Skip to main content

A Role for Sigma Receptors in Stimulant Self-Administration and Addiction

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 244))

Abstract

Sigma receptors (σRs) are structurally unique proteins that function intracellularly as chaperones. Historically, σRs have been implicated as modulators of psychomotor stimulant effects and have at times been proposed as potential avenues for modifying stimulant abuse. However, the influence of ligands for σRs on the effects of stimulants, such as cocaine or methamphetamine, in various preclinical procedures related to drug abuse has been varied. The present paper reviews the effects of σR agonists and antagonists in three particularly relevant procedures: stimulant discrimination, place conditioning, and self-administration. The literature to date suggests limited σR involvement in the discriminative-stimulus effects of psychomotor stimulants, either with σR agonists substituting for the stimulant or with σR antagonists blocking stimulant effects. In contrast, studies of place conditioning suggest that administration of σR antagonists or down-regulation of σR protein can block the place conditioning induced by stimulants. Despite place conditioning results, selective σR antagonists are inactive in blocking the self-administration of stimulants. However, compounds binding to the dopamine transporter and blocking σRs can selectively decrease stimulant self-administration. Further, after self-administration of stimulants, σR agonists are self-administered, an effect not seen in subjects without that specific history. These findings suggest that stimulants induce unique changes in σR activity, and once established, the changes induced create redundant, and dopamine independent reinforcement pathways. Concomitant targeting of both dopaminergic pathways and σR proteins produces a selective antagonism of those pathways, suggesting new avenues for combination chemotherapies to specifically combat stimulant abuse.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The designation of σR ligands as agonists or antagonists stems from initial conceptions of these proteins as G-protein coupled receptors. As the understanding of these proteins has evolved and it has become clear that they function as intracellular chaperones, there remain observations that ligands for these proteins have different effects and some can block the actions of others (Hayashi and Su 2007; Katz et al. 2016). Most of the designations of these ligands as agonists or antagonists are less than definitive and accrue from in vivo observations that might not meet the strictest pharmacological standards. Absent more definitive results we will designate compounds as agonists or antagonists according to common usage within the scientific community. Complicating the picture are studies indicating subtypes of σRs. Where necessary in discussions herein we use designations of σR subtype selectivity based on radioligand binding results which are shown in Table 1.

    Table 1 Affinities of various compounds in specifically binding to σ1, or σ2 receptors, as well as subtype selectivity
  2. 2.

    Full explanations and in-depth analyses of conditioning processes involved in the various behavioral procedures described in this chapter may be found in Catania (2013).

  3. 3.

    In some instances, there is a third, middle, compartment in which subjects are placed at the start of sessions. Time spent in this starting compartment is not typically considered, as the critical variable is time spent in the drug-paired compartment.

References

  • Balster RL (1989) Substitution and antagonism in rats trained to discriminate (+)-N-allylnormetazocine from saline. J Pharmacol Exp Ther 249:749–756

    CAS  PubMed  Google Scholar 

  • Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl) 153:31–43

    Article  CAS  Google Scholar 

  • Barrett AC, Miller JR, Dohrmann JM, Caine SB (2004) Effects of dopamine indirect agonists and selective D1-like and D2-like agonists and antagonists on cocaine self-administration and food maintained responding in rats. Neuropharmacology 47(Suppl 1):256–273

    Article  CAS  PubMed  Google Scholar 

  • Bhutada PS, Mundhada YR, Ghodki YR, Chaware P, Dixit PV, Jain KS, Umathe SN (2012) Influence of sigma-1 receptor modulators on ethanol-induced conditioned place preference in the extinction-reinstatement model. Behav Pharmacol 23:25–33

    Article  CAS  PubMed  Google Scholar 

  • Brady KT, Balster RL, May EL (1982) Stereoisomers of N-allylnormetazocine: phencyclidine-like behavioral effects in squirrel monkeys and rats. Science 215:178–180

