Skip to main content

Guide to the Pharmacology of Mitochondrial Potassium Channels

  • Chapter
  • First Online:
Pharmacology of Mitochondria

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 240))

Abstract

This chapter provides a critical overview of the available literature on the pharmacology of mitochondrial potassium channels. In the first part, the reader is introduced to the topic, and eight known protein contributors to the potassium permeability of the inner mitochondrial membrane are presented. The main part of this chapter describes the basic characteristics of each channel type mentioned in the introduction. However, the most important and valuable information included in this chapter concerns the pharmacology of mitochondrial potassium channels. Several available channel modulators are critically evaluated and rated by suitability for research use. The last figure of this chapter shows the results of this evaluation at a glance. Thus, this chapter can be very useful for beginners in this field. It is intended to be a time- and resource-saving guide for those searching for proper modulators of mitochondrial potassium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bajgar R, Seetharaman S, Kowaltowski AJ, GArlid KD, Paucek P (2001) Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. J Biol Chem 276:33369–33374

    Article  CAS  PubMed  Google Scholar 

  • Bednarczyk P, Barker GD, Halestrap AP (2008) Determination of the rate of K(+) movement through potassium channels in isolated rat heart and liver mitochondria. Biochim Biophys Acta 1777:540–548

    Article  CAS  PubMed  Google Scholar 

  • Bednarczyk P, Kowalczyk JE, Beresewicz M et al (2010) Identification of a voltage-gated potassium channel in gerbil hippocampal mitochondria. Biochem Biophys Res Commun 397:614–620

    Article  CAS  PubMed  Google Scholar 

  • Bednarczyk P, Koziel A, Jarmuszkiewicz W, Szewczyk A (2013a) Large-conductance Ca2+-activated potassium channel in mitochondria of endothelial EA.hy926 cells. Am J Physiol Heart Circ Physiol 304:H1415–H1427

    Article  CAS  PubMed  Google Scholar 

  • Bednarczyk P, Wieckowski MR, Broszkiewicz M et al (2013b) Putative structural and functional coupling of the mitochondrial BKCa channel to the respiratory chain. PLoS One 8:e68125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancherini DV, Trabuco LG, Rebouças NA, Kowaltowski AJ (2003) ATP-sensitive K+ channels in renal mitochondria. Am J Physiol Renal Physiol 285:F1291–F1296

    Article  CAS  PubMed  Google Scholar 

  • Candia S, Garcia ML, Latorre R (1992) Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel. Biophys J 63:583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiandussi E, Petrussa E, Macrì F, Vianello A (2002) Modulation of a plant mitochondrial K+ ATP channel and its involvement in cytochrome c release. J Bioenerg Biomembr 34:177–184

    Article  CAS  PubMed  Google Scholar 

  • Chouchani ET, Pell VR, Gaude E et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435

    Google Scholar 

  • Contreras GF, Castillo K, Enrique N et al (2013) A BK (Slo1) channel journey from molecule to physiology. Channels (Austin) 7:442–458

    Google Scholar 

  • Costa ADT, Krieger MA (2009) Evidence for an ATP-sensitive K+ channel in mitoplasts isolated from Trypanosoma cruzi and Crithidia fasciculata. Int J Parasitol 39:955–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlem YA, Horn TFW, Buntinas L et al (2004) The human mitochondrial KATP channel is modulated by calcium and nitric oxide: a patch-clamp approach. Biochim Biophys Acta 1656:46–56

    Google Scholar 

  • Dale E, Staal RGW, Eder C, Möller T (2016) KCa 3.1-a microglial target ready for drug repurposing? Glia 64(10):1733–1741

    Article  PubMed  Google Scholar 

  • De Marchi U, Sassi N, Fioretti B et al (2009) Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium 45:509–516

    Article  PubMed  Google Scholar 

  • Debska G, Kicinska A, Skalska J et al (2002) Opening of potassium channels modulates mitochondrial function in rat skeletal muscle. Biochim Biophys Acta 1556:97–105

    Article  CAS  PubMed  Google Scholar 

  • Debska-Vielhaber G, Godlewski MM, Kicinska A et al (2009) Large-conductance K+ channel openers induce death of human glioma cells. J Physiol Pharmacol 60:27–36

    CAS  PubMed  Google Scholar 

  • Dolga AM, Netter MF, Perocchi F et al (2013) Mitochondrial small conductance SK2 channels prevent glutamate-induced oxytosis and mitochondrial dysfunction. J Biol Chem 288:10792–10804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolga AM, de Andrade A, Meissner L et al (2014) Subcellular expression and neuroprotective effects of SK channels in human dopaminergic neurons. Cell Death Dis 5:e999

