Skip to main content

Mesenchymal Stem Cell Therapy for the Treatment of Heart Failure Caused by Ischemic or Non-ischemic Cardiomyopathy: Immunosuppression and Its Implications

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 243))

Abstract

HF patients with signs and symptoms of worsening heart failure (HF), despite optimal medical therapy, have a poor prognosis. The pathways contributing to HF are multiple, probably accounting, in part, for current treatment approaches not being more effective. Stem cells, particularly mesenchymal stem cells (MSCs), have a broad range of activities, making them particularly interesting candidates for a new HF therapeutic. This review presents an overview of the studies examining the efficacy of stem cell studies administered to HF patients, focusing mainly on MSCs. It examines the issues surrounding autologous vs. allogenic stem cells, the results of different routes of administration, and implications deriving from the belief that for stem cells to be effective, they must engraft in the myocardium and exert local effects. Since intravenous administration of stem cells leads to sparse cardiac engraftment, stem cell delivery strategies have uniformly involved catheter-based delivery systems. This becomes problematic in a disease that will almost certainly require delivery of the therapeutic throughout the course of the disease. Importantly, it appears that a critical contributing cause of the progressive cardiac dysfunction experienced by HF patients is the existence of a persistent inflammatory response. Since MSCs exert potent anti-inflammatory effects through paracrine mechanisms, it is possible that intravenous delivery of MSCs may be therapeutically effective. If this concept is valid, it could lead to a transformational change in stem cell delivery strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32(3):252–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartunek J, Behfar A, Dolatabadi D et al (2013) Cardiopoietic stem cell therapy in heart failure: the C-CURE (cardiopoietic stem cell therapy in heart failure) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 61(23):2329–2338

    Article  PubMed  Google Scholar 

  • Bartunek J, Terzic A, Davison BA et al (2016) Cardiopoietic cell therapy for advanced ischemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J

    Google Scholar 

  • Ben-Mordechai T, Holbova R, Landa-Rouben N et al (2013) Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. J Am Coll Cardiol 62(20):1890–1901

    Article  PubMed  Google Scholar 

  • Bolli R, Chugh AR, D’Amario D et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857

    Article  PubMed  PubMed Central  Google Scholar 

  • Briasoulis A, Androulakis E, Christophides T, Tousoulis D (2016) The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Fail Rev 21(2):169–176

    Article  CAS  PubMed  Google Scholar 

  • Butler J, Epstein SE, Greene SJ et al (2017) Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: safety and efficacy results of a phase II-a randomized trial. Circ Res 120(2):332–340

    Article  CAS  PubMed  Google Scholar 

  • Can A, Ulus AT, Cinar O et al (2015) Human umbilical cord mesenchymal stromal cell transplantation in myocardial ischemia (HUC-HEART trial). A study protocol of a phase 1/2, controlled and randomized trial in combination with coronary artery bypass grafting. Stem Cell Rev 11(5):752–760

    Article  PubMed  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    Article  CAS  PubMed  Google Scholar 

  • Carbone F, Nencioni A, Mach F, Vuilleumier N, Montecucco F (2013) Pathophysiological role of neutrophils in acute myocardial infarction. Thromb Haemost 110(3):501–514

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Liu Z, Tian N et al (2006) Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol 18(11):552–556

    PubMed  Google Scholar 

  • Chin SP, Poey AC, Wong CY et al (2011) Intramyocardial and intracoronary autologous bone marrow-derived mesenchymal stromal cell treatment in chronic severe dilated cardiomyopathy. Cytotherapy 13(7):814–821

    Article  CAS  PubMed  Google Scholar 

  • Chinnadurai R, Ng S, Velu V, Galipeau J (2015) Challenges in animal modelling of mesenchymal stromal cell therapy for inflammatory bowel disease. World J Gastroenterol 21(16):4779–4787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107(25):3133–3140

    Article  CAS  PubMed  Google Scholar 

  • Deftereos S, Giannopoulos G, Panagopoulou V et al (2014) Anti-inflammatory treatment with colchicine in stable chronic heart failure: a prospective, randomized study. JACC Heart Fail 2(2):131–137

    Article  PubMed  Google Scholar 

  • Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 103(16):2055–2059

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Leri A (2008) Aging and disease as modifiers of efficacy of cell therapy. Circ Res 102(11):1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106(13):4057–4065

    Article  CAS  PubMed  Google Scholar 

  • Emami H, Singh P, MacNabb M et al (2015) Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc Imaging 8(2):121–130