    Article  CAS  PubMed  Google Scholar 

  • Carr GD, Fibiger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: Liebman JM, Cooper J (eds) The neuropharmacological basis of reward, Topics in experimental psychopharmacology. Clarendon Press/Oxford University Press, New York, pp 264–319

    Google Scholar 

  • Catania AC (2013) Learning, 5th edn. Sloan Publishing, Cornwall on Hudson

    Google Scholar 

  • Chen SL, Hsu KY, Huang EY, Lu RB, Tao PL (2011) Low doses of dextromethorphan attenuate morphine-induced rewarding via the sigma-1 receptor at ventral tegmental area in rats. Drug Alcohol Depend 117:164–169

    Article  CAS  PubMed  Google Scholar 

  • Chou YC, Liao JF, Chang WY, Lin MF, Chen CF (1999) Binding of dimemorfan to sigma-1 receptor and its anticonvulsant and locomotor effects in mice, compared with dextromethorphan and dextrorphan. Brain Res 821:516–519

    Article  CAS  PubMed  Google Scholar 

  • Chu U et al (2015) The sigma-2 receptor and progesterone receptor membrane component 1 are different binding sites derived from independent genes. EBioMedicine 2:1806–1813

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen C, Sanger DJ (1994) Effects of sigma ligands on the cocaine discriminative stimulus in rats. NIDA Res Monogr 153:380

    Google Scholar 

  • Collins GT, Witkin JM, Newman AH, Svensson KA, Grundt P, Cao J, Woods JH (2005) Dopamine agonist-induced yawning in rats: a dopamine D3 receptor-mediated behavior. J Pharmacol Exp Ther 314:310–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Costa BR, He XS, Linders JT, Dominguez C, Gu ZQ, Williams W, Bowen WD (1993) Synthesis and evaluation of conformationally restricted N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamines at sigma receptors. 2. Piperazines, bicyclic amines, bridged bicyclic amines, and miscellaneous compounds. J Med Chem 36:2311–2320

    Article  PubMed  Google Scholar 

  • Engel SR, Purdy RH, Grant KA (2001) Characterization of discriminative stimulus effects of the neuroactive steroid pregnanolone. J Pharmacol Exp Ther 297:489–495

    CAS  PubMed  Google Scholar 

  • Fontanilla D, Hajipour AR, Pal A, Chu UB, Arbabian M, Ruoho AE (2008) Probing the steroid binding domain-like I (SBDLI) of the sigma-1 receptor binding site using N-substituted photoaffinity labels. Biochemistry 47:7205–7217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritz M, Klement S, El Rawas R, Saria A, Zernig G (2011) Sigma1 receptor antagonist BD1047 enhances reversal of conditioned place preference from cocaine to social interaction. Pharmacology 87:45–48

    Article  CAS  PubMed  Google Scholar 

  • Garcés-Ramírez L et al (2011) Sigma receptor agonists: receptor binding and effects on mesolimbic dopamine neurotransmission assessed by microdialysis in rats. Biol Psychiatry 69:208–217

    Article  PubMed  CAS  Google Scholar 

  • Gilmore DL, Liu Y, Matsumoto RR (2004) Review of the pharmacological and clinical profile of rimcazole CNS. Drug Rev 10:1–22

    CAS  Google Scholar 

  • Grabowski J, Shearer J, Merrill J, Negus SS (2004) Agonist-like, replacement pharmacotherapy for stimulant abuse and dependence. Addict Behav 29:1439–1464