    Google Scholar 

  • Escande D, Cavero I (1992) K+ channel openers and “natural” cardioprotection. Trends Pharmacol Sci 13:269–272

    Article  CAS  PubMed  Google Scholar 

  • Facundo HTF, Fornazari M, Kowaltowski AJ (2006) Tissue protection mediated by mitochondrial K+ channels. Biochim Biophys Acta 1762:202–212

    Article  CAS  PubMed  Google Scholar 

  • Foster DB, Ho AS, Rucker J et al (2012) Mitochondrial ROMK channel is a molecular component of mitoK(ATP). Circ Res 111:446–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvez A, Gimenez-Gallego G, Reuben JP et al (1990) Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J Biol Chem 265:11083–11090

    CAS  PubMed  Google Scholar 

  • Garlid KD (2000) Opening mitochondrial K(ATP) in the heart--what happens, and what does not happen. Basic Res Cardiol 95:275–279

    Article  CAS  PubMed  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V et al (1996) The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem 271:8796–8799

    Article  CAS  PubMed  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V et al (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels: possible mechanism of cardioprotection. Circ Res 81:1072–1082

    Article  CAS  PubMed  Google Scholar 

  • Gögelein H, Ruetten H, Albus U et al (2001) Effects of the cardioselective KATP channel blocker HMR 1098 on cardiac function in isolated perfused working rat hearts and in anesthetized rats during ischemia and reperfusion. Naunyn Schmiedebergs Arch Pharmacol 364:33–41

    Article  PubMed  Google Scholar 

  • Grover GJ, Atwal KS (2002) Pharmacologic profile of the selective mitochondrial-K(ATP) opener BMS-191095 for treatment of acute myocardial ischemia. Cardiovasc Drug Rev 20:121–136

    Article  CAS  PubMed  Google Scholar 

  • Grover GJ, D’Alonzo AJ, Garlid KD et al (2001) Pharmacologic characterization of BMS-191095, a mitochondrial K(ATP) opener with no peripheral vasodilator or cardiac action potential shortening activity. J Pharmacol Exp Ther 297:1184–1192

    CAS  PubMed  Google Scholar 

  • Gulbins E, Sassi N, Grassmè H et al (2010) Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim Biophys Acta 1797:1251–1259

    Article  CAS  PubMed  Google Scholar 

  • Gutman GA, Chandy KG, Grissmer S et al (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57:473–508

    Article  CAS  PubMed  Google Scholar 

  • Harvey J, Ashford ML (1998) Diazoxide- and leptin-activated K(ATP) currents exhibit differential sensitivity to englitazone and ciclazindol in the rat CRI-G1 insulin- secreting cell line. Br J Pharmacol 124:1557–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki N, Gonoi T, Clement JP et al (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Lu Z (1998) A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 37:13291–13299

    Google Scholar 

  • Kaczmarek LK (2013) Slack, slick and sodium-activated potassium channels. ISRN Neurosci pii: 354262

    Google Scholar 

  • Kicinska A, Swida A, Bednarczyk P et al (2007) ATP-sensitive potassium channel in mitochondria of the eukaryotic microorganism Acanthamoeba castellanii. J Biol Chem 282:17433–17441

    Article  CAS  PubMed  Google Scholar 

  • Knaus HG, McManus OB, Lee SH et al (1994) Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Biochemistry 33:5819–5828

    Article  CAS  PubMed  Google Scholar 

  • Koszela-Piotrowska I, Matkovic K, Szewczyk A, Jarmuszkiewicz W (2009) A large-conductance calcium-activated potassium channel in potato (Solanum tuberosum) tuber mitochondria. Biochem J 424:307–316

    Article  CAS  PubMed  Google Scholar 

  • Kosztka L, Rusznák Z, Nagy D et al (2011) Inhibition of TASK-3 (KCNK9) channel biosynthesis changes cell morphology and decreases both DNA content and mitochondrial function of melanoma cells maintained in cell culture. Melanoma Res 21:308–322

    Article  CAS  PubMed  Google Scholar 

  • Kulawiak B, Bednarczyk P (2005) Reconstitution of brain mitochondria inner membrane into planar lipid bilayer. Acta Neurobiol Exp (Wars) 65(3):271–276

    Google Scholar 

  • Kulawiak B, Kudin AP, Szewczyk A, Kunz WS (2008) BK channel openers inhibit ROS production of isolated rat brain mitochondria. Exp Neurol 212:543–547

