Skip to main content

Sodium Channelopathies of Skeletal Muscle

  • Chapter
  • First Online:
Voltage-gated Sodium Channels: Structure, Function and Channelopathies

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 246))

Abstract

The NaV1.4 sodium channel is highly expressed in skeletal muscle, where it carries almost all of the inward Na+ current that generates the action potential, but is not present at significant levels in other tissues. Consequently, mutations of SCN4A encoding NaV1.4 produce pure skeletal muscle phenotypes that now include six allelic disorders: sodium channel myotonia, paramyotonia congenita, hyperkalemic periodic paralysis, hypokalemic periodic paralysis, congenital myasthenia, and congenital myopathy with hypotonia. Mutation-specific alternations of NaV1.4 function explain the mechanistic basis for the diverse phenotypes and identify opportunities for strategic intervention to modify the burden of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aickin CC, Betz WJ, Harris GL (1989) Intracellular chloride and the mechanism for its accumulation in rat lumbrical muscle. J Physiol 411:437–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold WD, Feldman DH, Ramirez S, He L, Kassar D, Quick A, Klassen TL, Lara M, Nguyen J, Kissel JT, Lossin C, Maselli RA (2015) Defective fast inactivation recovery of Nav 1.4 in congenital myasthenic syndrome. Ann Neurol 77:840–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brancati F, Valente EM, Davies NP, Sarkozy A, Sweeney MG, LoMonaco M, Pizzuti A, Hanna MG, Dallapiccola B (2003) Severe infantile hyperkalaemic periodic paralysis and paramyotonia congenita: broadening the clinical spectrum associated with the T704M mutation in SCN4A. J Neurol Neurosurg Psychiatry 74:1339–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GL, Harvey AM (1939) Congenital myotonia in the goat. Brain 62:341–363

    Article  CAS  Google Scholar 

  • Caldwell JH, Campbell DT, Beam KG (1986) Na channel distribution in vertebrate skeletal muscle. J Gen Physiol 87:907–932

    Article  CAS  PubMed  Google Scholar 

  • Calhoun JD, Isom LL (2014) The role of non-pore-forming beta subunits in physiology and pathophysiology of voltage-gated sodium channels. Handb Exp Pharmacol 221:51–89

    Article  CAS  PubMed  Google Scholar 

  • Cannon SC (2010) Voltage-sensor mutations in channelopathies of skeletal muscle. J Physiol 588:1887–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SC (2015) Channelopathies of skeletal muscle excitability. Compr Physiol 5:761–790

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon SC (2016) When all is lost...a severe myopathy with hypotonia from sodium channel mutations. Brain 139:642–644

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon SC, Corey DP (1993) Loss of Na+ channel inactivation by anemone toxin (ATX II) mimics the myotonic state in hyperkalaemic periodic paralysis. J Physiol 466:501–520

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cannon SC, Strittmatter SM (1993) Functional expression of sodium channel mutations identified in families with periodic paralysis. Neuron 10:317–326

    Article  CAS  PubMed  Google Scholar 

  • Cannon SC, Brown RH Jr, Corey DP (1991) A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation. Neuron 6:619–626

    Article  CAS  PubMed  Google Scholar 

  • Cannon SC, Brown RH Jr, Corey DP (1993a) Theoretical reconstruction of myotonia and paralysis caused by incomplete inactivation of sodium channels. Biophys J 65:270–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SC, McClatchey AI, Gusella JF (1993b) Modification of the Na+ current conducted by the rat skeletal muscle alpha subunit by coexpression with a human brain beta subunit. Pflugers Arch 423:155–157

    Article  CAS  PubMed  Google Scholar 

  • Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B (2013) Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J Gen Physiol 142:101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen T, Nielsen OB, Clausen JD, Pedersen TH, Hayward LJ (2011) Na+,K+−pump stimulation improves contractility in isolated muscles of mice with hyperkalemic periodic paralysis. J Gen Physiol 138:117–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrochano S, Mannikko R, Joyce PI, McGoldrick P, Wettstein J, Lassi G, Raja Rayan DL, Blanco G, Quinn C, Liavas A, Lionikas A, Amior N, Dick J, Healy EG, Stewart M, Carter S, Hutchinson M, Bentley L, Fratta P, Cortese A, Cox R, Brown SD, Tucci V, Wackerhage H, Amato AA, Greensmith L, Koltzenburg M, Hanna MG, Acevedo-Arozena A (2014) Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis. Brain 137:3171–3185

