Skip to main content

Leukotriene Receptor Antagonists and Antiallergy Drugs

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 237))

Abstract

As one of the candidates of the therapeutic strategy for asthma in addition to inhaled corticosteroids (ICS), leukotriene receptor antagonists (LTRAs) are known to be useful for long-term management of asthma patients complicated by allergic rhinitis (AR) or exercise-induced asthma (EIA). Currently available LTRAs are pranlukast hydrate, zafirlukast, and montelukast. These LTRAs have a bronchodilator action and inhibit airway inflammation, resulting in a significant improvement of asthma symptoms, respiratory function, inhalation frequency of as-needed inhaled β2-agonist, airway inflammation, airway hyperresponsiveness, dosage of ICSs, asthma exacerbations, and patients’ QOL. Although cys-LTs are deeply associated with the pathogenesis of asthma, LTRAs alone are less effective compared with ICS. However, the effects of LTRAs in combination with ICS are the same as those of LABAs in combination with ICS in steroid-naïve asthmatic patients. Concerning antiallergy drugs other than LTRAs, some mediator-release suppressants, H1 histamine receptor antagonists (H1RAs), thromboxane A2 (TXA2) inhibitors/antagonists, and Th2 cytokine inhibitor had been used mainly in Japan until the late 1990s. However, the use of these agents rapidly decreased after ICS/long acting beta agonist (LABA) combination was introduced and recommended for the management of asthma in the early 2000s. The effectiveness of other antiallergic agents on asthma management seems to be quite limited, and the safety of oral antiallergic agents has not been demonstrated in fetuses during pregnancy. Further effectiveness studies are needed to determine the true value of these orally administered agents in combination with ICS as an anti-asthma treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Laidlaw TM, Boyce JA (2012) Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin Exp Allergy 42(9):1313–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaoka Y, Boyce AA (2004) Cysteinyl leukotrienes and their receptors: (Cellular distribution and function in immune and inflammatory responses. J Immunol 173(3):1503–1510

    Article  CAS  PubMed  Google Scholar 

  • Kanaoka Y, Boyce JA (2014) Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol Res 6(4):288–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark JD, Milona N, Knopf JL (1990) Purification of a 110-kilodalton cytosolic phospholipase-A2 from the human monocytic cell-line U937. Proc Natl Acad Sci U S A 87(19):7708–7712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid GK, Kargman S, Vickers PJ, Mancini JA, Leveille C, Ethier D et al (1990) Correlation between expression of 5-lipoxygenase-activating protein, 5-lipoxygenase, and cellular leukotriene synthesis. J Biol Chem 265(32):19818–19823

    CAS  PubMed  Google Scholar 

  • Lam BK, Penrose JF, Freeman GJ, Austen KF (1994) Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4. Proc Natl Acad Sci U S A 91(16):7663–7667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maclouf J, Antoine C, Henson PM, Murphy RC (1994) Leukotriene C4 formation by transcellular biosynthesis. Ann N Y Acad Sci 714:143–150, Epub 1994/04/18

    Article  CAS  PubMed  Google Scholar 

  • Drazen JM, Obrien J, Sparrow D, Weiss ST, Martins MA, Israel E et al (1992) Recovery of leukotriene-E4 from the urine of patients with airway-obstruction. Am Rev Respir Dis 146(1):104–108

    Article  CAS  PubMed  Google Scholar 

  • Christie PE, Tagari P, Ford-Hutchinson AW, Charlesson S, Chee P, Arm JP et al (1991) Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis 143(5 Pt 1):1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Liu MC, Dube LM, Lancaster J (1996) Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. Zileuton Study Group. J Allergy Clin Immunol 98(5 Pt 1):859–871

    Article  CAS  PubMed  Google Scholar 

  • Israel E, Cohn J, Dube L, Drazen JM (1996) Effect of treatment with zileuton, a 5-lipoxygenase inhibitor, in patients with asthma – a randomized controlled trial. JAMA 275(12):931–936

