Skip to main content

Signalling Pathways Controlling Cellular Actin Organization

  • Chapter
  • First Online:
The Actin Cytoskeleton

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 235))

Abstract

The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.

Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abella JV, Galloni C, Pernier J, Barry DJ, Kjaer S, Carlier MF, Way M (2016) Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nat Cell Biol 18:76–86

    Article  CAS  PubMed  Google Scholar 

  • Adams JC (2004) Roles of fascin in cell adhesion and motility. Curr Opin Cell Biol 16:590–596

    Article  CAS  PubMed  Google Scholar 

  • Ahuja R, Pinyol R, Reichenbach N, Custer L, Klingensmith J, Kessels MM, Qualmann B (2007) Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell 131:337–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KI, Wang YL, Small JV (1996) Coordination of protrusion and translocation of the keratocyte involves rolling of the cell body. J Cell Biol 134:1209–1218

    Article  CAS  PubMed  Google Scholar 

  • Aspenstrom P (2014) BAR domain proteins regulate Rho GTPase signaling. Small GTPases 5:7

    Article  PubMed  Google Scholar 

  • Azuma T, Witke W, Stossel TP, Hartwig JH, Kwiatkowski DJ (1998) Gelsolin is a downstream effector of rac for fibroblast motility. EMBO J 17:1362–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird D, Feng Q, Cerione RA (2005) The Cool-2/alpha-Pix protein mediates a Cdc42-Rac signaling cascade. Curr Biol 15:1–10

    Article  CAS  PubMed  Google Scholar 

  • Benanti EL, Nguyen CM, Welch MD (2015) Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility. Cell 161:348–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benesch S, Lommel S, Steffen A, Stradal TE, Scaplehorn N, Way M, Wehland J, Rottner K (2002) Phosphatidylinositol 4,5-biphosphate (PIP2)-induced vesicle movement depends on N-WASP and involves Nck, WIP, and Grb2. J Biol Chem 277:37771–37776

    Article  CAS  PubMed  Google Scholar 

  • Benesch S, Polo S, Lai FP, Anderson KI, Stradal TE, Wehland J, Rottner K (2005) N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. J Cell Sci 118:3103–3115

    Article  CAS  PubMed  Google Scholar 

  • Bergert M, Chandradoss SD, Desai RA, Paluch E (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc Natl Acad Sci U S A 109:14434–14439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20:187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94:235–263

    Article  CAS  PubMed  Google Scholar 

  • Block J, Stradal TE, Hanisch J, Geffers R, Kostler SA, Urban E, Small JV, Rottner K, Faix J (2008) Filopodia formation induced by active mDia2/Drf3. J Microsc 231:506–517

    Article  CAS  PubMed  Google Scholar 

  • Block J, Breitsprecher D, Kuhn S, Winterhoff M, Kage F, Geffers R, Duwe P, Rohn JL, Baum B, Brakebusch C, Geyer M, Stradal TE, Faix J, Rottner K (2012) FMNL2 drives actin-based protrusion and migration downstream of Cdc42. Curr Biol 22:1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosse T, Ehinger J, Czuchra A, Benesch S, Steffen A, Wu X, Schloen K, Niemann HH, Scita G, Stradal TE, Brakebusch C, Rottner K (2007) Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways. Mol Cell Biol 27:6615–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bovellan M, Romeo Y, Biro M, Boden A, Chugh P, Yonis A, Vaghela M, Fritzsche M, Moulding D, Thorogate R, Jegou A, Thrasher AJ, Romet-Lemonne G, Roux PP, Paluch EK, Charras G (2014) Cellular control of cortical actin nucleation. Curr Biol 24:1628–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Cordero JJ, Magalhaes MA, Eddy RJ, Hodgson L, Condeelis J (2013) Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 14:405–415

    Google Scholar 

  • Breitsprecher D, Kiesewetter AK, Linkner J, Urbanke C, Resch GP, Small JV, Faix J (2008) Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J 27:2943–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burianek LE, Soderling SH (2013) Under lock and key: spatiotemporal regulation of WASP family proteins coordinates separate dynamic cellular processes. Semin Cell Dev Biol 24:258–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campellone KG, Webb NJ, Znameroski EA, Welch MD (2008) WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134:148–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charras GT (2008) A short history of blebbing. J Microsc 231:466–478

