Skip to main content

Histamine Clearance Through Polyspecific Transporters in the Brain

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 241))

Abstract

Histamine plays an important role as a neurotransmitter in diverse brain functions, and clearance of histamine is essential to avoid excessive histaminergic neuronal activity. Histamine N-methyltransferase, which is an enzyme in the central nervous system that metabolizes histamine, is localized to the cytosol. This suggests that a histamine transport process is essential to inactivate histamine. Previous reports have shown the importance of astrocytes for histamine transport, although neuronal histamine transport could not be ruled out. High-affinity and selective histamine transporters have not yet been discovered, although it has been reported that the following three polyspecific transporters transport histamine: organic cation transporter (OCT) 2, OCT3, and plasma membrane monoamine transporter (PMAT). The K m values of human OCT2, OCT3, and PMAT are 0.54, 0.64, and 4.4 mM, respectively. The three transporters are expressed in the brain, and their regional distribution is different. Recent studies revealed the contribution of OCT3 and PMAT to histamine transport by primary human astrocytes. Several investigations using mice supported the importance of OCT3 for histamine clearance in the brain. However, further studies are required to elucidate the detailed mechanism of histamine transport in the brain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamsen D, Ramaekers V, Ho HT, Britschgi C, Rufenacht V, Meili D, Bobrowski E, Philippe P, Nava C, Van Maldergem L, Bruggmann R, Walitza S, Wang J, Grunblatt E, Thony B (2014) Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Mol Autism 5:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambroziak W, Pietruszko R (1987) Human aldehyde dehydrogenase: metabolism of putrescine and histamine. Alcohol Clin Exp Res 11:528–532

    Article  CAS  PubMed  Google Scholar 

  • Amphoux A, Vialou V, Drescher E, Bruss M, Mannoury La Cour C, Rochat C, Millan MJ, Giros B, Bonisch H, Gautron S (2006) Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology 50:941–952

    Article  CAS  PubMed  Google Scholar 

  • Bacq A, Balasse L, Biala G, Guiard B, Gardier AM, Schinkel A, Louis F, Vialou V, Martres MP, Chevarin C, Hamon M, Giros B, Gautron S (2012) Organic cation transporter 2 controls brain norepinephrine and serotonin clearance and antidepressant response. Mol Psychiatry 17:926–939

    Article  CAS  PubMed  Google Scholar 

  • Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT, Koldzic-Zivanovic N, Jeske NA, Koek W, Toney GM, Daws LC (2008) Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci U S A 105:18976–18981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes WG, Hough LB (2002) Membrane-bound histamine N-methyltransferase in mouse brain: possible role in the synaptic inactivation of neuronal histamine. J Neurochem 82:1262–1271

    Article  CAS  PubMed  Google Scholar 

  • Belzer M, Morales M, Jagadish B, Mash EA, Wright SH (2013) Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J Pharmacol Exp Ther 346:300–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DD, Tomchick R, Axelrod J (1959) The distribution and properties of a histamine-methylating enzyme. J Biol Chem 234:2948–2950

    CAS  PubMed  Google Scholar 

  • Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 18:4854–4860

    CAS  PubMed  Google Scholar 

  • Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, Arndt P, Ulzheimer JC, Sonders MS, Baumann C, Waldegger S, Lang F, Koepsell H (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 54:342–352

    CAS  PubMed  Google Scholar 

  • Cetinkaya I, Ciarimboli G, Yalcinkaya G, Mehrens T, Velic A, Hirsch JR, Gorboulev V, Koepsell H, Schlatter E (2003) Regulation of human organic cation transporter hOCT2 by PKA, PI3K, and calmodulin-dependent kinases. Am J Physiol Renal Physiol 284:F293–F302

    Article  CAS  PubMed  Google Scholar 

  • Ciarimboli G, Schlatter E (2005) Regulation of organic cation transport. Pflugers Arch 449:423–441

    Article  CAS  PubMed  Google Scholar 

  • Courousse T, Bacq A, Belzung C, Guiard B, Balasse L, Louis F, Le Guisquet AM, Gardier AM, Schinkel AH, Giros B, Gautron S (2015) Brain organic cation transporter 2 controls response and vulnerability to stress and GSK3beta signaling. Mol Psychiatry 20:889–900

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Aras R, Christian WV, Rappold PM, Hatwar M, Panza J, Jackson-Lewis V, Javitch JA, Ballatori N, Przedborski S, Tieu K (2009) The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci U S A 106:8043–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlin A, Xia L, Kong W, Hevner R, Wang J (2007) Expression and immunolocalization of the plasma membrane monoamine transporter in the brain. Neuroscience 146:1193–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daws LC (2009) Unfaithful neurotransmitter transporters: focus on serotonin uptake and implications for antidepressant efficacy. Pharmacol Ther 121:89–99

