Skip to main content

Mitochondria-Targeted Agents: Mitochondriotropics, Mitochondriotoxics, and Mitocans

  • Chapter
  • First Online:
Pharmacology of Mitochondria

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 240))

Abstract

Mitochondria, the powerhouse of the cell, have been known for many years for their central role in the energy metabolism; however, extensive progress has been made and to date substantial evidence demonstrates that mitochondria play a critical role not only in the cell bioenergetics but also in the entire cell metabolome. Mitochondria are also involved in the intracellular redox poise, the regulation of calcium homeostasis, and the generation of reactive oxygen species (ROS), which are crucial for the control of a variety of signaling pathways. Additionally, they are essential for the mitochondrial-mediated apoptosis process. Thus, it is not surprising that disruptions of mitochondrial functions can lead or be associated with human pathologies. Because of diseases like diabetes, Alzheimer, Parkinson’s, cancer, and ischemic disease are being increasingly linked to mitochondrial dysfunctions, the interest in mitochondria as a prime pharmacological target has dramatically risen over the last decades and as a consequence a large number of agents, which could potentially impact or modulate mitochondrial functions, are currently under investigation. Based on their site of action, these agents can be classified as mitochondria-targeted and non-mitochondria-targeted agents. As a result of the continuous search for new agents and the design of potential therapeutic agents to treat mitochondrial diseases, terms like mitochondriotropics, mitochondriotoxics, mitocancerotropics, and mitocans have emerged to describe those agents with high affinity to mitochondria that exert a therapeutic or deleterious effect on these organelles. In this chapter, mitochondria-targeted agents and some strategies to deliver agents to and/or into mitochondria will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong JS (2007) Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol 151(8):1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belzacq AS, El Hamel C, Vieira HL, Cohen I, Haouzi D, MĂ©tivier D, Marchetti P, Brenner C, Kroemer G (2001) Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437. Oncogene 20(52):7579–7587

    Article  CAS  PubMed  Google Scholar 

  • Benien P, Solomon MA, Nguyen P, Sheehan EM, Mehanna AS, D’Souza GG (2015) Hydrophobized triphenyl phosphonium derivatives for the preparation of mitochondriotropic liposomes: choice of hydrophobic anchor influences cytotoxicity but not mitochondriotropic effect. J Liposome Res 26(1):21–27

    Article  PubMed  Google Scholar 

  • Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, Seshan SV, Pardee JD, Szeto HH (2013) The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol 24(8):1250–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP (2012) liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-peg-pe conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 159(3):393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boddapati SV, D’Souza GG, Erdogan S, Torchilin VP, Volkmar W (2008) Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett 8(8):2559–2563

    Article  CAS  PubMed  Google Scholar 

  • Brenner C, Kroemer G (2003) The mitochondriotoxic domain of Vpr determines HIV-1 virulence. J Clin Invest 111(10):1455–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciminale V, Zotti L, D’Agostino DM, Ferro T, Casareto L, Franchini G, Bernardi P, Chieco-Bianchi L (1999) Mitochondrial targeting of the p13II protein coded by the X-II ORF of human T-Cell leukemia/lymphotropic virus type I (HTLV-I). Oncogene 18(31):4505–4514

    Article  CAS  PubMed  Google Scholar 

  • Costantini P, Jacotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92(13):1042–1053

    Article  CAS  PubMed  Google Scholar 

  • D’Souza GG, Boddapati SV, Weissig V (2005) Mitochondrial leader sequence-plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 5(5):352–358

    Article  PubMed  Google Scholar 

  • D’Souza GG, Cheng SM, Boddapati SV, Horobin RW, Weissig V (2008) Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel. J Drug Target 16(7):578–585

    Article  PubMed  Google Scholar 

  • D’Souza GGM, Mayura AW, Vaibhav S, Shah A (2011) Approaches for targeting mitochondria in cancer therapy. Biochim Biophys Acta 1807(6):689–696

    Article  PubMed  Google Scholar 

  • de Azevedo RA, Figueiredo CR, Ferreira AK, Matsuo AL, Massaoka MH, Girola N, Auada AV et al (2015) Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides 68(June):113–119

    Article  PubMed  Google Scholar 

  • Deshayes S, Morris MC, Divita G, Heitz F (2005) Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci 62(16):1839–1849

