Skip to main content

Hereditary Retinal Dystrophy

  • Chapter
  • First Online:
Pharmacologic Therapy of Ocular Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 242))

Abstract

As our understanding of the genetic basis for inherited retinal disease has expanded, gene therapy has advanced into clinical development. When the gene mutations associated with inherited retinal dystrophies were identified, it became possible to create animal models in which individual gene were altered to match the human mutations. The retina of these animals were then characterized to assess whether the mutated genes produced retinal phenotypes characteristic of disease-affected patients. Following the identification of a subpopulation of patients with the affected gene and the development of techniques for the viral gene transduction of retinal cells, it has become possible to deliver a copy of the normal gene into the retinal sites of the mutated genes. When this was performed in animal models of monogenic diseases, at an early stage of retinal degeneration when the affected cells remained viable, successful gene augmentation corrected the structural and functional lesions characteristic of the specific diseases in the areas of the retina that were successfully transduced. These studies provided the essential proof-of-concept needed to advance monogenic gene therapies into clinic development; these therapies include treatments for: Leber’s congenital amaurosis type 2, caused by mutations to RPE65, retinoid isomerohydrolase; choroideremia, caused by mutations to REP1, Rab escort protein 1; autosomal recessive Stargardt disease, caused by mutations to ABCA4, the photoreceptor-specific ATP-binding transporter; Usher 1B disease caused by mutations to MYO7A, myosin heavy chain 7; X-linked juvenile retinoschisis caused by mutations to RS1, retinoschisin; autosomal recessive retinitis pigmentosa caused by mutations to MERTK, the proto-oncogene tyrosine-protein kinase MER; Leber’s hereditary optic neuropathy caused by mutations to ND4, mitochondrial nicotinamide adenine dinucleotide ubiquinone oxidoreductase (complex I) subunit 4 and achromatopsia, caused by mutations to CNGA3, cyclic nucleotide-gated channel alpha 3 and CNGB3, cyclic nucleotide-gated channel beta 3. This review includes a tabulated summary of treatments for these monogenic retinal dystrophies that have entered into clinical development, as well as a brief summary of the preclinical data that supported their advancement into clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Safieh L, Alrashed M, Anazi S, Alkuraya H, Khan AO, Al-Owain M, Al-Zahrani J, Al-Abdi L, Hashem M, Al-Tarimi S (2013) Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. Genome Res 23:236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV, Pearce-Kelling SE, Anand V, Zeng Y, Maguire AM, Jacobson SG, Hauswirth WW, Bennett J (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28(1):92–95

    CAS  PubMed  Google Scholar 

  • Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J, Dejneka NS, Pearce-Kelling SE, Maguire AM, Palczewski K, Hauswirth WW, Jacobson SG (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12(6):1072–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre GD, Baldwin V, Pearce-Kelling S, Narfstrom K, Ray K, Acland GM (1998) Congenital stationary night blindness in the dog: common mutation in the RPE65 gene indicates founder effect. Mol Vis 4:23–29

    CAS  PubMed  Google Scholar 

  • Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein PS, Peiffer A, Zabriskie NA, Li Y, Hutchinson A, Dean M, Lupski JR, Leppert M (1997) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277(5333):1805–1807

    Article  CAS  PubMed  Google Scholar 

  • Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D, Kim SR, Maguire A, Rex TS, Di Vicino U, Cutillo L, Sparrow JR, Williams DS, Bennett J, Auricchio A (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118(5):1955–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand V, Barral DC, Zeng Y, Brunsmann F, Maguire AM, Seabra MC, Bennett J (2003) Gene therapy for choroideremia: in vitro rescue mediated by recombinant adenovirus. Vision Res 43:919–926

    Article  CAS  PubMed  Google Scholar 

  • Bainbridge JW, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, Georgiadis A, Mowat FM, Beattie SG, Gardner PJ, Feathers KL, Luong VA, Yzer S, Balaggan K, Viswanathan A, de Ravel TJ, Casteels I, Holder GE, Tyler N, Fitzke FW, Weleber RG, Nardini M, Moore AT, Thompson DA, Petersen-Jones SM, Michaelides M, van den Born LI, Stockman A, Smith AJ, Rubin G, Ali RR (2015) Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med 372:1887–1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Banin E, Gootwine E, Obolensky A, Ezra-Elia R, Ejzenberg A, Zelinger L, Honig H, Rosov A, Yamin E, Sharon D, Averbukh E, Hauswirth WW, Ofri R (2015) Gene augmentation therapy restores retinal function and visual behavior in a sheep model of CNGA3 achromatopsia. Mol Ther 23(9):1423–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baracca A, Solaini G, Sgarbi G, Lenaz G, Baruzzi A, Schapira AHV, Martinuzzi A, Carelli V (2005) Severe impairment of complex I-driven adenosine triphosphate synthesis in Leber hereditary optic neuropathy cybrids. Arch Neurol 62(5):730–736

