Histamine Clearance Through Polyspecific Transporters in the Brain

  • Takeo YoshikawaEmail author
  • Kazuhiko Yanai
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 241)


Histamine plays an important role as a neurotransmitter in diverse brain functions, and clearance of histamine is essential to avoid excessive histaminergic neuronal activity. Histamine N-methyltransferase, which is an enzyme in the central nervous system that metabolizes histamine, is localized to the cytosol. This suggests that a histamine transport process is essential to inactivate histamine. Previous reports have shown the importance of astrocytes for histamine transport, although neuronal histamine transport could not be ruled out. High-affinity and selective histamine transporters have not yet been discovered, although it has been reported that the following three polyspecific transporters transport histamine: organic cation transporter (OCT) 2, OCT3, and plasma membrane monoamine transporter (PMAT). The K m values of human OCT2, OCT3, and PMAT are 0.54, 0.64, and 4.4 mM, respectively. The three transporters are expressed in the brain, and their regional distribution is different. Recent studies revealed the contribution of OCT3 and PMAT to histamine transport by primary human astrocytes. Several investigations using mice supported the importance of OCT3 for histamine clearance in the brain. However, further studies are required to elucidate the detailed mechanism of histamine transport in the brain.


Diamine oxidase Histamine Histamine N-methyltransferase Organic cation transporter 2 Organic cation transporter 3 Plasma membrane monoamine transporter Polyspecific transporter 