    Article  PubMed  PubMed Central  Google Scholar 

  • Cummins TR, Sigworth FJ (1996) Impaired slow inactivation in mutant sodium channels. Biophys J 71:227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummins TR, Zhou J, Sigworth FJ, Ukomadu C, Stephan M, Ptacek LJ, Agnew WS (1993) Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis. Neuron 10:667–678

    Article  CAS  PubMed  Google Scholar 

  • DiFranco M, Vergara JL (2011) The Na conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers. J Gen Physiol 138:393–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel AG, Ohno K, Sine SM (2003) Neurological diseases: sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci 4:339–352

    Article  CAS  PubMed  Google Scholar 

  • Featherstone DE, Richmond JE, Ruben PC (1996) Interaction between fast and slow inactivation in SkM1 sodium channels. Biophys J 71:3098–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Featherstone DE, Fujimoto E, Ruben PC (1998) A defect in skeletal muscle sodium channel deactivation exacerbates hyperexcitability in human paramyotonia congenita. J Physiol 506(3):627–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis DG, Rybalchenko V, Struyk A, Cannon SC (2011) Leaky sodium channels from voltage sensor mutations in periodic paralysis, but not paramyotonia. Neurology 76:1635–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Struyk A, Markin V, Cannon S (2011) Gating behaviour of sodium currents in adult mouse muscle recorded with an improved two-electrode voltage clamp. J Physiol 589:525–546

    Article  CAS  PubMed  Google Scholar 

  • Gadsby DC, Cranefield PF (1977) Two levels of resting potential in cardiac Purkinje fibers. J Gen Physiol 70:725–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallaher J, Bier M, Siegenbeek van Heukelom J (2009) The role of chloride transport in the control of the membrane potential in skeletal muscle – theory and experiment. Biophys Chem 143:18–25

    Article  CAS  PubMed  Google Scholar 

  • Gellens ME, George AL Jr, Chen LQ, Chahine M, Horn R, Barchi RL, Kallen RG (1992) Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci 89:554–558

    Article  CAS  PubMed  Google Scholar 

  • George AL Jr, Komisarof J, Kallen RG, Barchi RL (1992) Primary structure of the adult human skeletal muscle voltage-dependent sodium channel. Ann Neurol 31:131–137

    Article  CAS  PubMed  Google Scholar 

  • Geukes Foppen RJ, van Mil HG, Siegenbeek van Heukelom J (2002) Effects of chloride transport on bistable behaviour of the membrane potential in mouse skeletal muscle. J Physiol 542:181–191

    Article  CAS  PubMed  Google Scholar 

  • Gosselin-Badaroudine P, Delemotte L, Moreau A, Klein ML, Chahine M (2012) Gating pore currents and the resting state of Nav1.4 voltage sensor domains. Proc Natl Acad Sci U S A 109:19250–19255

    Article  PubMed  PubMed Central  Google Scholar 

  • Green D, George A, Cannon S (1998) Human sodium channel gating defects caused by missense mutations in S6 segments associated with myotonia: S804F and V1293I. J Physiol 510:685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habbout K, Poulin H, Rivier F, Giuliano S, Sternberg D, Fontaine B, Eymard B, Morales RJ, Echenne B, King L, Hanna MG, Mannikko R, Chahine M, Nicole S, Bendahhou S (2016) A recessive Nav1.4 Mutation underlies congenital myasthenic syndrome with periodic paralysis. Neurology 86:161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward LJ, Brown RH Jr, Cannon SC (1996) Inactivation defects caused by myotonia-associated mutations in the sodium channel III-IV linker. J Gen Physiol 107:559–576

    Article  CAS  PubMed  Google Scholar 

  • Hayward LJ, Brown RH Jr, Cannon SC (1997) Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis. Biophys J 72:1204–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward LJ, Sandoval GM, Cannon SC (1999) Defective slow inactivation of sodium channels contributes to familial periodic paralysis. Neurology 52:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Hayward LJ, Kim JS, Lee MY, Zhou H, Kim JW, Misra K, Salajegheh M, Wu FF, Matsuda C, Reid V, Cros D, Hoffman EP, Renaud JM, Cannon SC, Brown RH (2008) Targeted mutation of mouse skeletal muscle sodium channel produces myotonia and potassium-sensitive weakness. J Clin Invest 118:1437–1449

    PubMed  PubMed Central  CAS  Google Scholar 

  • Heine R, Pika U, Lehmann-Horn F (1993) A novel SCN4A mutation causing myotonia aggravated by cold and potassium. Hum Mol Genet 2:1349–1353