    Article  PubMed  Google Scholar 

  • Bennett J, Ashtari M, Wellman J, Marshall KA, Cyckowski LL, Chung DC, McCague S, Pierce EA, Chen Y, Bennicelli JL, Zhu X, Ying G-S, Sun J, Wright JF, Auricchio A, Simonelli F, Shindler KS, Mingozzi F, High KA, Maguire AM (2012) AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 4(120):120ra15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennicelli J, Wright JF, Komaromy A, Jacobs JB, Hauck B, Zelenaia O, Mingozzi F, Hui D, Chung D, Rex TS, Wei Z, Qu G, Zhou S, Zeiss C, Arruda VR, Acland GM, Dell’Osso LF, High KA, Maguire AM, Bennett J (2008) Reversal of blindness in animal models of Leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther 16(3):458–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berson EL (2007) Long-term visual prognoses in patients with retinitis pigmentosa: the Ludwig von Sallmann lecture. Exp Eye Res 85(1):7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binley K, Widdowson P, Loader J, Kelleher M, Iqball S, Ferrige G, de Belin J, Carlucci M, Angell-Manning D, Hurst F, Ellis S, Miskin J, Fernandes A, Wong P, Allikmets R, Bergstrom C, Aaberg T, Yan J, Kong J, Gouras P, Prefontaine A, Vezina M, Bussieres M, Naylor S, Mitrophanous KA (2013) Transduction of photoreceptors with EIAV lentiviral vectors; safety and biodistribution of StarGen for Stargardt disease. Invest Ophthalmol Vis Sci 54(6):4061–4071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black A, Vasireddy V, Chung DC, Maguire AM, Gaddameedi R, Tolmachova T, Seabra M, Bennett J (2014) Adeno-associated virus 8-mediated gene therapy for choroideremia: preclinical studies in in vitro and in vivo models. J Gene Med 16:122–130

    Article  CAS  PubMed  Google Scholar 

  • Bourne MC, Campbell DA, Tansley K (1938) Hereditary degeneration of the rat retina. Br J Ophthalmol 22(10):613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun TA, Mullins RF, Wagner AH, Andorf JL, Johnston RM, Bakall BB, Deluca AP, Fishman GA, Lam BL, Weleber RG, Cideciyan AV, Jacobson SG, Sheffield VC, Tucker BA, Stone EM (2013) Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum Mol Genet 22(25):5136–5145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MD, Trounce IA, Jun AS, Allen JC, Wallace DC (2000) Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber’s hereditary optic neuropathy mitochondrial DNA mutation. J Biol Chem 275(51):39831–39836

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Conley SM, Naash MI (2009) RPE65: role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet 30(2):57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carelli V, La Morgia C, Valentino ML, Barboni P, Ross-Cisneros FN, Sadun AA (2009) Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. Biochim Biophys Acta 1787(5):518–528

    Article  CAS  PubMed  Google Scholar 

  • Carvalho LS, Xu J, Pearson RA, Smith AJ, Bainbridge JW, Morris LM, Fliesler SJ, Ding X-Q, Ali RR (2011) Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum Mol Genet 20(16):3161–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacon-Camacho OF, Zenteno JC (2015) Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases 3(2):112–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vision Res 42(4):517–525

    Article  CAS  PubMed  Google Scholar 

  • Charbel P, Bolz HJ, Ebermann I, Domeier E, Holz FG, Scholl HP (2009) Characterization of severe rod-cone dystrophy in a consanguineous family with a splice site mutation in the MERTK gene. Br J Ophthalmol 93:920–925

    Article  Google Scholar 

  • Chinnery PF, Andrews RM, Turnbull DM, Howell NN (2001) Leber hereditary optic neuropathy: does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation? Am J Med Genet 98:235–243

    Article  CAS  PubMed  Google Scholar 

  • Cideciyan AV, Jacobson SG, Beltran WA, Sumaroka A, Swider AM, Iwabe S, Roman AJ, Olivares MB, Schwartz SB, Komaromy AM, Hauswirth WW, Aguirre GD (2013) Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci U S A 110(6):E517–E525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon TJ, Deng WT, Erger K, Cossette T, Pang J, Ryals R, Clement N, Cleaver B, McDoom I, Boye SE, Peden MC, Sherwood MB, Abernathy CR, Alkuraya FS, Boye SL, Hauswirth WW (2013) Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum Gene Ther Clin Dev 24(1):23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cwerman-Thibault H, Augustin S, Lechauve C, Ayache J, Ellouze S, Sahel JA, Corral-Debrinski M (2015) Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. Mol Ther Methods Clin Dev 2:15003. doi:10.1038/mtm.2015.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9(4):645–651

