Skip to main content

Medicinal Chemistry of the Noncanonical Cyclic Nucleotides cCMP and cUMP

  • Chapter
  • First Online:
Non-canonical Cyclic Nucleotides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 238))

Abstract

After decades of intensive research on adenosine-3′,5′-cyclic monophosphate (cAMP)- and guanosine-3′,5′-cyclic monophosphate (cGMP)-related second messenger systems, also the noncanonical congeners cyclic cytidine-3′,5′-monophosphate (cCMP) and cyclic uridine-3′,5′-monophosphate (cUMP) gained more and more interest. Until the late 1980s, only a small number of cCMP and cUMP analogs with sometimes undefined purities had been described. Moreover, most of these compounds had been rather synthesized as precursors of antitumor and antiviral nucleoside-5′-monophosphates and hence had not been tested for any second messenger activity. Along with the recurring interest in cCMP- and cUMP-related signaling in the early 2000s, it became evident that well-characterized small molecule analogs with reliable purities would serve as highly valuable tools for the evaluation of a putative second messenger role of cyclic pyrimidine nucleotides. Meanwhile, for this purpose new cCMP and cUMP derivatives have been developed, and already known analogs have been resynthesized and highly purified. This chapter summarizes early medicinal chemistry work on cCMP and cUMP and analogs thereof, followed by a description of recent synthetic developments and an outlook on potential future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashman DF, Lipton R, Melicow MM, Price TD (1963) Isolation of adenosine 3′, 5′-monophosphate and guanosine 3′, 5′-monophosphate from rat urine. Biochem Biophys Res Commun 11:330–334

    Article  CAS  PubMed  Google Scholar 

  • Bartsch M, Zorn-Kruppa M, Kühl N, Genieser HG, Schwede F, Jastorff B (2003) Bioactivatable, membrane-permeant analogs of cyclic nucleotides as biological tools for growth control of C6 glioma cells. Biol Chem 384(9):1321–1326. doi:10.1515/BC.2003.148

    Article  CAS  PubMed  Google Scholar 

  • Beckert U, Grundmann M, Wolter S, Schwede F, Rehmann H, Kaever V, Kostenis E, Seifert R (2014) cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects. Biochem Biophys Res Commun 451(4):497–502. doi:10.1016/j.bbrc.2014.07.134

    Article  CAS  PubMed  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58(3):488–520. doi:10.1124/pr.58.3.5

    Article  CAS  PubMed  Google Scholar 

  • Béres J, Sandor P, Kalman A, Koritsanszky T, Ötvös L (1984) An efficient synthesis of certain 5-substituted-2′-deoxyuridine 3′,5′-cyclic-monophosphate P-O-alkyl(aralkyl) esters – the crystal and molecular-structure of 5-iodo-2′-deoxyuridine 3′,5′-cyclic-monophosphate P-O-methyl ester with axial methoxy group. Tetrahedron 40(12):2405–2414. doi:10.1016/0040-4020(84)80024-1

    Article  Google Scholar 

  • Béres J, Bentrude WG, Kruppa G, McKernan PA, Robins RK (1985) Synthesis and antitumor and antiviral activities of a series of 1-beta-D-ribofuranosyl-5-halocytosine (5-halocytidine) cyclic 3′,5′-monophosphates. J Med Chem 28(4):418–422

    Article  PubMed  Google Scholar 

  • Béres J, Bentrude WG, Balzarini J, De Clercq E, Ötvös L (1986a) Synthesis and antitumor and antiviral properties of 5-alkyl-2′-deoxyuridines, 3′,5′-cyclic monophosphates, and neutral cyclic triesters. J Med Chem 29(4):494–499

    Article  PubMed  Google Scholar 

  • Béres J, Bentrude WG, Kalman A, Parkanyi L, Balzarini J, De Clercq E (1986b) Synthesis, structure, and antitumor and antiviral activities of a series of 5-halouridine cyclic 3′,5′-monophosphates. J Med Chem 29(4):488–493

    Article  PubMed  Google Scholar 

  • Béres J, Sagi G, Bentrude WG, Balzarini J, De Clercq E, Ötvös L (1986c) Synthesis and antitumor and antiviral properties of 5-halo- and 5-(trifluoromethyl)-2′-deoxyuridine 3′,5′-cyclic monophosphates and neutral triesters. J Med Chem 29(7):1243–1249