    Article  CAS  PubMed  Google Scholar 

  • Berges-Gimeno MP, Simon RA, Stevenson DD (2002) The effect of leukotriene-modifier drugs on aspirin-induced asthma and rhinitis reactions. Clin Exp Allergy 32(10):1491–1496

    Article  CAS  PubMed  Google Scholar 

  • Weiss JW, Drazen JM, Coles N, Mcfadden ER, Weller PF, Corey EJ et al (1982a) Bronchoconstrictor effects of leukotriene-C in humans. Science 216(4542):196–198

    Article  CAS  PubMed  Google Scholar 

  • Griffin M, Weiss JW, Leitch AG, Mcfadden ER, Corey EJ, Austen KF et al (1983) Effects of leukotriene-D on the airways in asthma. N Engl J Med 308(8):436–439

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Austen KF, Corey EJ, Drazen JM (1984) Leukotriene E4-induced airway hyperresponsiveness of guinea pig tracheal smooth muscle to histamine and evidence for three separate sulfidopeptide leukotriene receptors. Proc Natl Acad Sci U S A 81(15):4922–4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drazen JM, Venugopalan CS, Austen KF, Brion F, Corey EJ (1982) Effects of leukotriene-E on pulmonary mechanics in the guinea-pig. Am Rev Respir Dis 125(3):290–294

    CAS  PubMed  Google Scholar 

  • Weiss JW, Drazen JM, Mcfadden ER, Weller P, Corey EJ, Lewis RA et al (1983) Airway constriction in normal humans produced by inhalation of leukotriene-D – potency, time course, and effect of aspirin therapy. JAMA 249(20):2814–2817

    Article  CAS  PubMed  Google Scholar 

  • Weiss JW, Drazen JM, Mcfadden ER, Lewis R, Weller P, Corey EJ et al (1982b) Comparative bronchoconstrictor effects of histamine and leukotriene-C and leukotriene-D (Ltc and Ltd) in normal human volunteers. Clin Res 30(2):A571

    Google Scholar 

  • Davidson AB, Lee TH, Scanlon PD, Solway J, Mcfadden ER, Ingram RH et al (1987) Bronchoconstrictor effects of leukotriene-E4 in normal and asthmatic subjects. Am Rev Respir Dis 135(2):333–337

    CAS  PubMed  Google Scholar 

  • Christie PE, Schmitz-Schumann M, Spur BW, Lee TH (1993) Airway responsiveness to leukotriene C4 (LTC4), leukotriene E4 (LTE4) and histamine in aspirin-sensitive asthmatic subjects. Eur Respir J 6(10):1468–1473

    CAS  PubMed  Google Scholar 

  • Gauvreau GM, Parameswaran KN, Watson RM, O’Byrne PM (2001) Inhaled leukotriene E(4), but not leukotriene D(4), increased airway inflammatory cells in subjects with atopic asthma. Am J Respir Crit Care Med 164(8 Pt 1):1495–1500

    Article  CAS  PubMed  Google Scholar 

  • Christie PE, Hawksworth R, Spur BW, Lee TH (1992) Effect of indomethacin on leukotriene4-induced histamine hyperresponsiveness in asthmatic subjects. Am Rev Respir Dis 146(6):1506–1510

    Article  CAS  PubMed  Google Scholar 

  • Mollerup J, Jorgensen ST, Hougaard C, Hoffmann EK (2001) Identification of a murine cysteinyl leukotriene receptor by expression in Xenopus laevis oocytes. Biochim Biophys Acta 1517(3):455–459

    Article  CAS  PubMed  Google Scholar 

  • Hui YQ, Yang GC, Galczenski H, Figueroa DJ, Austin CP, Copeland NG et al (2001) The murine cysteinyl leukotriene 2 (CysLT(2)) receptor – cDNA and genomic cloning, alternative splicing, and in vitro characterization. J Biol Chem 276(50):47489–47495