  1. Adamsen D, Ramaekers V, Ho HT, Britschgi C, Rufenacht V, Meili D, Bobrowski E, Philippe P, Nava C, Van Maldergem L, Bruggmann R, Walitza S, Wang J, Grunblatt E, Thony B (2014) Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Mol Autism 5:43CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ambroziak W, Pietruszko R (1987) Human aldehyde dehydrogenase: metabolism of putrescine and histamine. Alcohol Clin Exp Res 11:528–532CrossRefPubMedGoogle Scholar
  3. Amphoux A, Vialou V, Drescher E, Bruss M, Mannoury La Cour C, Rochat C, Millan MJ, Giros B, Bonisch H, Gautron S (2006) Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology 50:941–952CrossRefPubMedGoogle Scholar
  4. Bacq A, Balasse L, Biala G, Guiard B, Gardier AM, Schinkel A, Louis F, Vialou V, Martres MP, Chevarin C, Hamon M, Giros B, Gautron S (2012) Organic cation transporter 2 controls brain norepinephrine and serotonin clearance and antidepressant response. Mol Psychiatry 17:926–939CrossRefPubMedGoogle Scholar
  5. Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT, Koldzic-Zivanovic N, Jeske NA, Koek W, Toney GM, Daws LC (2008) Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci U S A 105:18976–18981CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barnes WG, Hough LB (2002) Membrane-bound histamine N-methyltransferase in mouse brain: possible role in the synaptic inactivation of neuronal histamine. J Neurochem 82:1262–1271CrossRefPubMedGoogle Scholar
  7. Belzer M, Morales M, Jagadish B, Mash EA, Wright SH (2013) Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J Pharmacol Exp Ther 346:300–310CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brown DD, Tomchick R, Axelrod J (1959) The distribution and properties of a histamine-methylating enzyme. J Biol Chem 234:2948–2950PubMedGoogle Scholar
  9. Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 18:4854–4860PubMedGoogle Scholar
  10. Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, Arndt P, Ulzheimer JC, Sonders MS, Baumann C, Waldegger S, Lang F, Koepsell H (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 54:342–352PubMedGoogle Scholar
  11. Cetinkaya I, Ciarimboli G, Yalcinkaya G, Mehrens T, Velic A, Hirsch JR, Gorboulev V, Koepsell H, Schlatter E (2003) Regulation of human organic cation transporter hOCT2 by PKA, PI3K, and calmodulin-dependent kinases. Am J Physiol Renal Physiol 284:F293–F302CrossRefPubMedGoogle Scholar
  12. Ciarimboli G, Schlatter E (2005) Regulation of organic cation transport. Pflugers Arch 449:423–441CrossRefPubMedGoogle Scholar
  13. Courousse T, Bacq A, Belzung C, Guiard B, Balasse L, Louis F, Le Guisquet AM, Gardier AM, Schinkel AH, Giros B, Gautron S (2015) Brain organic cation transporter 2 controls response and vulnerability to stress and GSK3beta signaling. Mol Psychiatry 20:889–900CrossRefPubMedGoogle Scholar
  14. Cui M, Aras R, Christian WV, Rappold PM, Hatwar M, Panza J, Jackson-Lewis V, Javitch JA, Ballatori N, Przedborski S, Tieu K (2009) The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci U S A 106:8043–8048CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dahlin A, Xia L, Kong W, Hevner R, Wang J (2007) Expression and immunolocalization of the plasma membrane monoamine transporter in the brain. Neuroscience 146:1193–1211CrossRefPubMedPubMedCentralGoogle Scholar
  16. Daws LC (2009) Unfaithful neurotransmitter transporters: focus on serotonin uptake and implications for antidepressant efficacy. Pharmacol Ther 121:89–99CrossRefPubMedGoogle Scholar
  17. Daws LC, Koek W, Mitchell NC (2013) Revisiting serotonin reuptake inhibitors and the therapeutic potential of “uptake-2” in psychiatric disorders. ACS Chem Neurosci 4:16–21CrossRefPubMedPubMedCentralGoogle Scholar
  18. Duan H, Wang J (2010) Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther 335:743–753CrossRefPubMedPubMedCentralGoogle Scholar
  19. Duan H, Wang J (2013) Impaired monoamine and organic cation uptake in choroid plexus in mice with targeted disruption of the plasma membrane monoamine transporter (Slc29a4) gene. J Biol Chem 288:3535–3544CrossRefPubMedGoogle Scholar
  20. Engel K, Zhou M, Wang J (2004) Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem 279:50042–50049CrossRefPubMedGoogle Scholar
  21. Ercan-Sencicek AG, Stillman AA, Ghosh AK, Bilguvar K, O’Roak BJ, Mason CE, Abbott T, Gupta A, King RA, Pauls DL, Tischfield JA, Heiman GA, Singer HS, Gilbert DL, Hoekstra PJ, Morgan TM, Loring E, Yasuno K, Fernandez T, Sanders S, Louvi A, Cho JH, Mane S, Colangelo CM, Biederer T, Lifton RP, Gunel M, State MW (2010) L-histidine decarboxylase and Tourette’s syndrome. N Engl J Med 362:1901–1908CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gasser PJ, Lowry CA, Orchinik M (2006) Corticosterone-sensitive monoamine transport in the rat dorsomedial hypothalamus: potential role for organic cation transporter 3 in stress-induced modulation of monoaminergic neurotransmission. J Neurosci 26:8758–8766CrossRefPubMedGoogle Scholar
  23. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881CrossRefPubMedGoogle Scholar
  24. Grundemann D, Koster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F, Obermuller N, Schomig E (1998a) Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem 273:30915–30920CrossRefPubMedGoogle Scholar