    Article  PubMed  Google Scholar 

  • Dong B, Nakai H, Xiao W (2010) Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18(1):87–92

    Article  CAS  PubMed  Google Scholar 

  • Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, Sandberg MA, Berson EL (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343(6256):364–366

    Article  CAS  PubMed  Google Scholar 

  • Duan D, Yue Y, Engelhardt JF (2001) Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 4(4):383–391

    Article  CAS  PubMed  Google Scholar 

  • Duncan JL, LaVail MM, Yasumura D, Matthes MT, Yang H, Trautmann N, Chappelow AV, Feng W, Earp WS, Matsushima GK, Vollrath D (2003) An RCS-like retinal dystrophy phenotype in mer knockout mice. Invest Ophthalmol Vis Sci 44:826–838

    Article  PubMed  Google Scholar 

  • Dyka FM, Boye SL, Chiodo VA, Hauswirth WW, Boye SE (2014) Dual adeno-associated virus vectors result in efficient in vitro and in vivo expression of an oversized gene, MYO7A. Hum Gene Ther Methods 25(2):166–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards TL, Jolly JK, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Black GC, Webster AR, Lotery AJ, Holder GE, Xue K, Downe SM, Simunovic MP, Seabra MC, MacLaren RE (2016) Visual acuity after retinal gene therapy for choroideremia. N Engl J Med 374(20):1996–1998

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellouze S, Augustin S, Bouaita A, Bonnet C, Simonutti M, Forster V, Picaud S, Sahel JA, Corral-Debrinski M (2008) Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet 83(3):373–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farber DB, Lolley RN (1976) Enzymic basis for cyclic GMP accumulation in degenerative photoreceptor cells of mouse retina. J Cyclic Nucleotide Res 2(3):139–148

    CAS  PubMed  Google Scholar 

  • Feathers KL, Lyubarsky AL, Khan NW, Teofilo K, Swaroop A, Williams DS, Pugh EN Jr, Thompson DA (2008) Nrl-knockout mice deficient in Rpe65 fail to synthesize 11-cis retinal and cone outer segments. Invest Ophthalmol Vis Sci 49(3):1126–1135

    Article  PubMed  PubMed Central  Google Scholar 

  • Feuer WJ, Schiffman JC, Davis JL, Porciatti V, Gonzalez P, Koilkonda RD, Yuan H, Lalwani A, Lam BL, Guy J (2016) Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology 123(3):558–570

    Article  PubMed  Google Scholar 

  • Freund PR, Sergeev YV, MacDonald IM (2016) Analysis of a large choroideremia dataset does not suggest a preference for inclusion of certain genotypes in future trials of gene therapy. Mol Genet Genomic Med 4(3):344–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG, Apfelstedt-Sylla E, Vollrath D (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 26:270–271

    Article  CAS  PubMed  Google Scholar 

  • Ghazi NG, Abboud EB, Nowilaty SR, Alkuraya H, Alhommadi A, Cai H, Hou R, Deng W-T, Boye SL, Almaghamsi A, Saikhan FA, Al-Dhibi H, Birch D, Chung C, Colak D, LaVail MM, Vollrath D, Erger K, Wang W, Conlon T, Zhang K, Hauswirth W, Alkuraya FS (2016) Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet 135(3):327–343

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Yue Y, Lai Y, Duan D (2008) A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol Ther 16(1):124–130

    Article  CAS  PubMed  Google Scholar 

  • Gibbs D, Kitamoto J, Williams DS (2003) Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc Natl Acad Sci U S A 100(11):6481–6486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SD (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374(6517):62–64

    Article  CAS  PubMed  Google Scholar 

  • Graham DK, Dawson TL, Mullaney DL, Snodgrass HR, Earp HS (1994) Cloning and mRNA expression analysis of a novel human protooncogene, c-mer. Cell Growth Differ 5(6):647–657

    CAS  PubMed  Google Scholar 

  • Haer-Wigman L, Newman H, Leibu R, Bax NM, Baris HN, Rizel L, Banin E, Massarweh A, Roosing S, Lefeber DJ, Zonneveld-Vrieling MN, Isakov O, Shomron N, Sharon D, Den Hollander AI, Hoyng CB, Cremers FPM, Ben-Yosef T (2015) Non-syndromic retinitis pigmentosa due to mutations in the mucopolysaccharidosis type IIIC gene, heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT). Hum Mol Genet 24(13):3742–3751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hafezi F, Grimm C, Simmen B, Wenzel A, Reme C (2000) Molecular ophthalmology: an update on animal models for retinal degenerations and dystrophies. Br J Ophthalmol 84(8):922–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto T, Gibbs D, Lillo C, Azarian SM, Legacki E, Zhang XM, Yang XJ, Williams DS (2007) Lentiviral gene replacement therapy of retinas in a mouse model for Usher syndrome type 1B. Gene Ther 14(7):584–594