    Article  CAS  PubMed  Google Scholar 

  • Daws LC, Koek W, Mitchell NC (2013) Revisiting serotonin reuptake inhibitors and the therapeutic potential of “uptake-2” in psychiatric disorders. ACS Chem Neurosci 4:16–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan H, Wang J (2010) Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther 335:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan H, Wang J (2013) Impaired monoamine and organic cation uptake in choroid plexus in mice with targeted disruption of the plasma membrane monoamine transporter (Slc29a4) gene. J Biol Chem 288:3535–3544

    Article  CAS  PubMed  Google Scholar 

  • Engel K, Zhou M, Wang J (2004) Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem 279:50042–50049

    Article  CAS  PubMed  Google Scholar 

  • Ercan-Sencicek AG, Stillman AA, Ghosh AK, Bilguvar K, O’Roak BJ, Mason CE, Abbott T, Gupta A, King RA, Pauls DL, Tischfield JA, Heiman GA, Singer HS, Gilbert DL, Hoekstra PJ, Morgan TM, Loring E, Yasuno K, Fernandez T, Sanders S, Louvi A, Cho JH, Mane S, Colangelo CM, Biederer T, Lifton RP, Gunel M, State MW (2010) L-histidine decarboxylase and Tourette’s syndrome. N Engl J Med 362:1901–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser PJ, Lowry CA, Orchinik M (2006) Corticosterone-sensitive monoamine transport in the rat dorsomedial hypothalamus: potential role for organic cation transporter 3 in stress-induced modulation of monoaminergic neurotransmission. J Neurosci 26:8758–8766

    Article  CAS  PubMed  Google Scholar 

  • Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881

    Article  CAS  PubMed  Google Scholar 

  • Grundemann D, Koster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F, Obermuller N, Schomig E (1998a) Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem 273:30915–30920

    Article  CAS  PubMed  Google Scholar 

  • Grundemann D, Schechinger B, Rappold GA, Schomig E (1998b) Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci 1:349–351

    Article  CAS  PubMed  Google Scholar 

  • Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241

    Article  CAS  PubMed  Google Scholar 

  • Haenisch B, Bonisch H (2010) Interaction of the human plasma membrane monoamine transporter (hPMAT) with antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol 381:33–39

    Article  CAS  PubMed  Google Scholar 

  • Hayer-Zillgen M, Bruss M, Bonisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136:829–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hesterberg R, Sattler J, Lorenz W, Stahlknecht CD, Barth H, Crombach M, Weber D (1984) Histamine content, diamine oxidase activity and histamine methyltransferase activity in human tissues: fact or fictions? Agents Actions 14:325–334

    Article  CAS  PubMed  Google Scholar 

  • Ho HT, Wang J (2010) Tyrosine 112 is essential for organic cation transport by the plasma membrane monoamine transporter. Biochemistry 49:7839–7846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho HT, Xia L, Wang J (2012) Residue Ile89 in human plasma membrane monoamine transporter influences its organic cation transport activity and sensitivity to inhibition by dilazep. Biochem Pharmacol 84:383–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton JR, Sawada K, Nishibori M, Zhang X, Cheng X (2001) Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons. Structure 9:837–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton RE, Apple DM, Owens WA, Baganz NL, Cano S, Mitchell NC, Vitela M, Gould GG, Koek W, Daws LC (2013) Decynium-22 enhances SSRI-induced antidepressant-like effects in mice: uncovering novel targets to treat depression. J Neurosci 33:10534–10543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huszti Z, Imrik P, Madarasz E (1994) [3H]histamine uptake and release by astrocytes from rat brain: effects of sodium deprivation, high potassium, and potassium channel blockers. Neurochem Res 19:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Huszti Z, Prast H, Tran MH, Fischer H, Philippu A (1998) Glial cells participate in histamine inactivation in vivo. Naunyn Schmiedebergs Arch Pharmacol 357:49–53

    Article  CAS  PubMed  Google Scholar 

  • Iversen LL (1965) The uptake of catechol amines at high perfusion concentrations in the rat isolated heart: a novel catechol amine uptake process. Br J Pharmacol Chemother 25:18–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, Ganapathy V (1998) Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem 273:15971–15979