    Article  CAS  PubMed  Google Scholar 

  • Mellor EA, Maekawa A, Austen KF, Boyce JA (2001) Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells. Proc Natl Acad Sci U S A 98(14):7964–7969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch KR, O’Neill GP, Liu Q, Im DS, Sawyer N, Metters KM et al (1999) Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399(6738):789–793

    Article  CAS  PubMed  Google Scholar 

  • Heise CE, O’Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS et al (2000) Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 275(39):30531–30536

    Article  CAS  PubMed  Google Scholar 

  • Mellor EA, Frank N, Soler D, Hodge MR, Lora JM, Austen KF et al (2003) Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: functional distinction from CysLT1R. Proc Natl Acad Sci U S A 100(20):11589–11593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Borrelli LA, Kanaoka Y, Bacskai BJ, Boyce JA (2007) CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood 110(9):3263–3270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco R, Casado V, Cortes A, Ferrada C, Mallol J, Woods A et al (2007) Basic concepts in G-protein-coupled receptor homo- and heterodimerization. ScientificWorldJournal 7:48–57

    Article  PubMed  Google Scholar 

  • Minoguchi K, Kohno Y, Minoguchi H, Kihara N, Sano Y, Yasuhara H et al (2002) Reduction of eosinophilic inflammation in the airways of patients with asthma using montelukast. Chest 121(3):732–738

    Article  CAS  PubMed  Google Scholar 

  • Hui KP, Barnes NC (1991) Lung function improvement in asthma with a cysteinyl-leukotriene receptor antagonist. Lancet 337(8749):1062–1063

    Article  CAS  PubMed  Google Scholar 

  • Tohda Y, Fujimura M, Taniguchi H, Takagi K, Igarashi T, Yasuhara H et al (2002) Leukotriene receptor antagonist, montelukast, can reduce the need for inhaled steroid while maintaining the clinical stability of asthmatic patients. Clin Exp Allergy 32(8):1180–1186

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki J, Kondo M, Sakai N, Nakata J, Takemura H, Nagai A et al (1997) Leukotriene antagonist prevents exacerbation of asthma during reduction of high-dose inhaled corticosteroid. The Tokyo Joshi-Idai Asthma Research Group. Am J Respir Crit Care Med 155(4):1235–1240

    Article  CAS  PubMed  Google Scholar 

  • Drazen JM, Israel E, O’Byrne PM (1999) Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med 340(3):197–206

    Article  CAS  PubMed  Google Scholar 

  • Reiss TF, Chervinsky P, Dockhorn RJ, Shingo S, Seidenberg B, Edwards TB (1998) Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma: a multicenter, randomized, double-blind trial. Montelukast Clinical Research Study Group. Arch Intern Med 158(11):1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Edelman JM, Turpin JA, Bronsky EA, Grossman J, Kemp JP, Ghannam AF et al (2000) Oral montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction. A randomized, double-blind trial. Exercise Study Group. Ann Intern Med 132(2):97–104

    Article  CAS  PubMed  Google Scholar 

  • Leff JA, Busse WW, Pearlman D, Bronsky EA, Kemp J, Hendeles L et al (1998) Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. N Engl J Med 339(3):147–152

    Article  CAS  PubMed  Google Scholar 

  • Peters SP, Anthonisen N, Castro M, Holbrook JT, Irvin CG, Smith LJ et al (2007) Randomized comparison of strategies for reducing treatment in mild persistent asthma. N Engl J Med 356(20):2027–2039

    Article  PubMed  Google Scholar 

  • Malmstrom K, Rodriguez-Gomez G, Guerra J, Villaran C, Pineiro A, Wei LX et al (1999) Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. A randomized, controlled trial. Montelukast/Beclomethasone Study Group. Ann Intern Med 130(6):487–495

    Article  CAS  PubMed  Google Scholar 

  • Wada K, Minoguchi K, Adachi M (2000) Effect of a leukotriene receptor antagonist, pranlukast hydrate, on airway inflammation and airway hyper responsiveness in patients with moderate to severe asthma. Allergol Int 49:63–68