    Article  CAS  PubMed  Google Scholar 

  • Jacobson SG, Boye SL, Aleman TS, Conlon TJ, Zeiss CJ, Roman AJ, Cideciyan AV, Schwartz SB, Komaromy AM, Doobrajh M, Cheung AY, Sumaroka A, Pearce-Kelling SE, Aguirre GD, Kaushal S, Maguire AM, Flotte TR, Hauswirth WW (2006) Safety in nonhuman primates of ocular AAV2-RPE65, a candidate treatment for blindness in Leber congenital amaurosis. Hum Gene Ther 17(8):845–858

    Article  CAS  PubMed  Google Scholar 

  • Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, Peden MC, Aleman TS, Boye SL, Sumaroka A, Conlon TJ, Calcedo R, Pang JJ, Erger KE, Olivares MB, Mullins CL, Swider M, Kaushal S, Feuer WJ, Iannaccone A, Fishman GA, Stone EM, Byrne BJ, Hauswirth WW (2012) Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130(1):9–24

    Article  CAS  PubMed  Google Scholar 

  • Jacobson SG, Cideciyan AV, Roman AJ, Sumaroka A, Schwartz SB, Heon E, Hauswirth WW (2015) Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med 372:1920–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen A, Min SH, Molday LL, Tanimoto N, Seeliger MW, Hauswirth WW, Molday RS, Weber BH (2008) Effect of late-stage therapy on disease progression in AAV-mediated rescue of photoreceptor cells in the retinoschisin-deficient mouse. Mol Ther 16(6):1010–1017

    Article  CAS  PubMed  Google Scholar 

  • Kaminski WE, Piehler A, Wenzel JJ (2006) ABC A-subfamily transporters: structure, function and disease. Biochim Biophys Acta 1762(5):510–524

    Article  CAS  PubMed  Google Scholar 

  • Khan NW, Wissinger B, Kohl S, Sieving PA (2007) CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. Invest Ophthalmol Vis Sci 48:3864–3871

    Article  PubMed  Google Scholar 

  • Kimberling WJ, Hildebrand MS, Shearer AE, Jensen ML, Halder JA, Trzupek K, Cohn ES, Weleber RG, Stone EM, Smith RJ (2010) Frequency of Usher syndrome in two pediatric populations: implications for genetic screening of deaf and hard of hearing children. Genet Med 12:512–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirches E (2011) LHON: mitochondrial mutations and more. Curr Genomics 12:44–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjellstrom S, Bush RA, Zeng Y, Takada Y, Sieving PA (2007) Retinoschisin gene therapy and natural history in the Rs1h-KO mouse: long-term rescue from retinal degeneration. Invest Ophthalmol Vis Sci 48:3837–3845

    Article  PubMed  Google Scholar 

  • Kohl S, Baumann B, Broghammer M, Jagle H, Sieving P, Kellner U, Spegal R, Anastasi M, Zrenner E, Sharpe LT, Wissinger B (2000) Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum Mol Genet 9:2107–2116

    Article  CAS  PubMed  Google Scholar 

  • Kohl S, Varsanyi B, Antunes GA, Baumann B, Hoyng CB, Jägle H, Rosenberg T, Kellner U, Lorenz B, Salati R, Jurklies B, Farkas A, Andreasson S, Weleber RG, Jacobson SG, Rudolph G, Castellan C, Dollfus H, Legius E, Anastasi M, Bitoun P, Lev D, Sieving PA, Munier FL, Zrenner E, Sharpe LT, Cremers FP, Wissinger B (2005) CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur J Hum Genet 13(3):302–308

    Article  CAS  PubMed  Google Scholar 

  • Koilkonda R, Yu H, Talla V, Porciatti V, Feuer WJ, Hauswirth WW, Chiodo V, Erger KE, Boye SL, Lewin AS, Conlon TJ, Renner L, Neuringer M, Detrisac C, Guy J (2014) LHON gene therapy vector prevents visual loss and optic neuropathy induced by G11778A mutant mitochondrial DNA: biodistribution and toxicology profile. Invest Ophthalmol Vis Sci 55(12):7739–7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komaromy AM, Alexander JJ, Rowlan JS, Garcia MM, Chiodo VA, Kaya A, Tanaka JC, Acland GM, Hauswirth WW, Aguirre GD (2010) Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet 19:2581–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong J, Kim SR, Binley K, Pata I, Doi K, Mannik J, Zernant-Rajang J, Kan O, Iqball S, Naylor S, Sparrow JR, Gouras P, Allikmets R (2008) Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther 15(19):1311–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai Y, Yue Y, Duan D (2010) Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome > or = 8.2 kb. Mol Ther 18(1):75–79