    Article  PubMed  Google Scholar 

  • Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610

    Article  CAS  PubMed  Google Scholar 

  • Hiranita T, Soto PL, Newman AH, Katz JL (2009) Assessment of reinforcing effects of benztropine analogs and their effects on cocaine self-administration in rats: comparisons with monoamine uptake inhibitors. J Pharmacol Exp Ther 329:677–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiranita T, Soto PL, Tanda G, Katz JL (2010) Reinforcing effects of sigma-receptor agonists in rats trained to self-administer cocaine. J Pharmacol Exp Ther 332:515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiranita T et al (2011a) Decreases in cocaine self-administration with dual inhibition of the dopamine transporter and sigma receptors. J Pharmacol Exp Ther 339:662–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiranita T, Soto PL, Tanda G, Katz JL (2011b) Lack of cocaine-like discriminative-stimulus effects of sigma-receptor agonists in rats. Behav Pharmacol 22:525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiranita T, Mereu M, Soto PL, Tanda G, Katz JL (2013a) Self-administration of cocaine induces dopamine-independent self-administration of sigma agonists. Neuropsychopharmacology 38:605–615

    Article  CAS  PubMed  Google Scholar 

  • Hiranita T, Soto PL, Tanda G, Kopajtic TA, Katz JL (2013b) Stimulants as specific inducers of dopamine-independent sigma agonist self-administration in rats. J Pharmacol Exp Ther 347:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiranita T, Kohut SJ, Soto PL, Tanda G, Kopajtic TA, Katz JL (2014) Preclinical efficacy of N-substituted benztropine analogs as antagonists of methamphetamine self-administration in rats. J Pharmacol Exp Ther 348:174–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holtzman SG (1985) Drug discrimination studies. Drug Alcohol Depend 14:263–282

    Article  CAS  PubMed  Google Scholar 

  • Holtzman SG (1989) Opioid- and phencyclidine-like discriminative effects of ditolylguanidine, a selective sigma ligand. J Pharmacol Exp Ther 248:1054–1062

    CAS  PubMed  Google Scholar 

  • Holtzman SG (1993) Discriminative stimulus effects of the PCP/sigma-ligand (+)-N-allylnormetazocine in monkeys. Pharmacol Biochem Behav 44:349–355

    Article  CAS  PubMed  Google Scholar 

  • Holtzman SG (1994) Discriminative stimulus effects of dextromethorphan in the rat. Psychopharmacology (Berl) 116:249–254

    Article  CAS  Google Scholar 

  • Hong WC, Amara SG (2010) Membrane cholesterol modulates the outward-facing conformation of the dopamine transporter and alters cocaine binding. J Biol Chem 285:32616–32626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong WC, Amara SG, Su T-P (2013) Exploring the association of the dopamine transporter with the sigma-1 receptor. Soc Neurosci Abstr, Program No. 228.07

    Google Scholar 

  • Horan B, Gardner EL, Dewey SL, Brodie JD, Ashby CR Jr (2001) The selective sigma(1) receptor agonist, 1-(3,4-dimethoxyphenethyl)-4-(phenylpropyl)piperazine (SA4503), blocks the acquisition of the conditioned place preference response to (−)-nicotine in rats. Eur J Pharmacol 426:R1–R2

    Article  CAS  PubMed  Google Scholar 

  • Horton DB, Potter DM, Mead AN (2013) A translational pharmacology approach to understanding the predictive value of abuse potential assessments. Behav Pharmacol 24:410–436

    Article  CAS  PubMed  Google Scholar 

  • Husbands SM, Izenwasser S, Kopajtic T, Bowen WD, Vilner BJ, Katz JL, Newman AH (1999) Structure-activity relationships at the monoamine transporters and sigma receptors for a novel series of 9-[3-(cis-3, 5-dimethyl-1-piperazinyl)propyl]carbazole (rimcazole) analogues. J Med Chem 42:4446–4455

    Article  CAS  PubMed  Google Scholar 

  • Izenwasser S, Newman AH, Katz JL (1993) Cocaine and several sigma receptor ligands inhibit dopamine uptake in rat caudate-putamen. Eur J Pharmacol 243:201–205

    Article  CAS  PubMed  Google Scholar 

  • James ML et al (2012) New positron emission tomography (PET) radioligand for imaging sigma-1 receptors in living subjects. J Med Chem 55:8272–8282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz JL (1989) Drugs as reinforcers. In: Liebman JM, Cooper J (eds) The neuropharmacological basis of reward, Topics in experimental psychopharmacology. Clarendon Press/Oxford University Press, New York, pp 164–213

