:1278–1295

    Article  PubMed  Google Scholar 

  • Lai J, Hunter JC, Porreca F (2003) The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol 13:291–297

    Article  PubMed  CAS  Google Scholar 

  • Legros C, Ceard B, Vacher H, Marchot P, Bougis PE, Martin-Eauclaire MF (2005) Expression of the standard scorpion alpha-toxin AaH II and AaH II mutants leading to the identification of some key bioactive elements. Biochim Biophys Acta 1723:91–99

    Article  PubMed  CAS  Google Scholar 

  • Leipold E, Lu S, Gordon D, Hansel A, Heinemann SH (2004) Combinatorial interaction of scorpion toxins Lqh-2, Lqh-3, and LqhalphaIT with sodium channel receptor sites-3. Mol Pharmacol 65:685–691

    Article  PubMed  CAS  Google Scholar 

  • Leipold E, Hansel A, Olivera BM, Terlau H, Heinemann SH (2005) Molecular interaction of delta-conotoxins with voltage-gated sodium channels. FEBS Lett 579:3881–3884

    Article  PubMed  CAS  Google Scholar 

  • Leipold E, Hansel A, Borges A, Heinemann SH (2006) Subtype specificity of scorpion beta-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3. Mol Pharmacol 70:340–347

    Article  PubMed  CAS  Google Scholar 

  • Leipold E, Borges A, Heinemann SH (2012) Scorpion beta-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes. J Gen Physiol 139:305–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li RA, Tomaselli GF (2004) Using the deadly mu-conotoxins as probes of voltage-gated sodium channels. Toxicon 44:117–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li YJ, Tan ZY, Ji YH (2000) The binding of BmK IT2, a depressant insect-selective scorpion toxin on mammal and insect sodium channels. Neurosci Res 38:257–264

    Article  PubMed  CAS  Google Scholar 

  • Li D, Xiao Y, Hu W, Xie J, Bosmans F, Tytgat J, Liang S (2003) Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana. FEBS Lett 555:616–622

    Article  PubMed  CAS  Google Scholar 

  • Linford NJ, Cantrell AR, Qu Y, Scheuer T, Catterall WA (1998) Interaction of batrachotoxin with the local anesthetic receptor site in transmembrane segment IVS6 of the voltage-gated sodium channel. Proc Natl Acad Sci U S A 95:13947–13952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu ZR, Ye P, Ji YH (2011) Exploring the obscure profiles of pharmacological binding sites on voltage-gated sodium channels by BmK neurotoxins. Protein Cell 2:437–444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lombet A, Bidard JN, Lazdunski M (1987) Ciguatoxin and brevetoxins share a common receptor site on the neuronal voltage-dependent Na+ channel. FEBS Lett 219:355–359

    Article  PubMed  CAS  Google Scholar 

  • Marban E, Yamagishi T, Tomaselli GF (1998) Structure and function of voltage-gated sodium channels. J Physiol 508(Pt 3):647–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcotte P, Chen LQ, Kallen RG, Chahine M (1997) Effects of Tityus serrulatus scorpion toxin gamma on voltage-gated Na+ channels. Circ Res 80:363–369

    Article  PubMed  CAS  Google Scholar 

  • Martin MF, Garcia y Perez LG, el Ayeb M, Kopeyan C, Bechis G, Jover E, Rochat H (1987) Purification and chemical and biological characterizations of seven toxins from the Mexican scorpion, Centruroides suffusus suffusus. J Biol Chem 262:4452–4459

    PubMed  CAS  Google Scholar 

  • Martin-Moutot N, Mansuelle P, Alcaraz G, Dos Santos RG, Cordeiro MN, De Lima ME, Seagar M et al (2006) Phoneutria nigriventer toxin 1: a novel, state-dependent inhibitor of neuronal sodium channels that interacts with micro conotoxin binding sites. Mol Pharmacol 69:1931–1937

    Article  PubMed  CAS  Google Scholar 

  • Mattei C, Legros C (2014) The voltage-gated sodium channel: a major target of marine neurotoxins. Toxicon 91:84–95

    Article  PubMed  CAS  Google Scholar 

  • Moran Y, Gordon D, Gurevitz M (2009) Sea anemone toxins affecting voltage-gated sodium channels – molecular and evolutionary features. Toxicon 54:1089–1101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narahashi T (2008) Tetrodotoxin: a brief history. Proc Jpn Acad Ser B Phys Biol Sci 84:147–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narahashi T, Moore JW, Scott WR (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J Gen Physiol 47:965–974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicholson GM (2007) Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon 49:490–512