    Article  CAS  PubMed  Google Scholar 

  • Horga A, Raja Rayan DL, Matthews E, Sud R, Fialho D, Durran SC, Burge JA, Portaro S, Davis MB, Haworth A, Hanna MG (2013) Prevalence study of genetically defined skeletal muscle channelopathies in England. Neurology 80:1472–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Liu M, Yan SF, Yan N (2017) Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell 8:401–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau H, Walsh K, Goldin AL, Catterall WA (1992) Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science 256:839–842

    Article  CAS  PubMed  Google Scholar 

  • Jaimovich E, Venosa RA, Shrager P, Horowicz P (1976) Density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle. J Gen Physiol 67:399–416

    Article  CAS  PubMed  Google Scholar 

  • Jurkat-Rott K, Mitrovic N, Hang C, Kouzmekine A, Iaizzo P, Herzog J, Lerche H, Nicole S, Vale-Santos J, Chauveau D, Fontaine B, Lehmann-Horn F (2000) Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc Natl Acad Sci U S A 97:9549–9554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurkat-Rott K, Weber MA, Fauler M, Guo XH, Holzherr BD, Paczulla A, Nordsborg N, Joechle W, Lehmann-Horn F (2009) K+-dependent paradoxical membrane depolarization and Na+ overload, major and reversible contributors to weakness by ion channel leaks. Proc Natl Acad Sci U S A 106:4036–4041

    Article  PubMed  PubMed Central  Google Scholar 

  • Jurkat-Rott K, Holzherr B, Fauler M, Lehmann-Horn F (2010) Sodium channelopathies of skeletal muscle result from gain or loss of function. Pflugers Arch 460:239–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly P, Yang WS, Costigan D, Farrell MA, Murphy S, Hardiman O (1997) Paramyotonia congenita and hyperkalemic periodic paralysis associated with a met 1592 Val substitution in the skeletal muscle sodium channel alpha subunit – a large kindred with a novel phenotype. Neuromuscul Disord 7:105–111

    Article  CAS  PubMed  Google Scholar 

  • Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79:1317–1372

    Article  CAS  PubMed  Google Scholar 

  • Lehmann-Horn F, Kuther G, Ricker K, Grafe P, Ballanyi K, Rüdel R (1987) Adynamia episodica hereditaria with myotonia: a non-inactivating sodium current and the effect of extracellular pH. Muscle Nerve 10:363–374

    Article  CAS  PubMed  Google Scholar 

  • Lehmann-Horn F, Rüdel R, Jurkat-Rott K (2004) Nondystrophic myotonias and periodic paralyses. In: Engel AG, Franzini-Armstrong C (eds) Myology. McGraw-Hill, New York, pp 1257–1300

    Google Scholar 

  • Lerche H, Heine R, Pika U, George AL Jr, Mitrovic N, Browatzki M, Weiss T, Rivet-Bastide M, Franke C, Lomonaco M, Ricker K, Lehmann-Horn F (1993) Human sodium channel myotonia: slowed channel inactivation due to substitutions for a glycine within the III-IV linker. J Physiol 470:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews E, Tan SV, Fialho D, Sweeney MG, Sud R, Haworth A, Stanley E, Cea G, Davis MB, Hanna MG (2008) What causes paramyotonia in the United Kingdom? Common and new SCN4A mutations revealed. Neurology 70:50–53

    Article  CAS  PubMed  Google Scholar 

  • Matthews E, Labrum R, Sweeney MG, Sud R, Haworth A, Chinnery PF, Meola G, Schorge S, Kullmann DM, Davis MB, Hanna MG (2009) Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurology 72:1544–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClatchey AI, McKenna-Yasek D, Cros D, Worthen HG, Kuncl RW, DeSilva SM, Cornblath DR, Gusella JF, Brown RH Jr (1992) Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel. Nat Genet 2:148–152

    Article  CAS  PubMed  Google Scholar 

  • McClatchey AI, Cannon SC, Slaugenhaupt SA, Gusella JF (1993) The cloning and expression of a sodium channel beta 1-subunit cDNA from human brain. Hum Mol Genet 2:745–749

    Article  CAS  PubMed  Google Scholar 

  • Mi W, Rybalchenko V, Cannon SC (2014) Disrupted coupling of gating charge displacement to Na+ current activation for DIIS4 mutations in hypokalemic periodic paralysis. J Gen Physiol 144:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller TM, Dias da Silva MR, Miller HA, Kwiecinski H, Mendell JR, Tawil R, McManis P, Griggs RC, Angelini C, Servidei S, Petajan J, Dalakas MC, Ranum LP, Fu YH, Ptacek LJ (2004) Correlating phenotype and genotype in the periodic paralyses. Neurology 63:1647–1655