    Google Scholar 

  • Katz JL, Higgins ST (2003) The validity of the reinstatement model of craving and relapse to drug use. Psychopharmacology 168:21–30 [erattum: Psychopharmacology 2003 2168: 2244]

    Google Scholar 

  • Katz JL, Libby TA, Kopajtic T, Husbands SM, Newman AH (2003) Behavioral effects of rimcazole analogues alone and in combination with cocaine. Eur J Pharmacol 468:109–119

    Article  CAS  PubMed  Google Scholar 

  • Katz JL, Hiranita T, Kopajtic TA, Rice KC, Mesangeau C, Narayanan S, Abdelazeem AH, McCurdy CR (2016) Blockade of cocaine or sigma receptor agonist self-administration by subtype-selective sigma receptor antagonists. J Pharmacol Exp Ther 358:109–124

    Google Scholar 

  • Kim FJ, Kovalyshyn I, Burgman M, Neilan C, Chien CC, Pasternak GW (2010) Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding. Mol Pharmacol 77:695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitaichi K, Numauchi A, Hasegawa T, Furukawa H, Nabeshima T (1995) Effects of phencyclidine on the condition place preference. Folia Pharmacol Jpn 105:61P

    Google Scholar 

  • Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP, Bonci A (2013) Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 152:236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lever JR et al (2016) Cocaine occupancy of sigma1 receptors and dopamine transporters in mice. Synapse 70:98–111

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Goodwin SJ, Khoshbouei H (2012) Sigma-1 receptor interacts with the dopamine transporter and methamphetamine increases the frequency of this interaction. Soc Neurosci Abstr, Program No. 42.19

    Google Scholar 

  • Liu X, Banister SD, Christie MJ, Banati R, Meikle S, Coster MJ, Kassiou M (2007a) Trishomocubanes: novel sigma ligands modulate cocaine-induced behavioural effects. Eur J Pharmacol 555:37–42

    Google Scholar 

  • Liu Y, Yu Y, Shaikh J, Pouw B, Daniels A, Chen G, Matsumoto R (2007b) σ receptors and drug abuse. In: Sigma receptors. Springer, US, pp 315–336

    Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    CAS  PubMed  Google Scholar 

  • Martin BR, Katzen JS, Woods JA, Tripathi HL, Harris LS, May EL (1984) Stereoisomers of [3H]-N-allylnormetazocine bind to different sites in mouse brain. J Pharmacol Exp Ther 231:539–544

    CAS  PubMed  Google Scholar 

  • Martin-Fardon R, Maurice T, Aujla H, Bowen WD, Weiss F (2007) Differential effects of sigma1 receptor blockade on self-administration and conditioned reinstatement motivated by cocaine vs natural reward. Neuropsychopharmacology 32:1967–1973

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto RR, Bowen WD, Tom MA, Vo VN, Truong DD, De Costa BR (1995) Characterization of two novel sigma receptor ligands: antidystonic effects in rats suggest sigma receptor antagonism. Eur J Pharmacol 280:301–310

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto RR, Hewett KL, Pouw B, Bowen WD, Husbands SM, Cao JJ, Hauck Newman A (2001) Rimcazole analogs attenuate the convulsive effects of cocaine: correlation with binding to sigma receptors rather than dopamine transporters. Neuropharmacology 41:878–886

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto RR, Li SM, Katz JL, Fantegrossi WE, Coop A (2011) Effects of the selective sigma receptor ligand, 1-(2-phenethyl)piperidine oxalate (AC927), on the behavioral and toxic effects of cocaine. Drug Alcohol Depend 118:40–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto RR, Nguyen L, Kaushal N, Robson MJ (2014) Sigma (sigma) receptors as potential therapeutic targets to mitigate psychostimulant effects. Adv Pharmacol 69:323–386