    Article  PubMed  Google Scholar 

  • Fisher SA, Doree C, Mathur A, Taggart DP, Martin-Rendon E (2016) Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev 12:CD007888

    PubMed  Google Scholar 

  • Freyman T, Polin G, Osman H et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27(9):1114–1122

    Article  PubMed  Google Scholar 

  • Gheorghiade M, Abraham WT, Albert NM et al (2006) Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure. JAMA 296(18):2217–2226

    Article  CAS  PubMed  Google Scholar 

  • Gnecchi M, He H, Liang OD et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11(4):367–368

    Article  CAS  PubMed  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golpanian S, El-Khorazaty J, Mendizabal A et al (2015) Effect of aging on human mesenchymal stem cell therapy in ischemic cardiomyopathy patients. J Am Coll Cardiol 65(2):125–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Gyongyosi M, Wojakowski W, Navarese EP, Moye LA (2016) Meta-analyses of human cell-based cardiac regeneration therapies: controversies in meta-analyses results on cardiac cell-based regenerative studies. Circ Res 118(8):1254–1263

    Article  PubMed  PubMed Central  Google Scholar 

  • Hare JM, Fishman JE, Gerstenblith G et al (2012) Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308(22):2369–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El-Khorazaty J, Khan A, Mushtaq M, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Alfonso CE, Valasaki K, Pujol MV, Golpanian S, Ghersin E, Fishman JE, Pattany P, Gomes SA, Delgado C, Miki R, Abuzeid F, Vidro-Casiano M, Premer C, Medina A, Porras V, Hatzistergos KE, Anderson E, Mendizabal A, Mitrani R, Heldman AW (2017) Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J Am Coll Cardiol 69(5):526–537. doi:10.1016/j.jacc.2016.11.009

    Article  PubMed  Google Scholar 

  • Heldman AW, DiFede DL, Fishman JE et al (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311(1):62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, Weber C, Soehnlein O, Steffens S (2016) Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J. doi:10.1093/eurheartj/ehw002

    Google Scholar 

  • Ismahil MA, Hamid T, Bansal SS, Patel B, Kingery JR, Prabhu SD (2014) Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ Res 114(2):266–282

    Article  CAS  PubMed  Google Scholar 

  • Kelkar AA, Butler J, Schelbert EB et al (2015) Mechanisms Contributing to the Progression of ischemic and nonischemic dilated cardiomyopathy: possible modulating effects of paracrine activities of stem cells. J Am Coll Cardiol 66(18):2038–2047

    Article  PubMed  Google Scholar 

  • Kinnaird T, Stabile E, Burnett MS, Epstein SE (2004a) Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res 95(4):354–363

    Article  CAS  PubMed  Google Scholar 

  • Kinnaird T, Stabile E, Burnett MS et al (2004b) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94(5):678–685

    Article  CAS  PubMed  Google Scholar 

  • Klyushnenkova E, Mosca JD, Zernetkina V et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Kubo H, Takamura K, Nagaya N, Ohgushi H (2016) The effect of serum on the proliferation of bone marrow-derived mesenchymal stem cells from aged donors and donors with/without chronic heart failure. J Tissue Eng Regen Med. doi:10.1002/term.2394

    PubMed  Google Scholar 

  • Lankester AC, Ball LM, Lang P, Handgretinger R (2010) Immunotherapy in the context of hematopoietic stem cell transplantation: the emerging role of natural killer cells and mesenchymal stromal cells. Pediatr Clin North Am 57(1):97–121

    Article  PubMed  Google Scholar 

  • Lorkeers SJ, Eding JE, Vesterinen HM et al (2015) Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: systematic review and meta-analysis of large animal studies. Circ Res 116(1):80–86

    Article  Google Scholar 

  • Lu W, Tang Y, Zhang Z et al (2015) Inhibiting the mobilization of Ly6C(high) monocytes after acute myocardial infarction enhances the efficiency of mesenchymal stromal cell transplantation and curbs myocardial remodeling. Am J Transl Res 7(3):587–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luger D, Lipinski MJ, Westman PC, Glover DK, Dimastromatteo J, Frias JC, Albelda MT, Sikora S, Kharazi A, Vertelov G, Waksman R, Epstein SE (2017) Intravenously-delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy. Circ Res. doi:10.1161/CIRCRESAHA.117.310599

    PubMed  Google Scholar 

  • Makkar RR, Smith RR, Cheng K et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Malliaras K, Li TS, Luthringer D et al (2012) Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation 125(1):100–112