    Article  CAS  Google Scholar 

  • Price DB, Hernandez D, Magyar P, Fiterman J, Beeh KM, James IG et al (2003) Randomised controlled trial of montelukast plus inhaled budesonide versus double dose inhaled budesonide in adult patients with asthma. Thorax 58(3):211–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laviolette M, Malmstrom K, Lu S, Chervinsky P, Pujet JC, Peszek I et al (1999) Montelukast added to inhaled beclomethasone in treatment of asthma. Montelukast/Beclomethasone Additivity Group. Am J Respir Crit Care Med 160(6):1862–1868

    Article  CAS  PubMed  Google Scholar 

  • Price D, Musgrave SD, Shepstone L, Hillyer EV, Sims EJ, Gilbert RFT et al (2011) Leukotriene antagonists as first-line or add-on asthma-controller therapy. N Engl J Med 364(18):1695–1707

    Article  CAS  PubMed  Google Scholar 

  • Dworski R, Fitzgerald GA, Oates JA, Sheller JR (1994) Effect of oral prednisone on airway inflammatory mediators in atopic asthma. Am J Respir Crit Care Med 149(4 Pt 1):953–959

    Article  CAS  PubMed  Google Scholar 

  • O’Shaughnessy KM, Wellings R, Gillies B, Fuller RW (1993) Differential effects of fluticasone propionate on allergen-evoked bronchoconstriction and increased urinary leukotriene E4 excretion. Am Rev Respir Dis 147(6 Pt 1):1472–1476

    Article  PubMed  Google Scholar 

  • Bjermer L, Bisgaard H, Bousquet J, Fabbri LM, Greening AP, Haahtela T et al (2003) Montelukast and fluticasone compared with salmeterol and fluticasone in protecting against asthma exacerbation in adults: one year, double blind, randomised, comparative trial. BMJ 327(7420):891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilowite J, Webb R, Friedman B, Kerwin E, Bird SR, Hustad CM et al (2004) Addition of montelukast or salmeterol to fluticasone for protection against asthma attacks: a randomized, double-blind, multicenter study. Ann Allergy Asthma Immunol 92(6):641–648

    Article  CAS  PubMed  Google Scholar 

  • Dockhorn RJ, Baumgartner RA, Leff JA, Noonan M, Vandormael K, Stricker W et al (2000) Comparison of the effects of intravenous and oral montelukast on airway function: a double blind, placebo controlled, three period, crossover study in asthmatic patients. Thorax 55(4):260–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camargo CA Jr, Gurner DM, Smithline HA, Chapela R, Fabbri LM, Green SA et al (2010) A randomized placebo-controlled study of intravenous montelukast for the treatment of acute asthma. J Allergy Clin Immunol 125(2):374–380

    Article  CAS  PubMed  Google Scholar 

  • Price DB, Swern A, Tozzi CA, Philip G, Polos P (2006) Effect of montelukast on lung function in asthma patients with allergic rhinitis: analysis from the COMPACT trial. Allergy 61(6):737–742

    Article  CAS  PubMed  Google Scholar 

  • Dahlen SE, Malmstrom K, Nizankowska E, Dahlen B, Kuna P, Kowalski M et al (2002) Improvement of aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med 165(1):9–14

    Article  PubMed  Google Scholar 

  • Beasley R, Bibby S, Weatherall M (2008) Leukotriene receptor antagonist therapy and Churg-Strauss syndrome: culprit or innocent bystander? Thorax 63(10):847–849

    Article  PubMed  Google Scholar 

  • Nathani N, Little MA, Kunst H, Wilson D, Thickett DR (2008) Churg-Strauss syndrome and leukotriene antagonist use: a respiratory perspective. Thorax 63(10):883–888

    Article  CAS  PubMed  Google Scholar 

  • Filppula AM, Laitila J, Neuvonen PJ, Backman JT (2011) Reevaluation of the microsomal metabolism of montelukast: major contribution by CYP2C8 at clinically relevant concentrations. Drug Metab Dispos 39(5):904–911