    Article  CAS  PubMed  Google Scholar 

  • Maurice T (2007) Cognitive effects of σ receptor ligands. In: Matsumoto RR, Bowen WD, Su TP (eds) Sigma receptors. Springer, New York, pp 237–271

    Chapter  Google Scholar 

  • Maurice T, Casalino M, Lacroix M, Romieu P (2003) Involvement of the sigma 1 receptor in the motivational effects of ethanol in mice. Pharmacol Biochem Behav 74:869–876

    Article  CAS  PubMed  Google Scholar 

  • Menkel M, Terry P, Pontecorvo M, Katz JL, Witkin JM (1991) Selective sigma ligands block stimulant effects of cocaine. Eur J Pharmacol 201:251–252

    Article  CAS  PubMed  Google Scholar 

  • Mésangeau C et al (2008) Conversion of a highly selective sigma-1 receptor-ligand to sigma-2 receptor preferring ligands with anticocaine activity. J Med Chem 51:1482–1486

    Article  PubMed  CAS  Google Scholar 

  • Mori A, Noda Y, Mamiya T, Miyamoto Y, Nakajima A, Furukawa H, Nabeshima T (2001) Phencyclidine-induced discriminative stimulus is mediated via phencyclidine binding sites on the N-methyl-D-aspartate receptor-ion channel complex, not via sigma(1) receptors. Behav Brain Res 119:33–40

    Article  CAS  PubMed  Google Scholar 

  • Mori T et al (2012) Sigma-1 receptor function is critical for both the discriminative stimulus and aversive effects of the kappa-opioid receptor agonist U-50488H. Addict Biol 17:717–724

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Rahmadi M, Yoshizawa K, Itoh T, Shibasaki M, Suzuki T (2014a) Inhibitory effects of SA4503 on the rewarding effects of abused drugs. Addict Biol 19:362–369

    Article  CAS  PubMed  Google Scholar 

  • Mori T et al (2014b) Differential substitution for the discriminative stimulus effects of 3,4-methylenedioxymethamphetamine and methylphenidate in rats. J Pharmacol Exp Ther 350:403–411

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima T, Kitaichi K, Noda Y (1996) Functional changes in neuronal systems induced by phencyclidine administration. Ann N Y Acad Sci 801:29–38

    Article  CAS  PubMed  Google Scholar 

  • Nam Y et al (2012) Dextromethorphan-induced psychotoxic behaviors cause sexual dysfunction in male mice via stimulation of sigma-1 receptors. Neurochem Int 61:913–922

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Yoshizawa K, Aoki K, Takagi M, Miyatake M, Suzuki T (2001a) A putative sigma1 receptor antagonist NE-100 attenuates the discriminative stimulus effects of ketamine in rats. Addict Biol 6:373–376

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Yoshizawa K, Nomura M, Aoki K, Suzuki T (2001b) Role of the NMDA receptor subunit in the expression of the discriminative stimulus effect induced by ketamine. Eur J Pharmacol 423:41–46

    Article  CAS  PubMed  Google Scholar 

  • Navarro G et al (2010) Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc Natl Acad Sci U S A 107:18676–18681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro G et al (2013) Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers. PLoS One 8, e61245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen EC, McCracken KA, Liu Y, Pouw B, Matsumoto RR (2005) Involvement of sigma (sigma) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies. Neuropharmacology 49:638–645

    Article  CAS  PubMed  Google Scholar 

  • Nicolaysen LC, Pan HT, Justice JB Jr (1988) Extracellular cocaine and dopamine concentrations are linearly related in rat striatum. Brain Res 456:317–323

    Article  CAS  PubMed  Google Scholar 

  • Northcutt AL et al (2015) DAT isn’t all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Mol Psychiatry 20:1525–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor EC, Chapman K, Butler P, Mead AN (2011) The predictive validity of the rat self-administration model for abuse liability. Neurosci Biobehav Rev 35:912–938