    Article  CAS  PubMed  Google Scholar 

  • Mitrovic N, George AL Jr, Lerche H, Wagner S, Fahlke C, Lehmann-Horn F (1995) Different effects on gating of three myotonia-causing mutations in the inactivation gate of the human muscle sodium channel. J Physiol 487:107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau A, Gosselin-Badaroudine P, Chahine M (2014) Molecular biology and biophysical properties of ion channel gating pores. Q Rev Biophys 47:364–388

    Article  CAS  PubMed  Google Scholar 

  • Palade PT, Barchi RL (1977) Characteristics of the chloride conductance in muscle fibers of the rat diaphragm. J Gen Physiol 69:325–342

    Article  CAS  PubMed  Google Scholar 

  • Rogart RB, Regan LJ (1985) Two types of sodium channel with tetrodotoxin sensitivity and insensitivity detected in denervated mammalian skeletal muscle. Brain Res 329:314–318

    Article  CAS  PubMed  Google Scholar 

  • Rüdel R, Lehmann-Horn F (1985) Membrane changes in cells from myotonia patients. Physiol Rev 65:310–356

    Article  PubMed  Google Scholar 

  • Rüdel R, Ricker K, Lehmann-Horn F (1993) Genotype-phenotype correlations in human skeletal muscle sodium channel diseases. Arch Neurol 50:1241–1248

    Article  PubMed  Google Scholar 

  • Rudolph JA, Spier SJ, Byrns G, Rojas CV, Bernoco D, Hoffman EP (1992) Periodic paralysis in quarter horses: a sodium channel mutation disseminated by selective breeding. Nat Genet 2:144–147

    Article  CAS  PubMed  Google Scholar 

  • Ruff RL (1994) Slow Na+ channel inactivation must be disrupted to evoke prolonged depolarization-induced paralysis. Biophys J 66:542–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruff RL (1999) Insulin acts in hypokalemic periodic paralysis by reducing inward rectifier K+ current. Neurology 53:1556–1563

    Article  CAS  PubMed  Google Scholar 

  • Siegenbeek van Heukelom J (1991) Role of the anomalous rectifier in determining membrane potentials of mouse muscle fibres at low extracellular K+. J Physiol 434:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simoncini L, Stuhmer W (1987) Slow sodium channel inactivation in rat fast-twitch muscle. J Physiol 383:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RR, Tan SV, Hanna MG, Robb SA, Clarke A, Jungbluth H (2014) Mutations in SCN4A: a rare but treatable cause of recurrent life-threatening laryngospasm. Pediatrics 134:e1447–e1450

    Article  PubMed  Google Scholar 

  • Sokolov S, Scheuer T, Catterall WA (2005) Ion permeation through a voltage-sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 47:183–189

    Article  CAS  PubMed  Google Scholar 

  • Sokolov S, Scheuer T, Catterall WA (2007) Gating pore current in an inherited ion channelopathy. Nature 446:76–78

    Article  CAS  PubMed  Google Scholar 

  • Starace DM, Bezanilla F (2001) Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker k+ channel. J Gen Physiol 117:469–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starace DM, Bezanilla F (2004) A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427:548–553

    Article  CAS  PubMed  Google Scholar 

  • Starace DM, Stefani E, Bezanilla F (1997) Voltage-dependent proton transport by the voltage sensor of the shaker K+ channel. Neuron 19:1319–1327

    Article  CAS  PubMed  Google Scholar 

  • Sternberg D, Maisonobe T, Jurkat-Rott K, Nicole S, Launay E, Chauveau D, Tabti N, Lehmann-Horn F, Hainque B, Fontaine B (2001) Hypokalaemic periodic paralysis type 2 caused by mutations at codon 672 in the muscle sodium channel gene SCN4A. Brain 124:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Struyk AF, Cannon SC (2007) A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore. J Gen Physiol 130:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struyk AF, Cannon SC (2008) Paradoxical depolarization of Ba2+-treated muscle exposed to low extracellular K+: insights into resting potential abnormalities in hypokalemic paralysis. Muscle Nerve 37:326–337

    Article  CAS  PubMed  Google Scholar 

  • Struyk AF, Scoggan KA, Bulman DE, Cannon SC (2000) The human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation. J Neurosci 20:8610–8617