    Article  CAS  PubMed  Google Scholar 

  • Di Cosimo S, Ferretti G, Papaldo P, Carlini P, Fabi A, Cognetti F (2003) Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today 39(3):157–174

    Article  PubMed  Google Scholar 

  • Floridi A, Bianchi C, Bagnato A, Gambacurta A, Paggi MG, Silvestrini B, Caputo A (1987) Lonidamine-induced outer membrane permeability and susceptibility of mitochondria to inhibition by adriamycin. Anticancer Res 7(6):1149–1152

    CAS  PubMed  Google Scholar 

  • Fulda S (2008) Betulinic acid for cancer treatment and prevention. Int J Mol Sci 9(6):1096–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller N, Rand RP (2001) The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J 81(1):243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldin N, Arzoine L, Heyfets A, Israelson A, Zaslavsky Z, Bravman T, Bronner V, Notcovich A, Shoshan-Barmatz V, Flescher E (2008) Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene 27(34):4636–4643

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Villanueva D, Mendiola MR, Nguyen XN, Weissig V (2015) Influence of triphenylphosphonium (TPP) cation hydrophobization with phospholipids on cellular toxicity and mitochondrial selectivity. SOJ Pharm Pharm Sci 2(1):1–9

    Article  Google Scholar 

  • Horobin RW, Trapp S, Weissig V (2007) Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release 121(3):125–136

    Article  CAS  PubMed  Google Scholar 

  • Koya K, Li Y, Wang H, Ukai T, Tatsuta N, Kawakami M, Shishido CLB (1996) MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 56(3):538–543

    CAS  PubMed  Google Scholar 

  • Kroemer G, de ThĂ© H (1999) Arsenic trioxide, a novel mitochondriotoxic anticancer agent?”. J Natl Cancer Inst 91(9):743–745

    Article  CAS  PubMed  Google Scholar 

  • Larochette N, Decaudin D, Jacotot E, Brenner C, Marzo I, Susin SA, Zamzami N, Xie Z, Reed J, Kroemer G (1999) Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp Cell Res 249(2):413–421

    Article  CAS  PubMed  Google Scholar 

  • Lasch J, Meye A, Taubert H, Koelsch R, Mansa-ard J, Weissig V (1999) Dequalinium vesicles form stable complexes with plasmid DNA which are protected from DNase attack. Biol Chem 380(6):647–652

    Article  CAS  PubMed  Google Scholar 

  • Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222(5198):1076–1078

    Article  CAS  PubMed  Google Scholar 

  • Lindgren M, Hällbrink M, Prochiantz A, Langel Ăś (2000) Cell-Penetrating Peptides. Trends Pharmacol Sci 21(3):99–103

    Article  CAS  PubMed  Google Scholar 

  • Lucken-Ardjomande S, Martinou JC (2005) Newcomers in the process of mitochondrial permeabilization. J Cell Sci 118(Pt 3):473–483

    Article  CAS  PubMed  Google Scholar 

  • Lyrawati D, Trounson A, Cram D (2011) Expression of GFP in the mitochondrial compartment using DQAsomes-mediated delivery of an artificial mini-mitochondrial genome. Pharm Res 28(11):2848–2862

    Article  CAS  PubMed  Google Scholar 

  • Malhi SS, Budhiraja A, Arora S, Chaudhari KR, Nepali K, Kumar R, Sohi H, Murthy RS (2012) Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes. Int J Pharm 432(1–2):63–74

    Article  CAS  PubMed  Google Scholar 

  • Marco C, RĂ­os-Marco P, JimĂ©nez-LĂłpez JM, Segovia JL, Carrasco MP (2014) Antitumoral alkylphospholipids alter cell lipid metabolism. Anticancer Agents Med Chem 14(4):545–558

    Article  CAS  PubMed  Google Scholar 

  • Milane L, Trivedi M, Singh A, Talekar M, Amiji M (2015) Mitochondrial biology, targets, and drug delivery. J Control Release 207(June):40–58

    Article  CAS  PubMed  Google Scholar 

  • Modica-Napolitano JS, Aprille JR (2001) Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 49(1-2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Moreira PI, CustĂłdio JMA, Oliveira CR, Santos MS (2006) Tamoxifen and estradiol interact with the flavin mononucleotide site of complex i leading to mitochondrial failure. J Biol Chem 281(15):10143–10152