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H et al (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320:188–192

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Jeon JK, Arakawa O, Sugita H, Deguchi Y, Shida Y, Hashimoto K (1986) Occurrence of tetrodotoxin and anhydrotetrodotoxin in Vibrio sp. isolated from the intestines of a xanthid crab, Atergatis floridus. J Biochem 99:311–314

    Article  PubMed  CAS  Google Scholar 

  • Oliveira JS, Redaelli E, Zaharenko AJ, Cassulini RR, Konno K, Pimenta DC, Freitas JC et al (2004) Binding specificity of sea anemone toxins to Nav 1.1-1.6 sodium channels: unexpected contributions from differences in the IV/S3-S4 outer loop. J Biol Chem 279:33323–33335

    Article  PubMed  CAS  Google Scholar 

  • Pearn J (2001) Neurology of ciguatera. J Neurol Neurosurg Psychiatry 70:4–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedraza Escalona M, Possani LD (2013) Scorpion beta-toxins and voltage-gated sodium channels: interactions and effects. Front Biosci (Landmark Ed) 18:572–587

    Article  Google Scholar 

  • Pereira A, Cao Z, Murray TF, Gerwick WH (2009) Hoiamide a, a sodium channel activator of unusual architecture from a consortium of two papua new Guinea cyanobacteria. Chem Biol 16:893–906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez S, Vale C, Alonso E, Alfonso C, Rodriguez P, Otero P, Alfonso A et al (2011) A comparative study of the effect of ciguatoxins on voltage-dependent Na+ and K+ channels in cerebellar neurons. Chem Res Toxicol 24:587–596

    Article  PubMed  CAS  Google Scholar 

  • Pintar A, Possani LD, Delepierre M (1999) Solution structure of toxin 2 from centruroides noxius Hoffmann, a beta-scorpion neurotoxin acting on sodium channels. J Mol Biol 287:359–367

    Article  PubMed  CAS  Google Scholar 

  • Possani LD, Becerril B, Delepierre M, Tytgat J (1999) Scorpion toxins specific for Na+-channels. Eur J Biochem 264:287–300

    Article  PubMed  CAS  Google Scholar 

  • Purkerson-Parker SL, Fieber LA, Rein KS, Podona T, Baden DG (2000) Brevetoxin derivatives that inhibit toxin activity. Chem Biol 7:385–393

    Article  PubMed  CAS  Google Scholar 

  • Rashid MH, Mahdavi S, Kuyucak S (2013) Computational studies of marine toxins targeting ion channels. Mar Drugs 11:848–869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rogart R (1981) Sodium channels in nerve and muscle membrane. Annu Rev Physiol 43:711–725

    Article  PubMed  CAS  Google Scholar 

  • Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA (1996) Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J Biol Chem 271:15950–15962

    Article  PubMed  CAS  Google Scholar 

  • Rong M, Chen J, Tao H, Wu Y, Jiang P, Lu M, Su H et al (2011) Molecular basis of the tarantula toxin jingzhaotoxin-III (beta-TRTX-Cj1alpha) interacting with voltage sensors in sodium channel subtype Nav1.5. FASEB J 25:3177–3185

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakamura H, Ohizumi Y, Kobayashi J, Hirata Y (1983) The amino acid sequences of homologous hydroxyproline-containing myotoxins from the marine snail Conus geographus venom. FEBS Lett 155:277–280

    Article  PubMed  CAS  Google Scholar 

  • Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Schantz EJ (1986) Chemistry and biology of saxitoxin and related toxins. Ann N Y Acad Sci 479:15–23

    Article  PubMed  CAS  Google Scholar 

  • Scheuer T (1994) Structure and function of voltage-gated sodium channels: regulation by phosphorylation. Biochem Soc Trans 22:479–482

    Article  PubMed  CAS  Google Scholar 

  • Schreibmayer W, Jeglitsch G (1992) The sodium channel activator brevetoxin-3 uncovers a multiplicity of different open states of the cardiac sodium channel. Biochim Biophys Acta 1104:233–242