    Article  CAS  PubMed  Google Scholar 

  • Karonen T, Neuvonen PJ, Backman JT (2012) CYP2C8 but not CYP3A4 is important in the pharmacokinetics of montelukast. Br J Clin Pharmacol 73(2):257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manalai P, Woo JM, Postolache TT (2009) Suicidality and montelukast. Expert Opin Drug Saf 8(3):273–282

    Article  CAS  PubMed  Google Scholar 

  • Schumock GT, Stayner LT, Valuck RJ, Joo MJ, Gibbons RD, Lee TA (2012) Risk of suicide attempt in asthmatic children and young adults prescribed leukotriene-modifying agents: a nested case–control study. J Allergy Clin Immunol 130(2):368–375

    Article  PubMed  Google Scholar 

  • Philip G, Hustad C, Noonan G, Malice MP, Ezekowitz A, Reiss TF et al (2009) Reports of suicidality in clinical trials of montelukast. J Allergy Clin Immunol 124(4):691–696, e6

    Article  CAS  PubMed  Google Scholar 

  • Furukawa C, Atkinson D, Forster TJ, Nazzario K, Simpson B, Uryniak T et al (1999) Controlled trial of two formulations of cromolyn sodium in the treatment of asthmatic patients > or = 12 years of age. Intal Study Group. Chest 116(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Netzer NC, Kupper T, Voss HW, Eliasson AH (2012) The actual role of sodium cromoglycate in the treatment of asthma—a critical review. Sleep Breath 16(4):1027–1032

    Article  PubMed  Google Scholar 

  • Leung KB, Flint KC, Brostoff J, Hudspith BN, Johnson NM, Lau HY et al (1988) Effects of sodium cromoglycate and nedocromil sodium on histamine secretion from human lung mast cells. Thorax 43(10):756–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay AB, Walsh GM, Moqbel R, MacDonald AJ, Nagakura T, Carroll MP et al (1987) Disodium cromoglycate inhibits activation of human inflammatory cells in vitro. J Allergy Clin Immunol 80(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lu JY, Wu X, Summer S, Whoriskey J, Saris C et al (2010) G-protein-coupled receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium. Pharmacology 86(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Hoshino M, Nakamura Y (1997) The effect of inhaled sodium cromoglycate on cellular infiltration into the bronchial mucosa and the expression of adhesion molecules in asthmatics. Eur Respir J 10(4):858–865

    CAS  PubMed  Google Scholar 

  • Hoshino M, Nakamura Y, Sim JJ, Tomioka H (1998) A comparative study of the effects of ketotifen, disodium cromoglycate, and beclomethasone dipropionate on bronchial mucosa and asthma symptoms in patients with atopic asthma. Respir Med 92(7):942–950

    Article  CAS  PubMed  Google Scholar 

  • Hoag JE, McFadden ER Jr (1991) Long-term effect of cromolyn sodium on nonspecific bronchial hyperresponsiveness: a review. Ann Allergy 66(1):53–63

    CAS  PubMed  Google Scholar 

  • Tasche MJA, Uijen JHJM, Bernsen RMD, de Jongste JC, van der Wouden JC (2000) Inhaled disodium cromoglycate (DSCG) as maintenance therapy in children with asthma: a systematic review. Thorax 55(11):913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner JO (1989) The place of Intal in paediatric practice. Respir Med 83 Suppl A:33–37

    Google Scholar 

  • Price JF, Weller PH (1995) Comparison of fluticasone propionate and sodium cromoglycate for the treatment of childhood asthma (an open parallel group study). Respir Med 89(5):363–368

    Article  CAS  PubMed  Google Scholar 

  • Warner JO (1995) Review of prescribed treatment for children with asthma in 1990. BMJ 311(7006):663–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel SE, Fowler AA 3rd, Schwartz LB (1988) Activation of pulmonary mast cells by bronchoalveolar allergen challenge. In vivo release of histamine and tryptase in atopic subjects with and without asthma. Am Rev Respir Dis 137(5):1002–1008