    Article  CAS  PubMed  Google Scholar 

  • Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9:730–736

    Article  CAS  PubMed  Google Scholar 

  • Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435:365–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175:477–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Borek D, Padrick SB, Gomez TS, Metlagel Z, Ismail AM, Umetani J, Billadeau DD, Otwinowski Z, Rosen MK (2010) Structure and control of the actin regulatory WAVE complex. Nature 468:533–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesarone MA, Goode BL (2009) Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol 21:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11:62–74

    Article  CAS  PubMed  Google Scholar 

  • Chianale F, Cutrupi S, Rainero E, Baldanzi G, Porporato PE, Traini S, Filigheddu N, Gnocchi VF, Santoro MM, Parolini O, van Blitterswijk WJ, Sinigaglia F, Graziani A (2007) Diacylglycerol kinase-alpha mediates hepatocyte growth factor-induced epithelial cell scatter by regulating Rac activation and membrane ruffling. Mol Biol Cell 18:4859–4871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins C, Nelson WJ (2015) Running with neighbors: coordinating cell migration and cell-cell adhesion. Curr Opin Cell Biol 36:62–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, Rabinowitz JD, Metallo CM, Vander Heiden MG, Bar-Sagi D (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutts AS, La Thangue NB (2015) Actin nucleation by WH2 domains at the autophagosome. Nat Commun 6:7888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutts AS, Boulahbel H, Graham A, La Thangue NB (2007) Mdm2 targets the p53 transcription cofactor JMY for degradation. EMBO Rep 8:84–90

    Article  CAS  PubMed  Google Scholar 

  • Coutts AS, Weston L, La Thangue NB (2009) A transcription co-factor integrates cell adhesion and motility with the p53 response. Proc Natl Acad Sci U S A 106:19872–19877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutts AS, Weston L, La Thangue NB (2010) Actin nucleation by a transcription co-factor that links cytoskeletal events with the p53 response. Cell Cycle 9:1511–1515

    Article  PubMed  Google Scholar 

  • Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13:828–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czuchra A, Wu X, Meyer H, van Hengel J, Schroeder T, Geffers R, Rottner K, Brakebusch C (2005) Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells. Mol Biol Cell 16:4473–4484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delacour D, Salomon J, Robine S, Louvard D (2016) Plasticity of the brush border – the yin and yang of intestinal homeostasis. Nat Rev Gastroenterol Hepatol 13:161–174

    Google Scholar 

  • Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M, Rubinson DA, Gupton S, Van Veen JE, Furman C, Zhang J, Alberts AS, Mori S, Gertler FB (2007) Filopodia are required for cortical neurite initiation. Nat Cell Biol 9:1347–1359

    Article  CAS  PubMed  Google Scholar 

  • Derivery E, Sousa C, Gautier JJ, Lombard B, Loew D, Gautreau A (2009) The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev Cell 17:712–723

    Article  CAS  PubMed  Google Scholar 

  • Di Fiore PP, von Zastrow M (2014) Endocytosis, signaling, and beyond. Cold Spring Harb Perspect Biol 6

    Google Scholar 

  • Dietrich S, Weiss S, Pleiser S, Kerkhoff E (2013) Structural and functional insights into the Spir/formin actin nucleator complex. Biol Chem 394:1649–1660

    Article  CAS  PubMed  Google Scholar 

  • Dowrick P, Kenworthy P, McCann B, Warn R (1993) Circular ruffle formation and closure lead to macropinocytosis in hepatocyte growth factor/scatter factor-treated cells. Eur J Cell Biol 61:44–53

    CAS  PubMed  Google Scholar 

  • Dupont N, Codogno P (2013) Autophagy plays a WASHing game. EMBO J 32:2659–2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ, Carlier MF (1999) Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 146:1319–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis S, Mellor H (2000) The novel Rho-family GTPase rif regulates coordinated actin-based membrane rearrangements. Curr Biol 10:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Faix J, Rottner K (2006) The making of filopodia. Curr Opin Cell Biol 18:18–25

    Article  CAS  PubMed  Google Scholar 

  • Faix J, Breitsprecher D, Stradal TE, Rottner K (2009) Filopodia: complex models for simple rods. Int J Biochem Cell Biol 41:1656–1664

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41

    Article  CAS  PubMed  Google Scholar 

  • Freeman SA, Grinstein S (2014) Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 262:193–215