    Article  PubMed  CAS  Google Scholar 

  • Pal A, Hajipour AR, Fontanilla D, Ramachandran S, Chu UB, Mavlyutov T, Ruoho AE (2007) Identification of regions of the sigma-1 receptor ligand binding site using a novel photoprobe. Mol Pharmacol 72:921–933

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Chu UB, Ramachandran S, Grawoig D, Guo LW, Hajipour AR, Ruoho AE (2008) Juxtaposition of the steroid binding domain-like I and II regions constitutes a ligand binding site in the sigma-1 receptor. J Biol Chem 283:19646–19656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer CP, Mahen R, Schnell E, Djamgoz MB, Aydar E (2007) Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines. Cancer Res 67:11166–11175

    Article  CAS  PubMed  Google Scholar 

  • Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503:85–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettit HO, Pettit AJ (1994) Disposition of cocaine in blood and brain after a single pretreatment. Brain Res 651:261–268

    Article  CAS  PubMed  Google Scholar 

  • Picker M, Dykstra LA (1987) Comparison of the discriminative stimulus properties of U50,488 and morphine in pigeons. J Pharmacol Exp Ther 243:938–945

    CAS  PubMed  Google Scholar 

  • Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci U S A 92:12304–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmadi M, Mori T, Kanazawa M, Kubota H, Shibasaki M, Suzuki T (2013) Involvement of sigma 1 receptor in the SSRI-induced suppression of the methamphetamine-induced behavioral sensitization and rewarding effects in mice. Nihon Shinkei Seishin Yakurigaku Zasshi (Japanese Journal of Psychopharmacology) 33:49–56

    CAS  Google Scholar 

  • Reith ME et al (2015) Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 147:1–19

    Article  CAS  PubMed  Google Scholar 

  • Rodvelt KR, Lever SZ, Lever JR, Blount LR, Fan KH, Miller DK (2011a) SA4503 attenuates cocaine-induced hyperactivity and enhances methamphetamine substitution for a cocaine discriminative stimulus. Pharmacol Biochem Behav 97:676–682

    Article  CAS  PubMed  Google Scholar 

  • Rodvelt KR, Oelrichs CE, Blount LR, Fan KH, Lever SZ, Lever JR, Miller DK (2011b) The sigma receptor agonist SA4503 both attenuates and enhances the effects of methamphetamine. Drug Alcohol Depend 116:203–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romieu P, Martin-Fardon R, Maurice T (2000) Involvement of the sigma1 receptor in the cocaine-induced conditioned place preference. Neuroreport 11:2885–2888

    Article  CAS  PubMed  Google Scholar 

  • Romieu P, Phan VL, Martin-Fardon R, Maurice T (2002) Involvement of the sigma(1) receptor in cocaine-induced conditioned place preference: possible dependence on dopamine uptake blockade. Neuropsychopharmacology 26:444–455

    Article  CAS  PubMed  Google Scholar 

  • Romieu P, Martin-Fardon R, Bowen WD, Maurice T (2003) Sigma 1 receptor-related neuroactive steroids modulate cocaine-induced reward. J Neurosci 23:3572–3576

    CAS  PubMed  Google Scholar 

  • Romieu P, Meunier J, Garcia D, Zozime N, Martin-Fardon R, Bowen WD, Maurice T (2004) The sigma1 (sigma1) receptor activation is a key step for the reactivation of cocaine conditioned place preference by drug priming. Psychopharmacology (Berl) 175:154–162

    Article  CAS  Google Scholar 

  • Sage AS, Vannest SC, Fan KH, Will MJ, Lever SZ, Lever JR, Miller DK (2013) N-phenylpropyl-N′-(3-methoxyphenethyl)piperazine (YZ-185) attenuates the conditioned-rewarding properties of cocaine in mice. ISRN Pharmacol 2013:546314, 7 pp