  25. Grundemann D, Schechinger B, Rappold GA, Schomig E (1998b) Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci 1:349–351CrossRefPubMedGoogle Scholar
  26. Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241CrossRefPubMedGoogle Scholar
  27. Haenisch B, Bonisch H (2010) Interaction of the human plasma membrane monoamine transporter (hPMAT) with antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol 381:33–39CrossRefPubMedGoogle Scholar
  28. Hayer-Zillgen M, Bruss M, Bonisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136:829–836CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hesterberg R, Sattler J, Lorenz W, Stahlknecht CD, Barth H, Crombach M, Weber D (1984) Histamine content, diamine oxidase activity and histamine methyltransferase activity in human tissues: fact or fictions? Agents Actions 14:325–334CrossRefPubMedGoogle Scholar
  30. Ho HT, Wang J (2010) Tyrosine 112 is essential for organic cation transport by the plasma membrane monoamine transporter. Biochemistry 49:7839–7846CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ho HT, Xia L, Wang J (2012) Residue Ile89 in human plasma membrane monoamine transporter influences its organic cation transport activity and sensitivity to inhibition by dilazep. Biochem Pharmacol 84:383–390CrossRefPubMedPubMedCentralGoogle Scholar
  32. Horton JR, Sawada K, Nishibori M, Zhang X, Cheng X (2001) Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons. Structure 9:837–849CrossRefPubMedPubMedCentralGoogle Scholar
  33. Horton RE, Apple DM, Owens WA, Baganz NL, Cano S, Mitchell NC, Vitela M, Gould GG, Koek W, Daws LC (2013) Decynium-22 enhances SSRI-induced antidepressant-like effects in mice: uncovering novel targets to treat depression. J Neurosci 33:10534–10543CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huszti Z, Imrik P, Madarasz E (1994) [3H]histamine uptake and release by astrocytes from rat brain: effects of sodium deprivation, high potassium, and potassium channel blockers. Neurochem Res 19:1249–1256CrossRefPubMedGoogle Scholar
  35. Huszti Z, Prast H, Tran MH, Fischer H, Philippu A (1998) Glial cells participate in histamine inactivation in vivo. Naunyn Schmiedebergs Arch Pharmacol 357:49–53CrossRefPubMedGoogle Scholar
  36. Iversen LL (1965) The uptake of catechol amines at high perfusion concentrations in the rat isolated heart: a novel catechol amine uptake process. Br J Pharmacol Chemother 25:18–33CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, Ganapathy V (1998) Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem 273:15971–15979CrossRefPubMedGoogle Scholar
  38. Kitanaka J, Kitanaka N, Tatsuta T, Morita Y, Takemura M (2007) Blockade of brain histamine metabolism alters methamphetamine-induced expression pattern of stereotypy in mice via histamine H1 receptors. Neuroscience 147:765–777CrossRefPubMedGoogle Scholar
  39. Klocker J, Matzler SA, Huetz GN, Drasche A, Kolbitsch C, Schwelberger HG (2005) Expression of histamine degrading enzymes in porcine tissues. Inflamm Res 54(Suppl 1):S54–S57CrossRefPubMedGoogle Scholar
  40. Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 34:413–435CrossRefPubMedGoogle Scholar
  41. Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36–90CrossRefPubMedGoogle Scholar
  42. Lim HD, van Rijn RM, Ling P, Bakker RA, Thurmond RL, Leurs R (2005) Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther 314:1310–1321CrossRefPubMedGoogle Scholar
  43. Lin JS, Kitahama K, Fort P, Panula P, Denney RM, Jouvet M (1993) Histaminergic system in the cat hypothalamus with reference to type B monoamine oxidase. J Comp Neurol 330:405–420CrossRefPubMedGoogle Scholar
  44. Maintz L, Novak N (2007) Histamine and histamine intolerance. Am J Clin Nutr 85:1185–1196PubMedGoogle Scholar
  45. Matthaeus F, Schloss P, Lau T (2015) Differential uptake mechanisms of fluorescent substrates into stem-cell-derived serotonergic neurons. ACS Chem Neurosci 6:1906–1912CrossRefPubMedGoogle Scholar
  46. McGrath AP, Hilmer KM, Collyer CA, Shepard EM, Elmore BO, Brown DE, Dooley DM, Guss JM (2009) Structure and inhibition of human diamine oxidase. Biochemistry 48:9810–9822CrossRefPubMedPubMedCentralGoogle Scholar
  47. Motohashi H, Inui K (2013) Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J 15:581–588CrossRefPubMedPubMedCentralGoogle Scholar
  48. Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874PubMedGoogle Scholar
  49. Naganuma F, Yoshikawa T, Nakamura T, Iida T, Harada R, Mohsen AS, Miura Y, Yanai K (2014) Predominant role of plasma membrane monoamine transporters in monoamine transport in 1321N1, a human astrocytoma-derived cell line. J Neurochem 129:591–601CrossRefPubMedGoogle Scholar
  50. Nakata T, Matsui T, Kobayashi K, Kobayashi Y, Anzai N (2013) Organic cation transporter 2 (SLC22A2), a low-affinity and high-capacity choline transporter, is preferentially enriched on synaptic vesicles in cholinergic neurons. Neuroscience 252:212–221CrossRefPubMedGoogle Scholar
  51. Nishibori M, Tahara A, Sawada K, Sakiyama J, Nakaya N, Saeki K (2000) Neuronal and vascular localization of histamine N-methyltransferase in the bovine central nervous system. Eur J Neurosci 12:415–424CrossRefPubMedGoogle Scholar