    Article  CAS  PubMed  Google Scholar 

  • Wardlaw AJ, Dunnette S, Gleich GJ, Collins JV, Kay AB (1988) Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis 137(1):62–69

    Article  CAS  PubMed  Google Scholar 

  • Liu MC, Bleecker ER, Lichtenstein LM, Kagey-Sobotka A, Niv Y, McLemore TL et al (1990) Evidence for elevated levels of histamine, prostaglandin D2, and other bronchoconstricting prostaglandins in the airways of subjects with mild asthma. Am Rev Respir Dis 142(1):126–132

    Article  CAS  PubMed  Google Scholar 

  • Jarjour NN, Calhoun WJ, Schwartz LB, Busse WW (1991) Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with increased airway obstruction. Am Rev Respir Dis 144(1):83–87

    Article  CAS  PubMed  Google Scholar 

  • Casale TB, Wood D, Richerson HB, Trapp S, Metzger WJ, Zavala D et al (1987) Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with methacholine bronchial hyperresponsiveness. J Clin Invest 79(4):1197–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broide DH, Gleich GJ, Cuomo AJ, Coburn DA, Federman EC, Schwartz LB et al (1991) Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthma airway. J Allergy Clin Immunol 88(4):637–648

    Article  CAS  PubMed  Google Scholar 

  • Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  • Bakker RA, Timmerman H, Leurs R (2002) Histamine receptors: specific ligands, receptor biochemistry, and signal transduction. Clin Allergy Immunol 17:27–64

    CAS  PubMed  Google Scholar 

  • Simons FER (1999) Is antihistamine (H-1-receptor antagonist) therapy useful in clinical asthma? Clin Exp Allergy 29:98–104

    Article  CAS  PubMed  Google Scholar 

  • Lordan JL, Holgate ST (2002) H1-antihistamines in asthma. Clin Allergy Immunol 17:221–248

    CAS  PubMed  Google Scholar 

  • Rafferty P, Beasley R, Holgate ST (1987) The contribution of histamine to immediate bronchoconstriction provoked by inhaled allergen and adenosine 5′ monophosphate in atopic asthma. Am Rev Respir Dis 136(2):369–373

    Article  CAS  PubMed  Google Scholar 

  • Roquet A, Dahlen B, Kumlin M, Ihre E, Anstren G, Binks S et al (1997) Combined antagonism of leukotrienes and histamine produces predominant inhibition of allergen-induced early and late phase airway obstruction in asthmatics. Am J Respir Crit Care Med 155(6):1856–1863

    Article  CAS  PubMed  Google Scholar 

  • Ohta K, Ichinose M, Nagase H, Yamaguchi M, Sugiura H, Tohda Y et al (2014) Japanese Guideline for Adult Asthma 2014. Allergol Int 63(3):293–333

    Article  CAS  PubMed  Google Scholar 

  • Global Initiative for Asthma (GINA) (2014) The global strategy for asthma management and prevention. http://www.ginasthma.org/

  • Rolin S, Masereel B, Dogné J (2006) Prostanoids as pharmacological targets in COPD and asthma. Eur J Pharmacol 533:89–100

    Article  CAS  PubMed  Google Scholar 

  • Tanabe T, Ullrich V (1995) Prostacyclin and thromboxane synthases. J Lipid Mediat Cell Signal 12(2–3):243–255

    Article  CAS  PubMed  Google Scholar 

  • Nusing R, Lesch R, Ullrich V (1990) Immunohistochemical localization of thromboxane synthase in human tissues. Eicosanoids 3(1):53–58

    CAS  PubMed  Google Scholar 

  • Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S et al (1991) Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 349(6310):617–620

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Ramamurthy S, Lin X, Le Breton G (2004) Cell signalling through thromboxane A2 receptors. Cell Signal 16:521–533