    Article  PubMed  CAS  Google Scholar 

  • Sheumack DD, Howden ME, Spence I, Quinn RJ (1978) Maculotoxin: a neurotoxin from the venom glands of the octopus Hapalochlaena maculosa identified as tetrodotoxin. Science 199:188–189

    Article  PubMed  CAS  Google Scholar 

  • Shichor I, Zlotkin E, Ilan N, Chikashvili D, Stuhmer W, Gordon D, Lotan I (2002) Domain 2 of Drosophila para voltage-gated sodium channel confers insect properties to a rat brain channel. J Neurosci 22:4364–4371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shmukler YB, Nikishin DA (2017) Ladder-shaped ion channel ligands: current state of knowledge. Mar Drugs 15

    Google Scholar 

  • Song W, Du Y, Liu Z, Luo N, Turkov M, Gordon D, Gurevitz M et al (2011) Substitutions in the domain III voltage-sensing module enhance the sensitivity of an insect sodium channel to a scorpion beta-toxin. J Biol Chem 286:15781–15788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stapleton A, Blankenship DT, Ackermann BL, Chen TM, Gorder GW, Manley GD, Palfreyman MG et al (1990) Curtatoxins. Neurotoxic insecticidal polypeptides isolated from the funnel-web spider Hololena curta. J Biol Chem 265:2054–2059

    PubMed  CAS  Google Scholar 

  • Stephan MM, Potts JF, Agnew WS (1994) The microI skeletal muscle sodium channel: mutation E403Q eliminates sensitivity to tetrodotoxin but not to mu-conotoxins GIIIA and GIIIB. J Membr Biol 137:1–8

    Article  PubMed  CAS  Google Scholar 

  • Stevens M, Peigneur S, Tytgat J (2011) Neurotoxins and their binding areas on voltage-gated sodium channels. Front Pharmacol 2:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strugatsky D, Zilberberg N, Stankiewicz M, Ilan N, Turkov M, Cohen L, Pelhate M et al (2005) Genetic polymorphism and expression of a highly potent scorpion depressant toxin enable refinement of the effects on insect Na channels and illuminate the key role of Asn-58. Biochemistry 44:9179–9187

    Article  PubMed  CAS  Google Scholar 

  • Tan ZY, Xiao H, Mao X, Wang CY, Zhao ZQ, Ji YH (2001) The inhibitory effects of BmK IT2, a scorpion neurotoxin on rat nociceptive flexion reflex and a possible mechanism for modulating voltage-gated Na(+) channels. Neuropharmacology 40:352–357

    Article  PubMed  CAS  Google Scholar 

  • Tang C, Zhou X, Huang Y, Zhang Y, Hu Z, Wang M, Chen P et al (2014) The tarantula toxin jingzhaotoxin-XI (kappa-theraphotoxin-Cj1a) regulates the activation and inactivation of the voltage-gated sodium channel Nav1.5. Toxicon 92:6–13

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov DB, Zhorov BS (2005) Sodium channel activators: model of binding inside the pore and a possible mechanism of action. FEBS Lett 579:4207–4212

    Article  PubMed  CAS  Google Scholar 

  • Trainer VL, Baden DG, Catterall WA (1994) Identification of peptide components of the brevetoxin receptor site of rat brain sodium channels. J Biol Chem 269:19904–19909

    PubMed  CAS  Google Scholar 

  • Turner AD, Higgins C, Davidson K, Veszelovszki A, Payne D, Hungerford J, Higman W (2015) Potential threats posed by new or emerging marine biotoxins in UK waters and examination of detection methodology used in their control: brevetoxins. Mar Drugs 13:1224–1254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulbricht W (1998) Effects of veratridine on sodium currents and fluxes. Rev Physiol Biochem Pharmacol 133:1–54

    PubMed  CAS  Google Scholar 

  • Wada A, Wanke E, Gullo F, Schiavon E (2008) Voltage-dependent Na(v)1.7 sodium channels: multiple roles in adrenal chromaffin cells and peripheral nervous system. Acta Physiol (Oxf) 192:221–231

    Article  CAS  Google Scholar 

  • Wang SY, Wang GK (1998) Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin. Proc Natl Acad Sci U S A 95:2653–2658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang SY, Wang GK (1999) Batrachotoxin-resistant Na+ channels derived from point mutations in transmembrane segment D4-S6. Biophys J 76:3141–3149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang SY, Wang GK (2003) Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins. Cell Signal 15:151–159