    Article  CAS  Google Scholar 

  • LaVail MM, Yasumura D, Matthes MT, Yang H, Hauswirth WW, Deng WT, Vollrath D (2016) Gene therapy for MERTK-associated retinal degenerations. Adv Exp Med Biol 854:487–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Meur G, Stieger K, Smith AJ, Weber M, Deschamps JY, Nivard D, Mendes-Madeira A, Provost N, Péréon Y, Cherel Y, Ali RR, Hamel C, Moullier P, Rolling F (2007) Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther 14:292–303

    Article  CAS  PubMed  Google Scholar 

  • Lentz J, Keats BJB (2016) Usher syndrome type I. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews® [Internet]. University of Washington, Seattle, pp 1993–2016 10 Dec 1999 [Updated 19 May 2016]

    Google Scholar 

  • Li J, Sun W, Wang B, Xiao X, Liu XQ (2008) Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther 19(9):958–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Miller R, Han PY, Pang J, Dinculescu A, Chiodo V, Hauswirth WW (2008) Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis 14:1760–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Kong F, Li X, Dai X, Liu X, Zheng Q, Wu R, Zhou X, Lü F, Chang B, Li Q, Hauswirth WW, Qu J, Pang JJ (2009) Gene therapy following subretinal AAV5 vector delivery is not affected by a previous intravitreal AAV5 vector administration in the partner eye. Mol Vis 15:267–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Libby RT, Steel KP (2001) Electroretinographic anomalies in mice with mutations in Myo7a, the gene involved in human Usher syndrome type 1B. Invest Ophthalmol Vis Sci 42(3):770–778

    CAS  PubMed  Google Scholar 

  • Lin CS, Sharpley MS, Fan W, Waymire KG, Sadun AA, Carelli V, Ross-Cisneros FN, Baciu P, Sung E, McManus MJ, Pan BX, Gil DW, Macgregor GR, Wallace DC (2012) Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proc Natl Acad Sci U S A 109(49):20065–20070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H-Z, Pang C-Y, Chen S-P, Tsai R-K (2012) Vision improvement in a Taiwanese (Han Chinese) family with Leber’s hereditary optic neuropathy. Kaohsiung J Med Sci 28:679–682

    Article  PubMed  Google Scholar 

  • Liu X, Ondek B, Williams DS (1998) Mutant myosin VIIa causes defective melanosome distribution in the RPE of shaker-1 mice. Nat Genet 19(2):117–118

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Udovichenko IP, Brown SD, Steel KP, Williams DS (1999) Myosin VIIa participates in opsin transport through the photoreceptor cilium. J Neurosci 19(15):6267–6274

    CAS  PubMed  Google Scholar 

  • MacDonald IM, Mah DY, Ho YK, Lewis RA, Seabra MC (1998) A practical diagnostic test for choroideremia. Ophthalmology 105(9):1637–1640

    Article  CAS  PubMed  Google Scholar 

  • MacDonald IM, Hume S, Chan S, Sebra MC (2003) Choroideremia. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews® [Internet]. University of Washington, Seattle, pp 1993–2016

    Google Scholar 

  • Mackay DS, Henderson RH, Sergouniotis PI, Li Z, Moradi P, Holder GE, Waseem N, Bhattacharya SS, Aldahmesh MA, Alkuraya FS, Meyer B, Webster AR, Moore AT (2010) Novel mutations in MERTK associated with childhood onset rod- cone dystrophy. Mol Vis 16:369–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, Clark KR, During MJ, Cremers FPM, Black GCM, Lotery AJ, Downes SM, Webster AR, Seabra MC (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383(9923):1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda A, Maeda T, Golczak M, Palczewski K (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem 283(39):26684–26693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MaGuire W (2005) Human gene transfer protocol #740 – a Phase I safety study in subjects with Leber Congenital Amaurosis (LCA) using adeno-associated viral vector to deliver the gene for human RPE65 into the Retinal Pigment Epithelium (RPE). FDA OBA Presentation

    Google Scholar 

  • Man PY, Griffiths PG, Brown DT, Howell N, Turnbull DM, Chinnery PF (2003) The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am J Hum Genet 72(2):333–339

    Article  CAS  Google Scholar 

  • Man PYW, Turnbull DM, Chinnery PF (2002) Leber hereditary optic neuropathy. J Med Genet 39:162–169