    Article  CAS  PubMed  Google Scholar 

  • Laskowski M, Kicinska A, Szewczyk A, Jarmuszkiewicz W (2015) Mitochondrial large-conductance potassium channel from Dictyostelium discoideum. Int J Biochem Cell Biol 60:167–175

    Article  CAS  PubMed  Google Scholar 

  • Laskowski M, Augustynek B, Kulawiak B et al (2016) What do we not know about mitochondrial potassium channels? Biochim Biophys Acta 1857(8):1247–1257

    Article  CAS  PubMed  Google Scholar 

  • Latorre R, Brauchi S (2006) Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage. Biol Res 39:385–401

    Article  CAS  PubMed  Google Scholar 

  • Leanza L, Henry B, Sassi N et al (2012) Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells. EMBO Mol Med 4:577–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Sato T, Seharaseyon J, Szewczyk A, O’Rourke B, Marbán E (1999) Mitochondrial ATP-dependent potassium channels viable candidate effectors of ischemic preconditioning. Ann N Y Acad Sci 874:27–37

    Google Scholar 

  • Łukasiak A, Skup A, Chlopicki S et al (2016) SERCA, complex I of the respiratory chain and ATP-synthase inhibition are involved in pleiotropic effects of NS1619 on endothelial cells. Eur J Pharmacol 786:137–147

    Article  PubMed  Google Scholar 

  • Magleby KL (2003) Gating mechanism of BK (Slo1) channels: so near, yet so far. J Gen Physiol 121:81–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinska D, Kulawiak B, Wrzosek A et al (2010) The cytoprotective action of the potassium channel opener BMS-191095 in C2C12 myoblasts is related to the modulation of calcium homeostasis. Cell Physiol Biochem 26:235–246

    Article  CAS  PubMed  Google Scholar 

  • Matkovic K, Koszela-Piotrowska I, Jarmuszkiewicz W, Szewczyk A (2011) Ion conductance pathways in potato tuber (Solanum tuberosum) inner mitochondrial membrane. Biochim Biophys Acta 1807:275–285

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Suzuki M, Shibasaki T et al (2002) Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nat Med 8:466–472

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Akao M, O’Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89:891–898

    Article  CAS  PubMed  Google Scholar 

  • Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardi A, Olesen S-P (2008) BK channel modulators: a comprehensive overview. Curr Med Chem 15:1126–1146

    Article  CAS  PubMed  Google Scholar 

  • Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148

    Article  CAS  Google Scholar 

  • Notsu T, Tanaka I, Mizota M et al (1992) A cAMP-dependent protein kinase inhibitor modulates the blocking action of ATP and 5-hydroxydecanoate on the ATP-sensitive K+ channel. Life Sci 51:1851–1856

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke B (2004) Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 94:420–432

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Rourke B, Cortassa S, Aon MA (2005) Mitochondrial ion channels: gatekeepers of life and death. Physiol (Bethesda) 20:303–315

    Google Scholar 

  • Pastore D, Stoppelli MC, Di Fonzo N, Passarella S (1999) The existence of the K+ channel in plant mitochondria. J Biol Chem 274:26683–26690

    Article  CAS  PubMed  Google Scholar 

  • Pastore D, Trono D, Laus MN et al (2007) Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J Exp Bot 58:195–210

    Article  CAS  PubMed  Google Scholar 

  • Piwonska M, Wilczek E, Szewczyk A, Wilczynski GM (2008) Differential distribution of Ca2+-activated potassium channel β4 subunit in rat brain: immunolocalization in neuronal mitochondria. Neuroscience 153:446–460

    Article  CAS  PubMed  Google Scholar 

  • Rusznák Z, Bakondi G, Kosztka L et al (2008) Mitochondrial expression of the two-pore domain TASK-3 channels in malignantly transformed and non-malignant human cells. Virchows Arch 452:415–426

    Article  PubMed  Google Scholar 

  • Sakai Y, Harvey M, Sokolowski B (2011) Identification and quantification of full-length BK channel variants in the developing mouse cochlea. J Neurosci Res 89:1747–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassi N, De Marchi U, Fioretti B et al (2010) An investigation of the occurrence and properties of the mitochondrial intermediate-conductance Ca2+-activated K+ channel mtKCa3.1. Biochim Biophys Acta 1797:1260–1267

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Sasaki N, O’Rourke B, Marbán E (2000) Nicorandil, a potent cardioprotective agent, acts by opening mitochondrial ATP-dependent potassium channels. J Am Coll Cardiol 35:514–518