    Article  PubMed  Google Scholar 

  • Béres J, Bentrude WG, Ötvös L, Balzarini J, De Clercq E (1989) Synthesis and cytostatic and antiviral activities of 1-beta-D-ribofuranosyl-5-alkylcytosine (5-alkylcytidine) cyclic 3′,5′-monophosphates. J Med Chem 32(1):224–228

    Article  PubMed  Google Scholar 

  • Bertinetti D, Schweinsberg S, Hanke SE, Schwede F, Bertinetti O, Drewianka S, Genieser HG, Herberg FW (2009) Chemical tools selectively target components of the PKA system. BMC Chem Biol 9:3. doi:10.1186/1472-6769-9-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloch A (1974) Cytidine 3′,5′-monophosphate (cyclic CMP). I. Isolation from extracts of leukemia L-1210 Cells. Biochem Biophys Res Commun 58(3):652–659

    Article  CAS  PubMed  Google Scholar 

  • Bloch A (1975) Uridine 3′,5′-monophosphate (cyclic UMP). I. Isolation from rat liver extracts. Biochem Biophys Res Commun 64(1):210–218

    Article  CAS  PubMed  Google Scholar 

  • Borden RK, Smith M (1966) Nucleotide synthesis. II. Nucleotide p-nitrophenyl and 2,4-dinitrophenyl esters1,2. J Org Chem 31(10):3241–3246. doi:10.1021/jo01348a034

    Article  CAS  PubMed  Google Scholar 

  • Börner S, Schwede F, Schlipp A, Berisha F, Calebiro D, Lohse MJ, Nikolaev VO (2011) FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 6(4):427–438. doi:10.1038/nprot.2010.198

    Article  PubMed  Google Scholar 

  • Cailla HL, Roux D, Delaage M, Goridis C (1978) Radioimmunological identification and measurement of cytidine 3′, 5′-monophosphate in rat tissues. Biochem Biophys Res Commun 85(4):1503–1509. doi:10.1016/0006-291x(78)91173-7

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Hostetler K, Valiaeva N, Tammewar A, Freeman WR, Beadle J, Bartsch DU, Aldern K, Falkenstein I (2010) Intravitreal crystalline drug delivery for intraocular proliferation diseases. Invest Ophthalmol Vis Sci 51(1):474–481. doi:10.1167/iovs.09-3672

    Article  PubMed  PubMed Central  Google Scholar 

  • Chepurny OG, Leech CA, Kelley GG, Dzhura I, Dzhura E, Li X, Rindler MJ, Schwede F, Genieser HG, Holz GG (2009) Enhanced Rap1 activation and insulin secretagogue properties of an acetoxymethyl ester of an Epac-selective cyclic AMP analog in rat INS-1 cells: studies with 8-pCPT-2′-O-Me-cAMP-AM. J Biol Chem 284(16):10728–10736. doi:10.1074/jbc.M900166200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrie JE, Pizza C, Makwana J, King RW (1992) Preparation and properties of an affinity support for purification of cyclic AMP receptor protein from Escherichia coli. Protein Expr Purif 3(5):417–420

    Article  CAS  PubMed  Google Scholar 

  • Crane JK (2000) Redistribution of cyclic GMP in response to sodium butyrate in colon cells. Arch Biochem Biophys 376(1):163–170. doi:10.1006/abbi.2000.1703

    Article  CAS  PubMed  Google Scholar 

  • de Wit RJW, Hekstra D, Jastorff B, Stec WJ, Baraniak J, van Driel R, van Haastert PJM (1984) Inhibitory-action of certain cyclophosphate derivatives of cAMP on cAMP-dependent protein-kinases. Eur J Biochem 142(2):255–260

    Article  PubMed  Google Scholar 

  • Desch M, Schinner E, Kees F, Hofmann F, Seifert R, Schlossmann J (2010) Cyclic cytidine 3′,5′-monophosphate (cCMP) signals via cGMP kinase I. FEBS Lett 584(18):3979–3984. doi:10.1016/j.febslet.2010.07.059

    Article  CAS  PubMed  Google Scholar 

  • Drummond GI, Gilgan MW, Reiner EJ, Smith M (1964) Deoxyribonucleoside-3′,5′-cyclic phosphates. Synthesis + acid-catalyzed + enzymic hydrolysis. J Am Chem Soc 86(8):1626–1630. doi:10.1021/ja01062a036