    Article  PubMed Central  Google Scholar 

  • Michalakis S, Mühlfriedel R, Tanimoto N, Krishnamoorthy V, Koch S, Fischer MD, Becirovic E, Bai L, Huber G, Beck SC, Fahl E, Buning H, Paquet-Durand F, Zong X, Gollisch T, Biel M, Seeliger MW (2010) Restoration of cone vision in the CNGA3−/− mouse model of congenital complete lack of cone photoreceptor function. Mol Ther 18(12):2057–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molday LL, Hicks D, Sauer CG, Weber BH, Molday RS (2001) Expression of X-linked retinoschisis protein RS1 in photoreceptor and bipolar cells. Invest Ophthalmol Vis Sci 42:816–825

    CAS  PubMed  Google Scholar 

  • Molday RS, Kellner U, Weber BHF (2012) X-linked juvenile retinoschisis: Clinical diagnosis, genetic analysis, and molecular mechanisms. Prog Retin Eye Res 3:195–212 195e212

    Article  CAS  Google Scholar 

  • Narfstrom K, Vaegan, Katz M, Bragadottir R, Rakoczy EP, Seeliger M (2005) Assessment of structure and function over a 3-year period after gene transfer in RPE65-/- dogs. Doc Ophthalmol 111:39–48

    Article  PubMed  Google Scholar 

  • Orhan E, Dalkara D, Neuillé M, Lechauve C, Michiels C, Picaud S, Léveillard T, Sahel JA, Naash MI, Lavail MM, Zeitz C, Audo I (2015) Genotypic and phenotypic characterization of P23H line 1 rat model. PLoS One 10(5):e0127319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pang JJ, Chang B, Hawes NL, Hurd RE, Davisson MT, Li J, Noorwez SM, Malhotra R, McDowell JH, Kaushal S, Hauswirth WW, Nusinowitz S, Thompson DA, Heckenlively JR (2005) Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol Vis 11:152–162

    CAS  PubMed  Google Scholar 

  • Park TK, Wu Z, Kjellstrom S, Zeng Y, Bush RA, Sieving PA, Colosi P (2009) Intravitreal delivery of AAV8 retinoschisin results in cell type-specific gene expression and retinal rescue in the Rs1-KO mouse. Gene Ther 16(7):916–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel N, Aldahmesh MA, Alkuraya H, Anazi S, Alsharif H, Khan AO, Sunker A, Al-Mohsen S, Abboud EB, Nowilaty SR, Alowain M, Al-Zaidan H, Al-Saud B, Alasmari A, Abdel-Salam GM, Abouelhoda M, Abdulwahab FM, Ibrahim N, Naim E, Al-Younes B, E AlMostafa A, AlIssa A, Hashem M, Buzovetsky O, Xiong Y, Monies D, Altassan N, Shaheen R, Al-Hazzaa SA, Alkuraya FS (2015) Expanding the clinical, allelic, and locus heterogeneity of retinal dystrophies. Genet Med 18(6):554–562

    Article  PubMed  CAS  Google Scholar 

  • Pearson RA, Hippert C, Graca AB, Barber AC (2014) Photoreceptor replacement therapy: challenges presented by the diseased recipient retinal environment. Vis Neurosci 31(4–5):333–344

    Article  PubMed  Google Scholar 

  • Peng C, Rich ED, Varnum MD (2004) Subunit configuration of heteromeric cone cyclic nucleotide-gated channels. Neuron 42:401–410

    Article  CAS  PubMed  Google Scholar 

  • Peng YW, Zallocchi M, Wang WM, Delimont D, Cosgrove D (2011) Moderate light-induced degeneration of rod photoreceptors with delayed transducin translocation in shaker1 mice. Invest Ophthalmol Vis Sci 52(9):6421–6427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrs-Silva H, Linden R (2014) Advances in gene therapy technologies to treat retinitis pigmentosa. Clin Ophthalmol 8:127–136

    PubMed  Google Scholar 

  • Puomila A, Hämäläinen P, Kivioja S, Savontaus ML, Koivumäki S, Huoponen K, Nikoskelainen E (2007) Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur J Hum Genet 15(10):1079–1089

    Article  PubMed  Google Scholar 

  • Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J (2007) The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Invest Ophthalmol Vis Sci 48:1–10

    Article  PubMed  Google Scholar 

  • Redmond TM, Yu S, Lee E, Bok D, Hamasaki D, Chen N, Goletz P, Ma JX, Crouch RK, Pfeifer K (1998) Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 20(4):344–351