    Article  CAS  PubMed  Google Scholar 

  • Kitanaka J, Kitanaka N, Tatsuta T, Morita Y, Takemura M (2007) Blockade of brain histamine metabolism alters methamphetamine-induced expression pattern of stereotypy in mice via histamine H1 receptors. Neuroscience 147:765–777

    Article  CAS  PubMed  Google Scholar 

  • Klocker J, Matzler SA, Huetz GN, Drasche A, Kolbitsch C, Schwelberger HG (2005) Expression of histamine degrading enzymes in porcine tissues. Inflamm Res 54(Suppl 1):S54–S57

    Article  CAS  PubMed  Google Scholar 

  • Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 34:413–435

    Article  CAS  PubMed  Google Scholar 

  • Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36–90

    Article  CAS  PubMed  Google Scholar 

  • Lim HD, van Rijn RM, Ling P, Bakker RA, Thurmond RL, Leurs R (2005) Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther 314:1310–1321

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Kitahama K, Fort P, Panula P, Denney RM, Jouvet M (1993) Histaminergic system in the cat hypothalamus with reference to type B monoamine oxidase. J Comp Neurol 330:405–420

    Article  CAS  PubMed  Google Scholar 

  • Maintz L, Novak N (2007) Histamine and histamine intolerance. Am J Clin Nutr 85:1185–1196

    CAS  PubMed  Google Scholar 

  • Matthaeus F, Schloss P, Lau T (2015) Differential uptake mechanisms of fluorescent substrates into stem-cell-derived serotonergic neurons. ACS Chem Neurosci 6:1906–1912

    Article  CAS  PubMed  Google Scholar 

  • McGrath AP, Hilmer KM, Collyer CA, Shepard EM, Elmore BO, Brown DE, Dooley DM, Guss JM (2009) Structure and inhibition of human diamine oxidase. Biochemistry 48:9810–9822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motohashi H, Inui K (2013) Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J 15:581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874

    CAS  PubMed  Google Scholar 

  • Naganuma F, Yoshikawa T, Nakamura T, Iida T, Harada R, Mohsen AS, Miura Y, Yanai K (2014) Predominant role of plasma membrane monoamine transporters in monoamine transport in 1321N1, a human astrocytoma-derived cell line. J Neurochem 129:591–601

    Article  CAS  PubMed  Google Scholar 

  • Nakata T, Matsui T, Kobayashi K, Kobayashi Y, Anzai N (2013) Organic cation transporter 2 (SLC22A2), a low-affinity and high-capacity choline transporter, is preferentially enriched on synaptic vesicles in cholinergic neurons. Neuroscience 252:212–221

    Article  CAS  PubMed  Google Scholar 

  • Nishibori M, Tahara A, Sawada K, Sakiyama J, Nakaya N, Saeki K (2000) Neuronal and vascular localization of histamine N-methyltransferase in the bovine central nervous system. Eur J Neurosci 12:415–424

    Article  CAS  PubMed  Google Scholar 

  • Nishino S, Sakurai E, Nevsimalova S, Yoshida Y, Watanabe T, Yanai K, Mignot E (2009) Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 32:175–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogasawara K, Terada T, Asaka J, Katsura T, Inui K (2006a) Human organic anion transporter 3 gene is regulated constitutively and inducibly via a cAMP-response element. J Pharmacol Exp Ther 319:317–322

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara M, Yamauchi K, Satoh Y, Yamaji R, Inui K, Jonker JW, Schinkel AH, Maeyama K (2006b) Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism. J Pharmacol Sci 101:24–30

    Article  CAS  PubMed  Google Scholar 

  • Okuda M, Saito H, Urakami Y, Takano M, Inui K (1996) cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun 224:500–507

    Article  CAS  PubMed  Google Scholar 

  • Panula P, Rinne J, Kuokkanen K, Eriksson KS, Sallmen T, Kalimo H, Relja M (1998) Neuronal histamine deficit in Alzheimer’s disease. Neuroscience 82:993–997

    Article  CAS  PubMed  Google Scholar 

  • Perdan-Pirkmajer K, Pirkmajer S, Raztresen A, Krzan M (2013) Regional characteristics of histamine uptake into neonatal rat astrocytes. Neurochem Res 38:1348–1359

    Article  CAS  PubMed  Google Scholar 

  • Rafalowska U, Waskiewicz J, Albrecht J (1987) Is neurotransmitter histamine predominantly inactivated in astrocytes? Neurosci Lett 80:106–110

    Article  CAS  PubMed  Google Scholar 

  • Sakurai E, Sakurai E, Oreland L, Nishiyama S, Kato M, Watanabe T, Yanai K (2006) Evidence for the presence of histamine uptake into the synaptosomes of rat brain. Pharmacology 78:72–80