    Article  CAS  Google Scholar 

  • Engels J, Hoftiezer J (1977) Cyclophosphates.3. Synthesis and properties of uridine 3′,5′-cyclophosphate esters. Chem Ber Recl 110(6):2019–2027. doi:10.1002/cber.19771100602

    Article  CAS  Google Scholar 

  • Engels J, Pfleiderer W (1975) Nucleotides.5. Synthesis and properties of uridine - 3′,5′ - tricyclophosphates. Tetrahedron Lett 21:1661–1664

    Article  Google Scholar 

  • Ervens J, Seifert R (1991) Differential modulation by N4, 2′-O-dibutyryl cytidine 3′:5′-cyclic monophosphate of neutrophil activation. Biochem Biophys Res Commun 174(1):258–267

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto Y, Naruse M (1968) Nucleoside 3',5'-cyclic phosphates. Japanese Patent 6,816,988

    Google Scholar 

  • Genieser HG (2012) New boranophophate analogues of cyclic nucleotides. PCT/EP2012/055389

    Google Scholar 

  • Genieser HG, Dostmann W, Bottin U, Butt E, Jastorff B (1988) Synthesis of nucleoside-3′,5′-cyclic phosphorothioates by cyclothiophosphorylation of unprotected nucleosides. Tetrahedron Lett 29(23):2803–2804. doi:10.1016/0040-4039(88)85214-6

    Article  Google Scholar 

  • Genieser HG, Butt E, Bottin U, Dostmann W, Jastorff B (1989) Synthesis of the 3′,5′-cyclic phosphates from unprotected nucleosides. Synthesis (Stuttg) 1:53–54

    Article  Google Scholar 

  • Greenwood FC, Hunter WM (1963) Preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem J 89(1):114–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerschmidt A, Chatterji B, Zeiser J, Schröder A, Genieser HG, Pich A, Kaever V, Schwede F, Wolter S, Seifert R (2012) Binding of regulatory subunits of cyclic AMP-dependent protein kinase to cyclic CMP agarose. PLoS One 7(7), e39848. doi:10.1371/journal.pone.0039848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanke SE, Bertinetti D, Badel A, Schweinsberg S, Genieser HG, Herberg FW (2011) Cyclic nucleotides as affinity tools: phosphorothioate cAMP analogues address specific PKA subproteomes. N Biotechnol 28(4):294–301. doi:10.1016/j.nbt.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Hardman JG, Sutherland EW (1965) A cyclic 3′,5′-nucleotide phosphodiesterase from heart with specificity for uridine 3′,5′-phosphate. J Biol Chem 240(9):3704–3705

    CAS  PubMed  Google Scholar 

  • Hartwig C, Bahre H, Wolter S, Beckert U, Kaever V, Seifert R (2014) cAMP, cGMP, cCMP and cUMP concentrations across the tree of life: High cCMP and cUMP levels in astrocytes. Neurosci Lett 579:183–187. doi:10.1016/j.neulet.2014.07.019

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka T (1982) New fluorescent analogs of cAMP and cGMP available as substrates for cyclic nucleotide phosphodiesterase. J Biol Chem 257(22):13354–13358

    CAS  PubMed  Google Scholar 

  • Holý A, Sorm F (1969) Oligonucleotidic compounds. 32. Phosphorylation of 1-lyxofuranosyl, 1-xylofuranosyl and 1-arabinofuranosyl derivatives of uracil and thymine with triethyl phosphite and hexachloroacetone. Collect Czech Chem Commun 34(7):1929–1953

    Article  Google Scholar 

  • Holý A, Smrt J, Sorm F (1965) Nucleic acids components and their analogues. 71. Oxidation of nucleoside 5′-phosphites on treatment with halo acid derivatives and hexachloroacetone. Collect Czech Chem Commun 30(10):3309–3319

    Article  Google Scholar 

  • Holz GG, Chepurny OG, Schwede F (2008) Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal 20(1):10–20. doi:10.1016/j.cellsig.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  • Hostetler KY (2009) Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: current state of the art. Antiviral Res 82(2):A84–A98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hostetler KY (2010) Synthesis and early development of hexadecyloxypropylcidofovir: an oral antipoxvirus nucleoside phosphonate. Viruses 2(10):2213–2225. doi:10.3390/v2102213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Zhang Y, Sportsman JR (2002) A fluorescence polarization assay for cyclic nucleotide phosphodiesterases. J Biomol Screen 7(3):215–222. doi:10.1089/108705702760047718