    Article  CAS  PubMed  Google Scholar 

  • Reich SJ, Auricchio A, Hildinger M, Glover E, Maguire AM, Wilson JM, Bennett J (2003) Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene. Hum Gene Ther 14(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Rohrer B, Goletz P, Znoiko S, Ablonczy Z, Ma J-X, Redmond TM, Crouch RK (2003) Correlation of regenerable opsin with rod ERG signal Rpe65-/- mice during development and aging. Invest Ophthalmol Vis Sci 44:310–315

    Article  PubMed  Google Scholar 

  • Ross JW, Fernandez de Castro JP, Zhao J, Samuel M, Walters E, Rios C, Bray-Ward P, Jones BW, Marc RE, Wang W, Zhou L, Noel JM, McCall MA, DeMarco PJ, Prather RS, Kaplan HJ (2012) Generation of an inbred miniature pig model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 53(1):501–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahel J-A, Marazova K, Audo I (2015) Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a017111

    PubMed Central  Google Scholar 

  • Sala G, Trombin F, Beretta S, Tremolizzo L, Presutto P, Montopoli M, Fantin M, Martinuzzi A, Carelli V, Ferrarese C (2008) Antioxidants partially restore glutamate transport defect in Leber hereditary optic neuropathy cybrids. J Neurosci Res 86(15):3331–3337

    Article  CAS  PubMed  Google Scholar 

  • Sauer CG, Gehrig A, Warneke-Wittstock R, Marquardt A, Ewing CC, Gibson A, Lorenz B, Jurklies B, Weber BH (1997) Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat Genet 17:164–170

    Article  CAS  PubMed  Google Scholar 

  • Schindler EI, Nylen EL, Ko AC, Affatigato LM, Heggen AC, Wang K, Sheffield VC, Stone EM (2010) Deducing the pathogenic contribution of recessive ABCA4 alleles in an outbred population. Hum Mol Genet 19(19):3693–3701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KH, Johns DR, Heher KL, Miller NR (1993) Heteroplasmy in Leber’s hereditary optic neuropathy. Arch Ophthalmol 111(11):1486–1490

    Article  CAS  PubMed  Google Scholar 

  • Song D, Grieco S, Li Y, Hunter Chu AS, Zhao L, Song Y, DeAngelis RA, Shi LY, Liu Q, Pierce EA, Nishina PM, Lambris JD, Dunaief JL (2014) A murine rp1 missense mutation causes protein mislocalization and slowly progressive photoreceptor degeneration. Am J Pathol 184(10):2721–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowden JC (2015) Developing stem cell therapy for retinal dystrophies. Cilia 4(Suppl 1):O19

    Article  PubMed Central  Google Scholar 

  • Sun H, Nathans J (2000) ABCR: rod photoreceptor-specific ABC transporter responsible for Stargardt disease. Methods Enzymol 315:879–897

    Article  CAS  PubMed  Google Scholar 

  • Tada A, Wada Y, Sato H, Itabashi T, Kawamura M, Tamai M, Nishida K (2006) Screening of the MERTK gene for mutations in Japanese patients with autosomal recessive retinitis pigmentosa. Mol Vis 12:441–444

    CAS  PubMed  Google Scholar 

  • Takada Y, Vijayasarathy C, Zeng Y, Kjellstrom S, Bush RA, Sieving PA (2008) Synaptic pathology in retinoschisis knockout (Rs1-/y) mouse retina and modification by rAAV-Rs1 gene delivery. Invest Ophthalmol Vis Sci 49:3677–3686

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamayo ML, Bernal JE, Tamayo GE, Frias JL, Alvira G, Vergara O, Rodriguez V, Uribe JI, Silva JC (1991) Usher syndrome: results of a screening program in Colombia. Clin Genet 40:304–311

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Wu S, Liu Q, Xie J, Zhang J, Han D, Lu Q, Lu Q (2015) Mertk deficiency affects macrophage directional migration via disruption of cytoskeletal organization. PLoS One 10(1):e0117787

    Article  PubMed  PubMed Central  Google Scholar 

  • Tantri A, Vrabec TR, Cu-Unjieng A, Frost A, Annesley WH Jr, Donoso LA (2004) X-linked retinoschisis: a clinical and molecular genetic review. Surv Ophthalmol 49:214–230

    Article  PubMed  Google Scholar 

  • Thompson DA, Gyürüs P, Fleischer LL, Bingham EL, McHenry CL, Apfelstedt-Sylla E, Zrenner E, Lorenz B, Richards JE, Jacobson SG, Sieving PA, Gal A (2000) Genetics and phenotypes of RPE65 mutations in inherited retinal degeneration. Invest Ophthalmol Vis Sci 41(13):4293–4299