    Article  CAS  PubMed  Google Scholar 

  • Shenker A, Goldsmith P, Unson CG, Spiegel AM (1991) The G protein coupled to the thromboxane A2 receptor in human platelets is a member of the novel Gq family. J Biol Chem 266(14):9309–9313

    CAS  PubMed  Google Scholar 

  • Dorn GW 2nd, Becker MW (1993) Thromboxane A2 stimulated signal transduction in vascular smooth muscle. J Pharmacol Exp Ther 265(1):447–456

    CAS  PubMed  Google Scholar 

  • Hirata T, Ushikubi F, Kakizuka A, Okuma M, Narumiya S (1996) Two thromboxane A2 receptor isoforms in human platelets. Opposite coupling to adenylyl cyclase with different sensitivity to Arg60 to Leu mutation. J Clin Invest 97(4):949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widdicombe JH, Ueki IF, Emery D, Margolskee D, Yergey J, Nadel JA (1989) Release of cyclooxygenase products from primary cultures of tracheal epithelia of dog and human. Am J Physiol 257(6 Pt 1):L361–L365

    CAS  PubMed  Google Scholar 

  • Higgs GA, Moncada S, Salmon JA, Seager K (1983) The source of thromboxane and prostaglandins in experimental inflammation. Br J Pharmacol 79(4):863–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A 72(8):2994–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurosawa M (1995) Role of thromboxane A2 synthetase inhibitors in the treatment of patients with bronchial asthma. Clin Ther 17(1):2–11, discussion 1

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki J, Kondo M, Nakata J, Nagano Y, Isono K, Nagai A (2000a) Effect of a thromboxane A(2) antagonist on sputum production and its physicochemical properties in patients with mild to moderate asthma. Chest 118(1):73–79

    Article  CAS  PubMed  Google Scholar 

  • Morris HG, Sherman NA, Shepperdson FT, Selner JC (1980) Radioimmunoassay of thromboxane B2 in plasma of normal and asthmatic subjects. Adv Prostaglandin Thromboxane Res 8:1759–1764

    CAS  PubMed  Google Scholar 

  • Devillier P, Bessard G (1997) Thromboxane A2 and related prostaglandins in airways. Fundam Clin Pharmacol 11(1):2–18

    Article  CAS  PubMed  Google Scholar 

  • Wenzel SE, Westcott JY, Larsen GL (1991) Bronchoalveolar lavage fluid mediator levels 5 minutes after allergen challenge in atopic subjects with asthma: relationship to the development of late asthmatic responses. J Allergy Clin Immunol 87(2):540–548

    Article  CAS  PubMed  Google Scholar 

  • Kumlin M, Dahlen B, Bjorck T, Zetterstrom O, Granstrom E, Dahlen SE (1992) Urinary excretion of leukotriene E4 and 11-dehydro-thromboxane B2 in response to bronchial provocations with allergen, aspirin, leukotriene D4, and histamine in asthmatics. Am Rev Respir Dis 146(1):96–103

    Article  CAS  PubMed  Google Scholar 

  • Oosterhoff Y, Kauffman HF, Rutgers B, Zijlstra FJ, Koeter GH, Postma DS (1995) Inflammatory cell number and mediators in bronchoalveolar lavage fluid and peripheral blood in subjects with asthma with increased nocturnal airways narrowing. J Allergy Clin Immunol 96(2):219–229

    Article  CAS  PubMed  Google Scholar 

  • Wenzel SE, Westcott JY, Smith HR, Larsen GL (1989) Spectrum of prostanoid release after bronchoalveolar allergen challenge in atopic asthmatics and in control groups. An alteration in the ratio of bronchoconstrictive to bronchoprotective mediators. Am Rev Respir Dis 139(2):450–457

    Article  CAS  PubMed  Google Scholar 

  • Capra V, Habib A, Accomazzo MR, Ravasi S, Citro S, Levy-Toledano S et al (2003) Thromboxane prostanoid receptor in human airway smooth muscle cells: a relevant role in proliferation. Eur J Pharmacol 474(2–3):149–159