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schenk S (2002) Effects of GBR 12909, WIN 35,428 and indatraline on cocaine self-administration and cocaine seeking in rats. Psychopharmacology (Berl) 160:263–270

    Article  CAS  Google Scholar 

  • Schmidt HR, Zheng S, Gurpinar E, Koehl A, Manglik A, Kruse AC (2016) Crystal structure of the human sigma1 receptor. Nature 532:527–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster CR, Johanson CE (1988) Relationship between the discriminative stimulus properties and subjective effects of drugs. In: Colpaert F, Balster RL (eds) Transduction mechanisms of drug stimuli. Springer, Berlin/Heidelberg, pp 161–175

    Chapter  Google Scholar 

  • Sharkey J, Glen KA, Wolfe S, Kuhar MJ (1988) Cocaine binding at sigma receptors. Eur J Pharmacol 149:171–174

    Article  CAS  PubMed  Google Scholar 

  • Shin EJ et al (2005) The dextromethorphan analog dimemorfan attenuates kainate-induced seizures via sigma1 receptor activation: comparison with the effects of dextromethorphan. Br J Pharmacol 144:908–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh L, Wong EH, Kesingland AC, Tricklebank MD (1990) Evidence against an involvement of the haloperidol-sensitive sigma recognition site in the discriminative stimulus properties of (+)-N-allylnormetazocine ((+)-SKF 10,047). Br J Pharmacol 99:145–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slifer BL, Balster RL (1983) Reinforcing properties of stereoisomers of the putative sigma agonists N-allylnormetazocine and cyclazocine in rhesus monkeys. J Pharmacol Exp Ther 225:522–528

    CAS  PubMed  Google Scholar 

  • Slifer BL, Dykstra LA (1987) Discriminative stimulus effects of N-allylnormetazocine in rats trained to discriminate a kappa from a sigma agonist. Life Sci 40:343–349

    Article  CAS  PubMed  Google Scholar 

  • Steinfels GF, Alberici GP, Tam SW, Cook L (1988) Biochemical, behavioral, and electrophysiologic actions of the selective sigma receptor ligand (+)-pentazocine. Neuropsychopharmacology 1:321–327

    CAS  PubMed  Google Scholar 

  • Su TP (1982) Evidence for sigma opioid receptor: binding of [3H]SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther 223:284–290

    CAS  PubMed  Google Scholar 

  • Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050

    Article  CAS  PubMed  Google Scholar 

  • Ujike H, Kanzaki A, Okumura K, Akiyama K, Otsuki S (1992a) Sigma (sigma) antagonist BMY 14802 prevents methamphetamine-induced sensitization. Life Sci 50:PL129–PL134

    CAS  PubMed  Google Scholar 

  • Ujike H, Okumura K, Zushi Y, Akiyama K, Otsuki S (1992b) Persistent supersensitivity of sigma receptors develops during repeated methamphetamine treatment. Eur J Pharmacol 211:323–328

    Article  CAS  PubMed  Google Scholar 

  • Ukai M, Mori E, Kameyama T (1997) Modulatory effects of morphine, U-50488H and 1,3-di-(2-tolyl)guanidine on cocaine-like discriminative stimulus in the rat using two-choice discrete-trial avoidance paradigm. Methods Find Exp Clin Pharmacol 19:541–546

    CAS  PubMed  Google Scholar 

  • Valchar M, Hanbauer I (1993) Comparison of [3H]WIN 35,428 binding, a marker for dopamine transporter, in embryonic mesencephalic neuronal cultures with striatal membranes of adult rats. J Neurochem 60:469–476

    Article  CAS  PubMed  Google Scholar 

  • Vanecek SA, Essman WD, Taylor DP, Woods JH (1998) Discriminative stimulus characteristics of BMY 14802 in the pigeon. J Pharmacol Exp Ther 284:1–9