    CAS  PubMed  Google Scholar 

  • Thompson DA, Ali RR, Banin E, Branham KE, Flannery JG, Gamm DM, Hauswirth WW, Heckenlively JR, Iannaccone A, Jayasundera KT, Khan NW, Molday RS, Pennesi ME, Reh TA, Weleber RG, Zacks DN, Monaciano Consortium (2015) Advancing therapeutic strategies for inherited retinal degeneration: recommendations from the Monaciano Symposium. Invest Ophthalmol Vis Sci 56(2):918–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolmachova T, Anders R, Abrink M, Bugeon L, Dallman MJ, Futter CE, Ramalho JS, Tonagel F, Tanimoto N, Seeliger MW, Huxley C, Seabra MC (2006) Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. J Clin Invest 116(2):386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travis GH, Golczak M, Moise AR, Palczewski K (2007) Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmacol Toxicol 47:469–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker BA, Mullins RF, Stone EM (2014) Stem cells for investigation and treatment of inherited retinal disease. Hum Mol Genet 23(R1):R9–R16

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Hurk JA, Hendriks W, van de Pol DJ, Oerlemans F, Jaissle G, Rüther K, Kohler K, Hartmann J, Zrenner E, van Bokhoven H, Wieringa B, Ropers HH, Cremers FP (1997) Mouse choroideremia gene mutation causes photoreceptor cell degeneration and is not transmitted through the female germline. Hum Mol Genet 6:851–858

    PubMed  Google Scholar 

  • Vasireddy V, Mills JA, Gaddameedi R, Basner-Tschakarjan E, Kohnke M, Black AD, Alexandrov K, Zhou S, Maguire AM, Chung DC, Mac H, Sullivan L, Gadue P, Bennicelli JL, French DL, Bennett J (2013) AAV-mediated gene therapy for choroideremia: preclinical studies in personalized models. PLoS One 8(5):e61396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A (2015) Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 8(2):109–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vesk A, Nilsson SEG, Narfstrom K, Gal A (1999) Retinal dystrophy of Swedish briard/briard-beagle dogs is due to a 4-bp deletion in RPE65. Genomics 57:57–61

    Article  Google Scholar 

  • Vollrath D, Feng W, Duncan JL, Yasumura D, D’Cruz PM, Chappelow A, Matthes MT, Kay MA, LaVail MM (2001) Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci U S A 98(22):12584–12589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weleber RG, Francis PJ, Trzupek KM et al (2013) Leber congenital amaurosis. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews® [Internet]. University of Washington, Seattle, pp 1993–2016

    Google Scholar 

  • Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Wissinger B, Gamer D, Jägle H, Giorda R, Marx T, Mayer S, Tippmann S, Broghammer M, Jurklies B, Rosenberg T, Jacobson SG, Sener EC, Tatlipinar S, Hoyng CB, Castellan C, Bitoun P, Andreasson S, Rudolph G, Kellner U, Lorenz B, Wolff G, Verellen-Dumoulin C, Schwartz M, Cremers FP, Apfelstedt-Sylla E, Zrenner E, Salati R, Sharpe LT, Kohl S (2001) CNGA3 mutations in hereditary cone photoreceptor disorders. Am J Hum Genet 69(4):722–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18(1):80–86

    Article  CAS  PubMed  Google Scholar 

  • Yanoff M, Duker JS (2008) Ophthalmology, 3rd edn. Mosby, Edinburgh, pp 560–562

    Google Scholar 

  • Zallocchi M, Binley K, Lad Y, Ellis S, Widdowson P, Iqball S, Scripps V, Kelleher M, Loader J, Miskin J, Peng Y-W, Wang W-M, Cheung L, Delimont D, Mitrophanous KA, Cosgrove D (2014) EIAV-based retinal gene therapy in the mouse model for Usher syndrome type 1B: development of UshStat. PLoS One 9(4):e94272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng Y, Takada Y, Kjellstrom S, Hiriyanna K, Tanikawa A, Wawrousek E, Smaoui N, Caruso R, Bush RA, Sieving PA (2004) RS-1 gene delivery to an adult Rs1h knockout mouse model restores ERG b-wave with reversal of the electronegative waveform of X-linked retinoschisis. Invest Ophthalmol Vis Sci 45:3279–3285

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Foundation Fighting Blindness, Columbia, Maryland, was extremely helpful during the writing of this review. Brian Mansfield, PhD and Stephen Rose, PhD generously shared their extensive knowledge of inherited retinal dystrophies and Brian Mansfield, PhD critically reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Hohman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Hohman, T.C. (2016). Hereditary Retinal Dystrophy. In: Whitcup, S., Azar, D. (eds) Pharmacologic Therapy of Ocular Disease. Handbook of Experimental Pharmacology, vol 242. Springer, Cham. https://doi.org/10.1007/164_2016_91

Download citation

Publish with us

Policies and ethics