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Barile M, Wang GK (2001) Disparate role of Na(+) channel D2-S6 residues in batrachotoxin and local anesthetic action. Mol Pharmacol 59:1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Wang CZ, Zhang H, Jiang H, Lu W, Zhao ZQ, Chi CW (2006) A novel conotoxin from Conus striatus, mu-SIIIA, selectively blocking rat tetrodotoxin-resistant sodium channels. Toxicon 47:122–132

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Tikhonov DB, Mitchell J, Zhorov BS, Wang GK (2007) Irreversible block of cardiac mutant Na+ channels by batrachotoxin. Channels (Austin, TX) 1:179–188

    Article  Google Scholar 

  • Wei P, Xu C, Wu Q, Huang L, Liang S, Yuan C (2014) Jingzhaotoxin-35, a novel gating-modifier toxin targeting both Nav1.5 and Kv2.1 channels. Toxicon 92:90–96

    Article  PubMed  CAS  Google Scholar 

  • Wood JN, Baker M (2001) Voltage-gated sodium channels. Curr Opin Pharmacol 1:17–21

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Bingham JP, Zhu W, Moczydlowski E, Liang S, Cummins TR (2008) Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration. J Biol Chem 283:27300–27313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaoka K, Inoue M, Miyazaki K, Hirama M, Kondo C, Kinoshita E, Miyoshi H et al (2009) Synthetic ciguatoxins selectively activate Nav1.8-derived chimeric sodium channels expressed in HEK293 cells. J Biol Chem 284:7597–7605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasumoto T (2001) The chemistry and biological function of natural marine toxins. Chem Rec 1:228–242

    Article  PubMed  CAS  Google Scholar 

  • Ye P, Hua L, Jiao Y, Li Z, Qin S, Fu J, Jiang F et al (2016) Functional up-regulation of Nav1.8 sodium channel on dorsal root ganglia neurons contributes to the induction of scorpion sting pain. Acta Biochim Biophys Sin 48:132–144

    Article  PubMed  CAS  Google Scholar 

  • Zakon HH (2012) Adaptive evolution of voltage-gated sodium channels: the first 800 million years. Proc Natl Acad Sci U S A 109(Suppl 1):10619–10625

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang MM, Green BR, Catlin P, Fiedler B, Azam L, Chadwick A, Terlau H et al (2007) Structure/function characterization of micro-conotoxin KIIIA, an analgesic, nearly irreversible blocker of mammalian neuronal sodium channels. J Biol Chem 282:30699–30706

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Zhang XY, Yang J, Weng CC, Jiang LL, Zhang JW, Shu XQ et al (2008) Anticonvulsant effect of BmK IT2, a sodium channel-specific neurotoxin, in rat models of epilepsy. Br J Pharmacol 154:1116–1124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu HL, Wassall RD, Takai M, Morinaga H, Nomura M, Cunnane TC, Teramoto N (2009a) Actions of veratridine on tetrodotoxin-sensitive voltage-gated Na currents, Na1.6, in murine vas deferens myocytes. Br J Pharmacol 157:1483–1493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu MM, Tao J, Tan M, Yang HT, Ji YH (2009b) U-shaped dose-dependent effects of BmK AS, a unique scorpion polypeptide toxin, on voltage-gated sodium channels. Br J Pharmacol 158:1895–1903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmer T, Haufe V, Blechschmidt S (2014) Voltage-gated sodium channels in the mammalian heart. Global Cardiol Sci Pract 2014:449–463

    Google Scholar 

  • Zlotkin E, Eitan M, Bindokas VP, Adams ME, Moyer M, Burkhart W, Fowler E (1991) Functional duality and structural uniqueness of depressant insect-selective neurotoxins. Biochemistry 30:4814–4821

    Article  PubMed  CAS  Google Scholar 

  • Zuo XP, Ji YH (2004) Molecular mechanism of scorpion neurotoxins acting on sodium channels: insight into their diverse selectivity. Mol Neurobiol 30:265–278

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ji, Y. (2017). Toxins That Affect Voltage-Gated Sodium Channels. In: Chahine, M. (eds) Voltage-gated Sodium Channels: Structure, Function and Channelopathies. Handbook of Experimental Pharmacology, vol 246. Springer, Cham. https://doi.org/10.1007/164_2017_66

Download citation

Publish with us

Policies and ethics