    Article  CAS  PubMed  Google Scholar 

  • Hall IP (2000) Second messengers, ion channels and pharmacology of airway smooth muscle. Eur Respir J 15(6):1120–1127

    Article  CAS  PubMed  Google Scholar 

  • Vignola AM, Mirabella F, Costanzo G, Di Giorgi R, Gjomarkaj M, Bellia V et al (2003) Airway remodeling in asthma. Chest 123(3 Suppl):417S–422S

    Article  PubMed  Google Scholar 

  • Xiang A, Uchida Y, Nomura A, Iijima H, Sakamoto T, Ishii Y et al (2002) Involvement of thromboxane A(2) in airway mucous cells in asthma-related cough. J Appl Physiol (1985) 92(2):763–770

    Google Scholar 

  • Hoshino M, Sim J, Shimizu K, Nakayama H, Koya A (1999) Effect of AA-2414, a thromboxane A2 receptor antagonist, on airway inflammation in subjects with asthma. J Allergy Clin Immunol 103(6):1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Fujimura M, Sakamoto S, Saito M, Miyake Y, Matsuda T (1991) Effect of a thromboxane A2 receptor antagonist (AA-2414) on bronchial hyperresponsiveness to methacholine in subjects with asthma. J Allergy Clin Immunol 87(1 Pt 1):23–27

    Article  CAS  PubMed  Google Scholar 

  • Fujimura M, Sasaki F, Nakatsumi Y, Takahashi Y, Hifumi S, Taga K et al (1986) Effects of a thromboxane synthetase inhibitor (OKY-046) and a lipoxygenase inhibitor (AA-861) on bronchial responsiveness to acetylcholine in asthmatic subjects. Thorax 41(12):955–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corry DB, Kheradmand F (2006) Control of allergic airway inflammation through immunomodulation. J Allergy Clin Immunol 117(2):S461–S464

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi T, Tachikawa S, Handa M, Hanazono K, Kondo R, Ishibashi A et al (2001) Effects of suplatast tosilate on airway inflammation and airway hyperresponsiveness. J Asthma 38(4):331–336

    Article  CAS  PubMed  Google Scholar 

  • Yamaya H, Basaki Y, Togawa M, Kojima M, Kiniwa M, Matsuura N (1995) Down-regulation of Th2 cell-mediated murine peritoneal eosinophilia by antiallergic agents. Life Sci 56(19):1647–1654

    Article  CAS  PubMed  Google Scholar 

  • Oda N, Minoguchi K, Yokoe T, Hashimoto T, Wada K, Miyamoto M et al (1999) Effect of suplatast tosilate (IPD-1151T) on cytokine production by allergen-specific human Th1 and Th2 cell lines. Life Sci 65(8):763–770

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Aizawa H, Inoue H, Matsumoto K, Koto H, Komori M et al (2002) Effect of suplatast tosilate on airway hyperresponsiveness and inflammation in asthma patients. J Asthma 39(6):545–552

    Article  CAS  PubMed  Google Scholar 

  • Sano Y, Suzuki N, Yamada H, To Y, Ogawa C, Ohta K et al (2003) Effects of suplatast tosilate on allergic eosinophilic airway inflammation in patients with mild asthma. J Allergy Clin Immunol 111(5):958–966

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki J, Kondo M, Sakai N, Aoshiba K, Tagaya E, Nakata J et al (2000b) Effect of suplatast tosilate, a Th2 cytokine inhibitor, on steroid-dependent asthma: a double-blind randomised study. Lancet 356(9226):273–278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Tamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tamada, T., Ichinose, M. (2016). Leukotriene Receptor Antagonists and Antiallergy Drugs. In: Page, C., Barnes, P. (eds) Pharmacology and Therapeutics of Asthma and COPD. Handbook of Experimental Pharmacology, vol 237. Springer, Cham. https://doi.org/10.1007/164_2016_72

Download citation

Publish with us

Policies and ethics