    Article  CAS  PubMed  Google Scholar 

  • Gauvin TJ, Young LE, Higgs HN (2015) The formin FMNL3 assembles plasma membrane protrusions that participate in cell-cell adhesion. Mol Biol Cell 26:467–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gimona M, Buccione R, Courtneidge SA, Linder S (2008) Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 20:235–241

    Article  CAS  PubMed  Google Scholar 

  • Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726

    Article  CAS  PubMed  Google Scholar 

  • Gomez TS, Billadeau DD (2009) A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell 17:699–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez TS, Gorman JA, de Narvajas AA, Koenig AO, Billadeau DD (2012) Trafficking defects in WASH-knockout fibroblasts originate from collapsed endosomal and lysosomal networks. Mol Biol Cell 23:3215–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouin E, Welch MD, Cossart P (2005) Actin-based motility of intracellular pathogens. Curr Opin Microbiol 8:35–45

    Article  CAS  PubMed  Google Scholar 

  • Grega-Larson NE, Crawley SW, Erwin AL, Tyska MJ (2015) Cordon bleu promotes the assembly of brush border microvilli. Mol Biol Cell 26:3803–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurniak CB, Chevessier F, Jokwitz M, Jonsson F, Perlas E, Richter H, Matern G, Boyl PP, Chaponnier C, Furst D, Schroder R, Witke W (2014) Severe protein aggregate myopathy in a knockout mouse model points to an essential role of cofilin2 in sarcomeric actin exchange and muscle maintenance. Eur J Cell Biol 93:252–266

    Article  CAS  PubMed  Google Scholar 

  • Harbour ME, Breusegem SY, Antrobus R, Freeman C, Reid E, Seaman MN (2010) The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J Cell Sci 123:3703–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harbour ME, Breusegem SY, Seaman MN (2012) Recruitment of the endosomal WASH complex is mediated by the extended ‘tail’ of Fam21 binding to the retromer protein Vps35. Biochem J 442:209–220

    Article  CAS  PubMed  Google Scholar 

  • Hoshino D, Branch KM, Weaver AM (2013) Signaling inputs to invadopodia and podosomes. J Cell Sci 126:2979–2989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotulainen P, Paunola E, Vartiainen MK, Lappalainen P (2005) Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells. Mol Biol Cell 16:649–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal R, Breitsprecher D, Collins A, Correa IR Jr, Xu MQ, Goode BL (2013) The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr Biol 23:1373–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia D, Gomez TS, Metlagel Z, Umetani J, Otwinowski Z, Rosen MK, Billadeau DD (2010) WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc Natl Acad Sci U S A 107:10442–10447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia D, Gomez TS, Billadeau DD, Rosen MK (2012) Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol Biol Cell 23:2352–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaksonen M, Toret CP, Drubin DG (2005) A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123:305–320

    Article  CAS  PubMed  Google Scholar 

  • Kast DJ, Zajac AL, Holzbaur EL, Ostap EM, Dominguez R (2015) WHAMM directs the Arp2/3 complex to the ER for autophagosome biogenesis through an actin comet tail mechanism. Curr Biol 25:1791–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerkhoff E (2011) Actin dynamics at intracellular membranes: the Spir/formin nucleator complex. Eur J Cell Biol 90:922–925

    Article  CAS  PubMed  Google Scholar 

  • King JS, Gueho A, Hagedorn M, Gopaldass N, Leuba F, Soldati T, Insall RH (2013) WASH is required for lysosomal recycling and efficient autophagic and phagocytic digestion. Mol Biol Cell 24:2714–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhausen T, Owen D, Harrison SC (2014) Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol 6:a016725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koestler SA, Steffen A, Nemethova M, Winterhoff M, Luo N, Holleboom JM, Krupp J, Jacob S, Vinzenz M, Schur F, Schluter K, Gunning PW, Winkler C, Schmeiser C, Faix J, Stradal TE, Small JV, Rottner K (2013) Arp2/3 complex is essential for actin network treadmilling as well as for targeting of capping protein and cofilin. Mol Biol Cell 24:2861–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause M, Gautreau A (2014) Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 15:577–590

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G (2015) Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Invest 125:1–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn S, Geyer M (2014) Formins as effector proteins of Rho GTPases. Small GTPases 5, e29513

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladwein M, Rottner K (2008) On the Rho'd: the regulation of membrane protrusions by Rho-GTPases. FEBS Lett 582:2066–2074