    Article  CAS  PubMed  Google Scholar 

  • Schomig E, Lazar A, Grundemann D (2006) Extraneuronal monoamine transporter and organic cation transporters 1 and 2: a review of transport efficiency. Handb Exp Pharmacol 151–80

    Google Scholar 

  • Shan L, Bossers K, Unmehopa U, Bao AM, Swaab DF (2012) Alterations in the histaminergic system in Alzheimer’s disease: a postmortem study. Neurobiol Aging 33:2585–2598

    Article  CAS  PubMed  Google Scholar 

  • Stevenson J, Sonuga-Barke E, McCann D, Grimshaw K, Parker KM, Rose-Zerilli MJ, Holloway JW, Warner JO (2010) The role of histamine degradation gene polymorphisms in moderating the effects of food additives on children’s ADHD symptoms. Am J Psychiatry 167:1108–1115

    Article  PubMed  Google Scholar 

  • Takeda H, Inazu M, Matsumiya T (2002) Astroglial dopamine transport is mediated by norepinephrine transporter. Naunyn Schmiedebergs Arch Pharmacol 366:620–623

    Article  CAS  PubMed  Google Scholar 

  • Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25

    Article  CAS  PubMed  Google Scholar 

  • Vaughan RA, Foster JD (2013) Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci 34:489–496

    Article  CAS  PubMed  Google Scholar 

  • Vialou V, Balasse L, Dumas S, Giros B, Gautron S (2007) Neurochemical characterization of pathways expressing plasma membrane monoamine transporter in the rat brain. Neuroscience 144:616–622

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295:13–25

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V (1998) Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem 273:32776–32786

    Article  CAS  PubMed  Google Scholar 

  • Wu KC, Lu YH, Peng YH, Hsu LC, Lin CJ (2015) Effects of lipopolysaccharide on the expression of plasma membrane monoamine transporter (PMAT) at the blood-brain barrier and its implications to the transport of neurotoxins. J Neurochem 135:1178–1188

    Article  CAS  PubMed  Google Scholar 

  • Wultsch T, Grimberg G, Schmitt A, Painsipp E, Wetzstein H, Breitenkamp AF, Grundemann D, Schomig E, Lesch KP, Gerlach M, Reif A (2009) Decreased anxiety in mice lacking the organic cation transporter 3. J Neural Transm 116:689–697

    Article  CAS  PubMed  Google Scholar 

  • Yanai K, Tashiro M (2007) The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther 113:1–15

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Liu C, Zhang J, Han H, Wang X, Liu Z, Xu Y (2015) Association of histamine N-methyltransferase Thr105Ile polymorphism with Parkinson’s disease and schizophrenia in Han Chinese: a case-control study. PLoS One 10, e0119692

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa T, Naganuma F, Iida T, Nakamura T, Harada R, Mohsen AS, Kasajima A, Sasano H, Yanai K (2013) Molecular mechanism of histamine clearance by primary human astrocytes. Glia 61:905–916

    Article  PubMed  Google Scholar 

  • Yoshizawa M, Tashiro M, Fukudo S, Yanai K, Utsumi A, Kano M, Karahasi M, Endo Y, Morisita J, Sato Y, Adachi M, Itoh M, Hongo M (2009) Increased brain histamine H1 receptor binding in patients with anorexia nervosa. Biol Psychiatry 65:329–335

    Article  CAS  PubMed  Google Scholar 

  • Zarate C, Duman RS, Liu G, Sartori S, Quiroz J, Murck H (2013) New paradigms for treatment-resistant depression. Ann N Y Acad Sci 1292:21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Danbolt NC (2013) GABA and Glutamate Transporters in Brain. Front Endocrinol (Lausanne) 4:165

    Google Scholar 

  • Zhu P, Hata R, Ogasawara M, Cao F, Kameda K, Yamauchi K, Schinkel AH, Maeyama K, Sakanaka M (2012) Targeted disruption of organic cation transporter 3 (Oct3) ameliorates ischemic brain damage through modulating histamine and regulatory T cells. J Cereb Blood Flow Metab 32:1897–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Yoshikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 SpringerInternationalPublishingSwitzerland

About this chapter

Cite this chapter

Yoshikawa, T., Yanai, K. (2016). Histamine Clearance Through Polyspecific Transporters in the Brain. In: Hattori, Y., Seifert, R. (eds) Histamine and Histamine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 241. Springer, Cham. https://doi.org/10.1007/164_2016_13

Download citation

Publish with us

Policies and ethics