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777(7–8):1028–1031

    Article  CAS  PubMed  Google Scholar 

  • Neuzil J, Dong LF, Rohlena J, Truksa J, Ralph SJ (2013) Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion 13(3):199–208

    Article  CAS  PubMed  Google Scholar 

  • Oliver CL, Bauer JA, Wolter KG, Ubell ML, Narayan A, O’Connell KM, Fisher SG et al (2004) In vitro effects of the bh3 mimetic, (-)-gossypol, on head and neck squamous cell carcinoma cells. Clin Cancer Res 10(22):7757–7763

    Article  CAS  PubMed  Google Scholar 

  • Propper DJ, Braybrooke JP, Taylor DJ, Lodi R, Styles P, Cramer JA, Collins WC et al (1999) Phase I trial of the selective mitochondrial toxin MKT077 in chemo-resistant solid tumours. Ann Oncol 10(8):923–927

    Article  CAS  PubMed  Google Scholar 

  • Ralph S, Low P, Dong L, Lawen A, Neuzil J (2006) Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents. Recent Pat Anticancer Drug Discov 1(3):327–346

    Article  CAS  PubMed  Google Scholar 

  • Ravagnan L, Marzo I, Costantini P, Susin SA, Zamzami N, Petit PX, Hirsch F et al (1999) Lonidamine triggers apoptosis via a direct, Bcl-2-inhibited effect on the mitochondrial permeability transition pore. Oncogene 18(16):2537–2546

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Murphy MJ (2011) Mitochondria-targeted antioxidants as therapies. Discov Med 11(57):106–114

    PubMed  Google Scholar 

  • Smith RA, Hartley RC, CochemĂ© HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33(6):341–352

    Article  CAS  PubMed  Google Scholar 

  • Starenki D, Park J (2013) Mitochondria-targeted nitroxide, mito-cp, suppresses medullary thyroid carcinoma cell survival in vitro and in vivo. J Clin Endocrinol Metab 98(4):1529–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szeto HH (2006) Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8(2):E277–E283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szeto HH (2008) Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal 10(3):601–619

    Article  CAS  PubMed  Google Scholar 

  • Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54(1):101–127

    Article  CAS  PubMed  Google Scholar 

  • Vaidya B, Vyas SP (2012) Transferrin coupled vesicular system for intracellular drug delivery for the treatment of cancer: development and characterization. J Drug Target 20(4):372–380

    Article  CAS  PubMed  Google Scholar 

  • van der Luit AH, Budde M, Ruurs P, Verheij M, van Blitterswijk WJ (2002) Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem 277(42):39541–39547

    Article  PubMed  Google Scholar 

  • Weissig V, Torchilin VP (2001) Towards mitochondrial gene therapy: dqasomes as a strategy. J Drug Target 9(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Torchillin VP (2001) Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev 49(1–2):127–149

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J (1998) DQAsomes: a novel potential drug and gene delivery system made from dequalinium. Pharm Res 15(2):334–337

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Boddapati SV, D’Souza GG, Cheng SM (2004) Targeting of low-molecular weight drugs to mammalian mitochondria. Drug Des Rev 1(1):15–28

    CAS  Google Scholar 

  • Yamamoto T, Ito M, Kageyama K, Kuwahara K, Yamashita K, Takiguchi Y, Kitamura S, Terada T, Shinohara Y (2014) Mastoparan peptide causes mitochondrial permeability transition not by interacting with specific membrane proteins but by interacting with the phospholipid phase. FEBS J 281(17):3933–3944

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279(33):34682–34690

    Article  CAS  PubMed  Google Scholar 

  • Zheng N, Tsai HN, Zhang X, Shedden K, Rosania GR (2011) The subcellular distribution of small molecules: a meta-analysis. Mol Pharm 8(5):1611–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ZupanÄŤiÄŤ Ĺ , Kocbek P, Zariwala MG, Renshaw D, Gul MO, Elsaid Z, Taylor KE, Somavarapu S (2014) Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation. Mol Pharm 11(7):2334–2345

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Guzman-Villanueva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guzman-Villanueva, D., Weissig, V. (2016). Mitochondria-Targeted Agents: Mitochondriotropics, Mitochondriotoxics, and Mitocans. In: Singh, H., Sheu, SS. (eds) Pharmacology of Mitochondria. Handbook of Experimental Pharmacology, vol 240. Springer, Cham. https://doi.org/10.1007/164_2016_37

Download citation

Publish with us

Policies and ethics