    Article  CAS  PubMed  Google Scholar 

  • Lammermann T, Sixt M (2009) Mechanical modes of ‘amoeboid’ cell migration. Curr Opin Cell Biol 21:636–644

    Article  PubMed  CAS  Google Scholar 

  • Le Clainche C, Carlier MF (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88:489–513

    Article  PubMed  CAS  Google Scholar 

  • Li X, Garrity AG, Xu H (2013) Regulation of membrane trafficking by signalling on endosomal and lysosomal membranes. J Physiol 591:4389–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linder S, Wiesner C (2015) Feel the force: podosomes in mechanosensing. Exp Cell Res 343:67–72

    Google Scholar 

  • Littlefield R, Almenar-Queralt A, Fowler VM (2001) Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nat Cell Biol 3:544–551

    Article  CAS  PubMed  Google Scholar 

  • Lommel S, Benesch S, Rottner K, Franz T, Wehland J, Kuhn R (2001) Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep 2:850–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Hong W (2014) From endosomes to the trans-Golgi network. Semin Cell Dev Biol 31:30–39

    Article  CAS  PubMed  Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    Article  CAS  PubMed  Google Scholar 

  • McGough IJ, Steinberg F, Jia D, Barbuti PA, McMillan KJ, Heesom KJ, Whone AL, Caldwell MA, Billadeau DD, Rosen MK, Cullen PJ (2014) Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr Biol 24:1670–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza MC, Er EE, Zhang W, Ballif BA, Elliott HL, Danuser G, Blenis J (2011) ERK-MAPK drives lamellipodia protrusion by activating the WAVE2 regulatory complex. Mol Cell 41:661–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrifield CJ, Feldman ME, Wan L, Almers W (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–698

    Article  CAS  PubMed  Google Scholar 

  • Merrifield CJ, Qualmann B, Kessels MM, Almers W (2004) Neural Wiskott Aldrich syndrome protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur J Cell Biol 83:13–18

    Article  CAS  PubMed  Google Scholar 

  • Mi N, Chen Y, Wang S, Chen M, Zhao M, Yang G, Ma M, Su Q, Luo S, Shi J, Xu J, Guo Q, Gao N, Sun Y, Chen Z, Yu L (2015) CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol 17:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Miki H, Sasaki T, Takai Y, Takenawa T (1998) Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391:93–96

    Article  CAS  PubMed  Google Scholar 

  • Monastyrska I, He C, Geng J, Hoppe AD, Li Z, Klionsky DJ (2008) Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell 19:1962–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montaville P, Jegou A, Pernier J, Compper C, Guichard B, Mogessie B, Schuh M, Romet-Lemonne G, Carlier MF (2014) Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. PLoS Biol 12, e1001795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mooren OL, Galletta BJ, Cooper JA (2012) Roles for actin assembly in endocytosis. Annu Rev Biochem 81:661–686

    Article  CAS  PubMed  Google Scholar 

  • Nicholson-Dykstra SM, Higgs HN (2008) Arp2 depletion inhibits sheet-like protrusions but not linear protrusions of fibroblasts and lymphocytes. Cell Motil Cytoskeleton 65:904–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niebuhr K, Ebel F, Frank R, Reinhard M, Domann E, Carl UD, Walter U, Gertler FB, Wehland J, Chakraborty T (1997) A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J 16:5433–5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  CAS  PubMed  Google Scholar 

  • Paluch EK, Raz E (2013) The role and regulation of blebs in cell migration. Curr Opin Cell Biol 25:582–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parenti G, Andria G, Ballabio A (2015) Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med 66:471–486

    Article  CAS  PubMed  Google Scholar 

  • Pellegrin S, Mellor H (2005) The Rho family GTPase Rif induces filopodia through mDia2. Curr Biol 15:129–133

    Article  CAS  PubMed  Google Scholar 

  • Pleines I, Eckly A, Elvers M, Hagedorn I, Eliautou S, Bender M, Wu X, Lanza F, Gachet C, Brakebusch C, Nieswandt B (2010) Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets. Blood 115:3364–3373

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  CAS  PubMed  Google Scholar 

  • Pollitt AY, Insall RH (2009) WASP and SCAR/WAVE proteins: the drivers of actin assembly. J Cell Sci 122:2575–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prehoda KE, Scott JA, Mullins RD, Lim WA (2000) Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290:801–806