    CAS  PubMed  Google Scholar 

  • Vidal-Torres A et al (2013) Sigma-1 receptor antagonism as opioid adjuvant strategy: enhancement of opioid antinociception without increasing adverse effects. Eur J Pharmacol 711:63–72

    Article  CAS  PubMed  Google Scholar 

  • Wang KH, Penmatsa A, Gouaux E (2015) Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521:322–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werling LL, Derbez AE, Nuwayhid SJ (2007) Modulation of classical neurotransmitter systems by σ receptors. In: Matsumoto RR, Bowen WD, Su TP (eds) Sigma receptors. Springer, New York, pp 195–214

    Chapter  Google Scholar 

  • Willetts J, Balster RL (1988) The discriminative stimulus effects of N-methyl-D-aspartate antagonists in phencyclidine-trained rats. Neuropharmacology 27:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Witkin JM, Terry P, Menkel M, Hickey P, Pontecorvo M, Ferkany J, Katz JL (1993) Effects of the selective sigma receptor ligand, 6-[6-(4-hydroxypiperidinyl)hexyloxy]-3-methylflavone (NPC 16377), on behavioral and toxic effects of cocaine. J Pharmacol Exp Ther 266:473–482

    CAS  PubMed  Google Scholar 

  • Woods J, Winger G, France C (1987) Reinforcing and discriminative stimulus effects of cocaine: analysis of pharmacological mechanisms. In: Fisher S, Raskin A, Uhlenhuth EH (eds) Cocaine: clinical and biobehavioral aspects. Oxford University Press, New York, pp 21–65

    Google Scholar 

  • Wu HE, Schwasinger ET, Terashvili M, Tseng LF (2007) dextro-Morphine attenuates the morphine-produced conditioned place preference via the sigma(1) receptor activation in the rat. Eur J Pharmacol 562:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YT, Kaushal N, Shaikh J, Wilson LL, Mesangeau C, McCurdy CR, Matsumoto RR (2010) A novel substituted piperazine, CM156, attenuates the stimulant and toxic effects of cocaine in mice. J Pharmacol Exp Ther 333:491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YT, Robson MJ, Szeszel-Fedorowicz W, Patel D, Rooney R, McCurdy CR, Matsumoto RR (2012) CM156, a sigma receptor ligand, reverses cocaine-induced place conditioning and transcriptional responses in the brain. Pharmacol Biochem Behav 101:174–180

    Article  CAS  PubMed  Google Scholar 

  • Young AM, Woods JH (1981) Maintenance of behavior by ketamine and related compounds in rhesus monkeys with different self-administration histories. J Pharmacol Exp Ther 218:720–727

    CAS  PubMed  Google Scholar 

  • Zernig G et al (2007) Explaining the escalation of drug use in substance dependence: models and appropriate animal laboratory tests. Pharmacology 80:65–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for the experiments originating in our laboratories was provided by the National Institute on Drug Abuse (NIDA) Intramural Research Program and by grants from the National Institute on Drug Abuse [Grant DA023205] and the National Institute of General Medical Sciences [Grant GM104932] to Christopher R. McCurdy. Takato Hiranita was supported in part by the NIDA IRP and by a fellowship from the Japan Society for the Promotion of Science. Weimin C. Hong was supported by startup funds from Butler University.

Subjects used in the studies published from the NIDA Intramural Research Program were maintained in facilities fully accredited by the American Association for the Accreditation of Laboratory Animal Care, and those experiments were conducted in accordance with the guidelines of the institute’s Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan L. Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Katz, J.L., Hiranita, T., Hong, W.C., Job, M.O., McCurdy, C.R. (2016). A Role for Sigma Receptors in Stimulant Self-Administration and Addiction. In: Kim, F., Pasternak, G. (eds) Sigma Proteins: Evolution of the Concept of Sigma Receptors. Handbook of Experimental Pharmacology, vol 244. Springer, Cham. https://doi.org/10.1007/164_2016_94

Download citation

Publish with us

Policies and ethics