    Article  CAS  PubMed  Google Scholar 

  • Malliaras K, Makkar RR, Smith RR et al (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (Cardiosphere-derived autologous stem cells to reverse ventricular dysfunction). J Am Coll Cardiol 63(2):110–122

    Article  PubMed  Google Scholar 

  • Mathiasen AB, Qayyum AA, Jorgensen E et al (2015) Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 36(27):1744–1753

    Article  CAS  PubMed  Google Scholar 

  • Menasche P, Hagege AA, Scorsin M et al (2001) Myoblast transplantation for heart failure. Lancet 357(9252):279–280

    Article  CAS  PubMed  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS et al (2015) Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation 131(4):e29–322

    Article  PubMed  Google Scholar 

  • Nahrendorf M, Frantz S, Swirski FK et al (2015) Imaging systemic inflammatory networks in ischemic heart disease. J Am Coll Cardiol 65(15):1583–1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Ong S, Rose NR, Cihakova D (2016) Natural killer cells in inflammatory heart disease. Clin Immunol 175:26–33

    Article  PubMed  Google Scholar 

  • Orn S, Ueland T, Manhenke C et al (2012) Increased interleukin-1beta levels are associated with left ventricular hypertrophy and remodelling following acute ST segment elevation myocardial infarction treated by primary percutaneous coronary intervention. J Intern Med 272(3):267–276

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Pan W, Ou Y et al (2016) Extracardiac-Lodged mesenchymal stromal cells propel an inflammatory response against myocardial infarction via paracrine effects. Cell Transplant 25(5):929–935

    Article  PubMed  Google Scholar 

  • Perin EC, Borow KM, Silva GV et al (2015) A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure. Circ Res 117(6):576–584

    Article  CAS  PubMed  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells 25(11):2896–2902

    Article  PubMed  Google Scholar 

  • Poncelet AJ, Vercruysse J, Saliez A, Gianello P (2007) Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation 83(6):783–790

    Article  PubMed  Google Scholar 

  • Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24(1):74–85

    Article  PubMed  Google Scholar 

  • Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339(6116):161–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Li TS, Suzuki R et al (2006) Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol 291(2):H886–H893

    Article  CAS  PubMed  Google Scholar 

  • Tao B, Cui M, Wang C et al (2015) Percutaneous intramyocardial delivery of mesenchymal stem cells induces superior improvement in regional left ventricular function compared with bone marrow mononuclear cells in porcine myocardial infarcted heart. Theranostics 5(2):196–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Telukuntla KS, Suncion VY, Schulman IH, Hare JM (2013) The advancing field of cell-based therapy: insights and lessons from clinical trials. J Am Heart Assoc 2(5):e000338

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Spoel TI, Gathier WA, Koudstaal S et al (2015) Autologous mesenchymal stem cells show more benefit on systolic function compared to bone marrow mononuclear cells in a porcine model of chronic myocardial infarction. J Cardiovasc Transl Res 8(7):393–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Vrtovec B, Poglajen G, Lezaic L et al (2013) Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy. Circulation 128(11 Suppl 1):S42–S49

    Article  CAS  PubMed  Google Scholar 

  • Walter DH, Haendeler J, Reinhold J et al (2005) Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 97(11):1142–1151

    Article  CAS  PubMed  Google Scholar 

  • Westman PC, Lipinski MJ, Luger D et al (2016) Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 67(17):2050–2060

    Article  PubMed  Google Scholar 

  • Wrigley BJ, Lip GY, Shantsila E (2011) The role of monocytes and inflammation in the pathophysiology of heart failure. Eur J Heart Fail 13(11):1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Yee K, Malliaras K, Kanazawa H et al (2014) Allogeneic cardiospheres delivered via percutaneous transendocardial injection increase viable myocardium, decrease scar size, and attenuate cardiac dilatation in porcine ischemic cardiomyopathy. PLoS One 9(12):e113805

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Lipinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lipinski, M.J., Luger, D., Epstein, S.E. (2017). Mesenchymal Stem Cell Therapy for the Treatment of Heart Failure Caused by Ischemic or Non-ischemic Cardiomyopathy: Immunosuppression and Its Implications. In: Bauersachs, J., Butler, J., Sandner, P. (eds) Heart Failure. Handbook of Experimental Pharmacology, vol 243. Springer, Cham. https://doi.org/10.1007/164_2017_23

Download citation

Publish with us

Policies and ethics