    Article  CAS  PubMed  Google Scholar 

  • Quinlan ME (2013) Direct interaction between two actin nucleators is required in Drosophila oogenesis. Development 140:4417–4425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan ME, Heuser JE, Kerkhoff E, Mullins RD (2005) Drosophila spire is an actin nucleation factor. Nature 433:382–388

    Article  CAS  PubMed  Google Scholar 

  • Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265:23–32

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ (2011) Life at the leading edge. Cell 145:1012–1022

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  CAS  PubMed  Google Scholar 

  • Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221–231

    Article  CAS  PubMed  Google Scholar 

  • Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 150:1299–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rottner K, Stradal TE (2011) Actin dynamics and turnover in cell motility. Curr Opin Cell Biol 23:569–578

    Article  CAS  PubMed  Google Scholar 

  • Rottner K, Stradal TE, Wehland J (2005) Bacteria-host-cell interactions at the plasma membrane: stories on actin cytoskeleton subversion. Dev Cell 9:3–17

    Article  CAS  PubMed  Google Scholar 

  • Rottner K, Hanisch J, Campellone KG (2010) WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol 20:650–661

    Article  CAS  PubMed  Google Scholar 

  • Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A, Yin HL (2000) Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol 10:311–320

    Article  CAS  PubMed  Google Scholar 

  • Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H, Sako K, Barone V, Ritsch-Marte M, Sixt M, Voituriez R, Heisenberg CP (2015) Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160:673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo AJ, Mathiowetz AJ, Hong S, Welch MD, Campellone KG (2016) Rab1 recruits WHAMM during membrane remodeling but limits actin nucleation. Mol Biol Cell 27:967–978

    Google Scholar 

  • Sadok A, Marshall CJ (2014) Rho GTPases: masters of cell migration. Small GTPases 5, e29710

    Article  PubMed  PubMed Central  Google Scholar 

  • Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635

    Article  CAS  PubMed  Google Scholar 

  • Schirenbeck A, Bretschneider T, Arasada R, Schleicher M, Faix J (2005) The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat Cell Biol 7:619–625

    Article  CAS  PubMed  Google Scholar 

  • Schluter K, Waschbusch D, Anft M, Hugging D, Kind S, Hanisch J, Lakisic G, Gautreau A, Barnekow A, Stradal TE (2014) JMY is involved in anterograde vesicle trafficking from the trans-Golgi network. Eur J Cell Biol 93:194–204

    Article  PubMed  CAS  Google Scholar 

  • Schnittler H, Taha M, Schnittler MO, Taha AA, Lindemann N, Seebach J (2014) Actin filament dynamics and endothelial cell junctions: the Ying and Yang between stabilization and motion. Cell Tissue Res 355:529–543

    Article  CAS  PubMed  Google Scholar 

  • Scita G, Tenca P, Frittoli E, Tocchetti A, Innocenti M, Giardina G, Di Fiore PP (2000) Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO J 19:2393–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaman MN, Gautreau A, Billadeau DD (2013) Retromer-mediated endosomal protein sorting: all WASHed up! Trends Cell Biol 23:522–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen QT, Hsiue PP, Sindelar CV, Welch MD, Campellone KG, Wang HW (2012) Structural insights into WHAMM-mediated cytoskeletal coordination during membrane remodeling. J Cell Biol 199:111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikama N, Lee CW, France S, Delavaine L, Lyon J, Krstic-Demonacos M, La Thangue NB (1999) A novel cofactor for p300 that regulates the p53 response. Mol Cell 4:365–376

    Article  CAS  PubMed  Google Scholar 

  • Skau CT, Waterman CM (2015) Specification of architecture and function of actin structures by actin nucleation factors. Annu Rev Biophys 44:285–310

    Article  CAS  PubMed  Google Scholar 

  • Skwarek-Maruszewska A, Hotulainen P, Mattila PK, Lappalainen P (2009) Contractility-dependent actin dynamics in cardiomyocyte sarcomeres. J Cell Sci 122:2119–2126

    Article  CAS  PubMed  Google Scholar 

  • Small JV, Rottner K, Kaverina I (1999) Functional design in the actin cytoskeleton. Curr Opin Cell Biol 11:54–60

    Article  CAS  PubMed  Google Scholar 

  • Small JV, Stradal T, Vignal E, Rottner K (2002) The lamellipodium: where motility begins. Trends Cell Biol 12:112–120