    Google Scholar 

  • Schmitz A, Sankaranarayanan A (2005) Design of PAP-1, a selective small molecule Kv1. 3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol 68:1254–1270

    Article  CAS  PubMed  Google Scholar 

  • Siemen D, Loupatatzis C, Borecky J et al (1999) Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257:549–554

    Article  CAS  PubMed  Google Scholar 

  • Sihn CR, Kim HJ, Woltz RL et al (2016) Mechanisms of calmodulin regulation of different isoforms of Kv7.4 K+ channels. J Biol Chem 291:2499–2509

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Lu R, Bopassa JC et al (2013) mitoBKCa is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location. Proc Natl Acad Sci 110(26):10836–10841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Li M, Hall L et al (2016) MaxiK channel interactome reveals its interaction with GABA transporter 3 and heat shock protein 60 in the mammalian brain. Neuroscience 317:76–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skalska J, Piwońska M, Wyroba E et al (2008) A novel potassium channel in skeletal muscle mitochondria. Biochim Biophys Acta 1777:651–659

    Article  CAS  PubMed  Google Scholar 

  • Skalska J, Bednarczyk P, Piwonska M et al (2009) Calcium ions regulate K+ uptake into brain mitochondria: the evidence for a novel potassium channel. Int J Mol Sci 10(3):1104–1120

    Google Scholar 

  • Slocinska M, Lubawy J, Jarmuszkiewicz W, Rosinski G (2013) Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect. J Insect Physiol 59:1125–1132

    Article  CAS  PubMed  Google Scholar 

  • Stowe DF, Gadicherla AK, Zhou Y et al (2013) Protection against cardiac injury by small Ca(2+)-sensitive K(+) channels identified in guinea pig cardiac inner mitochondrial membrane. Biochim Biophys Acta 1828:427–442

    Article  CAS  PubMed  Google Scholar 

  • Szabo I, Zoratti M (2014) Mitochondrial channels: ion fluxes and more. Physiol Rev 94:519–608

    Article  CAS  PubMed  Google Scholar 

  • Szabò I, Bock J, Jekle A et al (2005) A novel potassium channel in lymphocyte mitochondria. J Biol Chem 280:12790–12798

    Article  PubMed  Google Scholar 

  • Szewczyk A, Kajma A, Malinska D et al (2010) Pharmacology of mitochondrial potassium channels: dark side of the field. FEBS Lett 584:2063–2069

    Article  CAS  PubMed  Google Scholar 

  • Testai L, Barrese V, Soldovieri MV et al (2015) Expression and function of Kv7.4 channels in rat cardiac mitochondria: possible targets for cardioprotection. Cardiovasc Res 110(1):40–50

    Article  PubMed  Google Scholar 

  • Toczyłowska-Mamińska R, Olszewska A, Laskowski M et al (2013) Potassium channel in the mitochondria of human keratinocytes. J Invest Dermatol 134(3):764–772

    Article  PubMed  Google Scholar 

  • Wojtovich AP, Burwell LS, Sherman TA et al (2008) The C. elegans mitochondrial K+(ATP) channel: a potential target for preconditioning. Biochem Biophys Res Commun 376:625–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtovich AP, Sherman TA, Nadtochiy SM et al (2011) SLO-2 is cytoprotective and contributes to mitochondrial potassium transport. PLoS One 6:e28287

    Google Scholar 

  • Wojtovich AP, Urciuoli WR, Chatterjee S et al (2013) Kir6.2 is not the mitochondrial KATP channel but is required for cardioprotection by ischemic preconditioning. Am J Physiol Heart Circ Physiol 304:H1439–H1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Liu Y, Wang S et al (2002) Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033

    Article  CAS  PubMed  Google Scholar 

  • Zoratti M, De Marchi U, Gulbins E, Szabò I (2009) Novel channels of the inner mitochondrial membrane. Biochim Biophys Acta 1787:351–363

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nencki Institute and partially by a grant from the National Centre of Research and Development, Poland No. MERIS PBS1/B8/1/2012 and by a grant from the Polish National Science Center No. 2015/17/B/NZ1/02496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Szewczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Augustynek, B., Kunz, W.S., Szewczyk, A. (2016). Guide to the Pharmacology of Mitochondrial Potassium Channels. In: Singh, H., Sheu, SS. (eds) Pharmacology of Mitochondria. Handbook of Experimental Pharmacology, vol 240. Springer, Cham. https://doi.org/10.1007/164_2016_79

Download citation

Publish with us

Policies and ethics