    Article  CAS  PubMed  Google Scholar 

  • Struyk AF, Markin VS, Francis D, Cannon SC (2008) Gating pore currents in DIIS4 mutations of NaV1.4 associated with periodic paralysis: saturation of ion flux and implications for disease pathogenesis. J Gen Physiol 132:447–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stühmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

    Article  PubMed  Google Scholar 

  • Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) A gating charge transfer center in voltage sensors. Science 328:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tombola F, Pathak MM, Isacoff EY (2005) Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45:379–388

    Article  CAS  PubMed  Google Scholar 

  • Trimmer JS, Cooperman SS, Tomiko SA, Zhou J, Crean SM, Boyle MB, Kallen RG, Sheng Z, Barchi RL, Sigworth FJ, Goodman RH, Agnew WS, Mandel G (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3:33–49

    Article  CAS  PubMed  Google Scholar 

  • Tsujino A, Maertens C, Ohno K, Shen XM, Fukuda T, Harper CM, Cannon SC, Engel AG (2003) Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci U S A 100:7377–7382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhou J, Todorovic SM, Feero WG, Barany F, Conwit R, Hausmanowa-Petrusewicz I, Fidzianska A, Arahata K, Wessel HB, Sillen A, Marks HG, Hartlage P, Galloway G, Ricker K, Lehmann-Horn F, Hayakawa H, Hoffman EP (1993) Molecular genetic and genetic correlations in sodium channelopathies: lack of founder effect and evidence for a second gene. Am J Hum Genet 52:1074–1084

    PubMed  PubMed Central  CAS  Google Scholar 

  • West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc Natl Acad Sci 89:10910–10914

    Article  CAS  PubMed  Google Scholar 

  • Wood ML, Freites JA, Tombola F, Tobias DJ (2017) Atomistic modeling of ion conduction through the voltage-sensing domain of the shaker K+ ion channel. J Phys Chem B 121:3804–3812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu FF, Gordon E, Hoffman EP, Cannon SC (2005) A C-terminal skeletal muscle sodium channel mutation associated with myotonia disrupts fast inactivation. J Physiol 565:371–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Mi W, Burns DK, Fu Y, Gray HF, Struyk AF, Cannon SC (2011) A sodium channel knockin mutant (NaV1.4-R669H) mouse model of hypokalemic periodic paralysis. J Clin Invest 121:4082–4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Mi W, Hernandez-Ochoa EO, Burns DK, Fu Y, Gray HF, Struyk AF, Schneider MF, Cannon SC (2012) A calcium channel mutant mouse model of hypokalemic periodic paralysis. J Clin Invest 122:4580–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Mi W, Cannon SC (2013) Bumetanide prevents transient decreases in muscle force in murine hypokalemic periodic paralysis. Neurology 80:1110–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Mi W, Fu Y, Struyk A, Cannon SC (2016) Mice with an NaV1.4 sodium channel null allele have latent myasthenia, without susceptibility to periodic paralysis. Brain 139:1688–1699

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang JS, Sladky JT, Kallen RG, Barchi RL (1991) TTX-sensitive and TTX-insensitive sodium channel mRNA transcripts are independently regulated in adult skeletal muscle after denervation. Neuron 7:421–427

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Ji S, Zhou M, Ptacek LJ, Barchi RL, Horn R, George AL Jr (1994) Sodium channel mutations in paramyotonia congenita exhibit similar biophysical phenotypes in vitro. Proc Natl Acad Sci 91:12785–12789

    Article  CAS  PubMed  Google Scholar 

  • Zaharieva I, Thor M, Oates E, Karnebeek C, Hendson G, Blom E, Witting N, Rasmussen M, Gabbett M, Ravenscroft G, Sframeli M, Sutterlin K, Sarkozy A, D’Argenzio L Hartley E Matthews M, Pitt J, Vissing M, Bellegaard C, Krarup A, Slordhal H, Halvorson C, Ye LH, Zhang N, Lokken U, Werlauf M, Abdelsayed MR, Davis L, Feng R, Phadke CA, Sewry JE, Morgan NG, Laing H, Vallance P, Ruben MG, Hanna S, Lewis EJ, Kamsteeg RM, Mutoni F (2016) Recessive loss-of-function SCN4A mutations associated with a novel phenotype of congenital myopathy. Brain 139:674–691

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Cannon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cannon, S.C. (2017). Sodium Channelopathies of Skeletal Muscle. In: Chahine, M. (eds) Voltage-gated Sodium Channels: Structure, Function and Channelopathies. Handbook of Experimental Pharmacology, vol 246. Springer, Cham. https://doi.org/10.1007/164_2017_52

Download citation

Publish with us

Policies and ethics