    Article  CAS  PubMed  Google Scholar 

  • Steffen A, Rottner K, Ehinger J, Innocenti M, Scita G, Wehland J, Stradal TE (2004) Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J 23:749–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffen A, Faix J, Resch GP, Linkner J, Wehland J, Small JV, Rottner K, Stradal TE (2006) Filopodia formation in the absence of functional WAVE- and Arp2/3-complexes. Mol Biol Cell 17:2581–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffen A, Ladwein M, Dimchev GA, Hein A, Schwenkmezger L, Arens S, Ladwein KI, Margit Holleboom J, Schur F, Victor Small J, Schwarz J, Gerhard R, Faix J, Stradal TE, Brakebusch C, Rottner K (2013) Rac function is crucial for cell migration but is not required for spreading and focal adhesion formation. J Cell Sci 126:4572–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stradal TE, Scita G (2006) Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol 18:4–10

    Article  CAS  PubMed  Google Scholar 

  • Suraneni P, Rubinstein B, Unruh JR, Durnin M, Hanein D, Li R (2012) The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J Cell Biol 197:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160:409–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9:639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428

    Article  CAS  PubMed  Google Scholar 

  • Taunton J, Rowning BA, Coughlin ML, Wu M, Moon RT, Mitchison TJ, Larabell CA (2000) Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J Cell Biol 148:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trousdale C, Kim K (2015) Retromer: structure, function, and roles in mammalian disease. Eur J Cell Biol 94:513–521

    Article  CAS  PubMed  Google Scholar 

  • Vallenius T (2013) Actin stress fibre subtypes in mesenchymal-migrating cells. Open Biol 3:130001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vignjevic D, Kojima S, Aratyn Y, Danciu O, Svitkina T, Borisy GG (2006) Role of fascin in filopodial protrusion. J Cell Biol 174:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakayama Y, Fukuhara S, Ando K, Matsuda M, Mochizuki N (2015) Cdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell 32:109–122

    Article  CAS  PubMed  Google Scholar 

  • Welch MD, Way M (2013) Arp2/3-mediated actin-based motility: a tail of pathogen abuse. Cell Host Microbe 14:242–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkelman JD, Bilancia CG, Peifer M, Kovar DR (2014) Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin. Proc Natl Acad Sci U S A 111:4121–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Asokan SB, Berginski ME, Haynes EM, Sharpless NE, Griffith JD, Gomez SM, Bear JE (2012) Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148:973–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyse MM, Lei J, Nestor-Kalinoski AL, Eisenmann KM (2012) Dia-interacting protein (DIP) imposes migratory plasticity in mDia2-dependent tumor cells in three-dimensional matrices. PLoS One 7, e45085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia P, Wang S, Du Y, Zhao Z, Shi L, Sun L, Huang G, Ye B, Li C, Dai Z, Hou N, Cheng X, Sun Q, Li L, Yang X, Fan Z (2013) WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J 32:2685–2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, Segall J, Eddy R, Miki H, Takenawa T, Condeelis J (2005) Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 168:441–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Svitkina T (2011) Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adh Migr 5:402–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang C, Czech L, Gerboth S, Kojima S, Scita G, Svitkina T (2007) Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol 5, e317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young LE, Heimsath EG, Higgs HN (2015) Cell type-dependent mechanisms for formin-mediated assembly of filopodia. Mol Biol Cell 26:4646–4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, Harbour ME, Rubinsztein DC (2014a) Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat Commun 5:3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavodszky E, Seaman MN, Rubinsztein DC (2014b) VPS35 Parkinson mutation impairs autophagy via WASH. Cell Cycle 13:2155–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XJ, Chen S, Huang KX, Le WD (2013) Why should autophagic flux be assessed? Acta Pharmacol Sin 34:595–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuchero JB, Coutts AS, Quinlan ME, Thangue NB, Mullins RD (2009) p53-cofactor JMY is a multifunctional actin nucleation factor. Nat Cell Biol 11:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresia E. B. Stradal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steffen, A., Stradal, T.E.B., Rottner, K. (2016). Signalling Pathways Controlling Cellular Actin Organization. In: Jockusch, B. (eds) The Actin Cytoskeleton. Handbook of Experimental Pharmacology, vol 235. Springer, Cham. https://doi.org/10.1007/164_2016_35

Download citation

Publish with us

Policies and ethics