  52. Nishino S, Sakurai E, Nevsimalova S, Yoshida Y, Watanabe T, Yanai K, Mignot E (2009) Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 32:175–180CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ogasawara K, Terada T, Asaka J, Katsura T, Inui K (2006a) Human organic anion transporter 3 gene is regulated constitutively and inducibly via a cAMP-response element. J Pharmacol Exp Ther 319:317–322CrossRefPubMedGoogle Scholar
  54. Ogasawara M, Yamauchi K, Satoh Y, Yamaji R, Inui K, Jonker JW, Schinkel AH, Maeyama K (2006b) Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism. J Pharmacol Sci 101:24–30CrossRefPubMedGoogle Scholar
  55. Okuda M, Saito H, Urakami Y, Takano M, Inui K (1996) cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun 224:500–507CrossRefPubMedGoogle Scholar
  56. Panula P, Rinne J, Kuokkanen K, Eriksson KS, Sallmen T, Kalimo H, Relja M (1998) Neuronal histamine deficit in Alzheimer’s disease. Neuroscience 82:993–997CrossRefPubMedGoogle Scholar
  57. Perdan-Pirkmajer K, Pirkmajer S, Raztresen A, Krzan M (2013) Regional characteristics of histamine uptake into neonatal rat astrocytes. Neurochem Res 38:1348–1359CrossRefPubMedGoogle Scholar
  58. Rafalowska U, Waskiewicz J, Albrecht J (1987) Is neurotransmitter histamine predominantly inactivated in astrocytes? Neurosci Lett 80:106–110CrossRefPubMedGoogle Scholar
  59. Sakurai E, Sakurai E, Oreland L, Nishiyama S, Kato M, Watanabe T, Yanai K (2006) Evidence for the presence of histamine uptake into the synaptosomes of rat brain. Pharmacology 78:72–80CrossRefPubMedGoogle Scholar
  60. Schomig E, Lazar A, Grundemann D (2006) Extraneuronal monoamine transporter and organic cation transporters 1 and 2: a review of transport efficiency. Handb Exp Pharmacol 151–80Google Scholar
  61. Shan L, Bossers K, Unmehopa U, Bao AM, Swaab DF (2012) Alterations in the histaminergic system in Alzheimer’s disease: a postmortem study. Neurobiol Aging 33:2585–2598CrossRefPubMedGoogle Scholar
  62. Stevenson J, Sonuga-Barke E, McCann D, Grimshaw K, Parker KM, Rose-Zerilli MJ, Holloway JW, Warner JO (2010) The role of histamine degradation gene polymorphisms in moderating the effects of food additives on children’s ADHD symptoms. Am J Psychiatry 167:1108–1115CrossRefPubMedGoogle Scholar
  63. Takeda H, Inazu M, Matsumiya T (2002) Astroglial dopamine transport is mediated by norepinephrine transporter. Naunyn Schmiedebergs Arch Pharmacol 366:620–623CrossRefPubMedGoogle Scholar
  64. Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25CrossRefPubMedGoogle Scholar
  65. Vaughan RA, Foster JD (2013) Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci 34:489–496CrossRefPubMedGoogle Scholar
  66. Vialou V, Balasse L, Dumas S, Giros B, Gautron S (2007) Neurochemical characterization of pathways expressing plasma membrane monoamine transporter in the rat brain. Neuroscience 144:616–622CrossRefPubMedGoogle Scholar
  67. Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295:13–25CrossRefPubMedGoogle Scholar
  68. Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V (1998) Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem 273:32776–32786CrossRefPubMedGoogle Scholar
  69. Wu KC, Lu YH, Peng YH, Hsu LC, Lin CJ (2015) Effects of lipopolysaccharide on the expression of plasma membrane monoamine transporter (PMAT) at the blood-brain barrier and its implications to the transport of neurotoxins. J Neurochem 135:1178–1188CrossRefPubMedGoogle Scholar
  70. Wultsch T, Grimberg G, Schmitt A, Painsipp E, Wetzstein H, Breitenkamp AF, Grundemann D, Schomig E, Lesch KP, Gerlach M, Reif A (2009) Decreased anxiety in mice lacking the organic cation transporter 3. J Neural Transm 116:689–697CrossRefPubMedGoogle Scholar
  71. Yanai K, Tashiro M (2007) The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther 113:1–15CrossRefPubMedGoogle Scholar
  72. Yang X, Liu C, Zhang J, Han H, Wang X, Liu Z, Xu Y (2015) Association of histamine N-methyltransferase Thr105Ile polymorphism with Parkinson’s disease and schizophrenia in Han Chinese: a case-control study. PLoS One 10, e0119692CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yoshikawa T, Naganuma F, Iida T, Nakamura T, Harada R, Mohsen AS, Kasajima A, Sasano H, Yanai K (2013) Molecular mechanism of histamine clearance by primary human astrocytes. Glia 61:905–916CrossRefPubMedGoogle Scholar
  74. Yoshizawa M, Tashiro M, Fukudo S, Yanai K, Utsumi A, Kano M, Karahasi M, Endo Y, Morisita J, Sato Y, Adachi M, Itoh M, Hongo M (2009) Increased brain histamine H1 receptor binding in patients with anorexia nervosa. Biol Psychiatry 65:329–335CrossRefPubMedGoogle Scholar
  75. Zarate C, Duman RS, Liu G, Sartori S, Quiroz J, Murck H (2013) New paradigms for treatment-resistant depression. Ann N Y Acad Sci 1292:21–31CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhou Y, Danbolt NC (2013) GABA and Glutamate Transporters in Brain. Front Endocrinol (Lausanne) 4:165Google Scholar
  77. Zhu P, Hata R, Ogasawara M, Cao F, Kameda K, Yamauchi K, Schinkel AH, Maeyama K, Sakanaka M (2012) Targeted disruption of organic cation transporter 3 (Oct3) ameliorates ischemic brain damage through modulating histamine and regulatory T cells. J Cereb Blood Flow Metab 32:1897–1908CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SpringerInternationalPublishingSwitzerland 2016

Authors and Affiliations

  1. 1.Department of PharmacologyTohoku University, Graduate School of MedicineSendaiJapan

Personalised recommendations