    Article  CAS  PubMed  Google Scholar 

  • Ishiyama J (1975) Isolation of cyclic 3′,5′-pyrimidine mononucleotides from bacterial culture fluids. Biochem Biophys Res Commun 65(1):286–292

    Article  CAS  PubMed  Google Scholar 

  • Johnson JD, Walters JD, Mills JS (1987) A continuous fluorescence assay for cyclic nucleotide phosphodiesterase hydrolysis of cyclic GMP. Anal Biochem 162(1):291–295

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Park JM (2003) Identification of novel target proteins of cyclic GMP signaling pathways using chemical proteomics. J Biochem Mol Biol 36(3):299–304

    CAS  PubMed  Google Scholar 

  • Kim JS, Beadle JR, Freeman WR, Hostetler KY, Hartmann K, Valiaeva N, Kozak I, Conner L, Trahan J, Aldern KA, Cheng L (2012) A novel cytarabine crystalline lipid prodrug: hexadecyloxypropyl cytarabine 3′,5′-cyclic monophosphate for proliferative vitreoretinopathy. Mol Vis 18:1907–1917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klotz U, Stock K (1971) Evidence for a cyclic nucleotide-phosphodiesterase with high specificity for cyclic uridine-3′,5′-monophosphate in rat adipose tissue. Naunyn Schmiedebergs Arch Pharmakol 269(1):117–120

    Article  CAS  PubMed  Google Scholar 

  • Krass JD, Jastorff B, Genieser HG (1997) Determination of lipophilicity by gradient elution high-performance liquid chromatography. Anal Chem 69(13):2575–2581. doi:10.1021/ac961246i

    Article  CAS  PubMed  Google Scholar 

  • Kusashio K, Yoshikawa M (1968) Studies of phosphorylation. 2. Reaction of 2′,3′-O-isopropylideneinosine and -guanosine with phosphoryl chloride. Bull Chem Soc Jpn 41(1):142–149. doi:10.1246/bcsj.41.142

    Article  CAS  PubMed  Google Scholar 

  • Lassota P, Kazimierczuk Z, Zan-Kowalczewska M, Shugar D (1986) 2′,3′-Seco pyrimidine nucleosides and nucleotides, including structural analogues of 3′:5′-cyclic CMP and UMP, and their behaviour in several enzyme systems. Biochem Biophys Res Commun 137(1):453–460

    Article  CAS  PubMed  Google Scholar 

  • Li P, Shaw BR (2002) Synthesis of nucleoside 3′,5′-cyclic boranophosphorothioate, a new type of cyclic nucleotide. Chem Commun (Camb) 23:2890–2891

    Article  Google Scholar 

  • Lin J, He K, Shaw BR (2001) Novel 3′,5′-cyclic nucleotide analogue: adenosine 3′,5′-cyclic boranomonophosphate. Org Lett 3(6):795–797

    Article  CAS  PubMed  Google Scholar 

  • Long RA, Robins RK (1978) 5-Bromouridine 3',5'-cyclic monophosphate. In: Townsend LB, Tipson RS (eds) Nucleic acid chemistry: improved and new synthetic procedures, methods and techniques. Pt. 2. Wiley, New York, pp 817–819

    Google Scholar 

  • Long RA, Szekeres GL, Khwaja TA, Sidwell RW, Simon LN, Robins RK (1972) Synthesis and antitumor and antiviral activities of 1-β-d-arabinofuranosylpyrimidine 3′,5′-cyclic phosphates. J Med Chem 15(12):1215–1218

    Article  CAS  PubMed  Google Scholar 

  • Mannhold R, Poda GI, Ostermann C, Tetko IV (2009) Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci 98(3):861–893. doi:10.1002/jps.21494

    Article  CAS  PubMed  Google Scholar 

  • Miller JP, Robins RK (1976) The chemical modification of cyclic AMP and cyclic GMP, Chapter 30. In: Frank HC (ed) Annual reports in medicinal chemistry, vol 11. Academic, Waltham, pp 291–300, http://dx.doi.org/10.1016/S0065-7743(08)61414-1

    Google Scholar 

  • Murphy BE, Stone JE (1979) Radioimmunoassay of cytidine 3′,5′ monophosphate (cCMP).1. Development of the assay. Biochem Biophys Res Commun 89(1):122–128. doi:10.1016/0006-291x(79)90952-5

    Article  CAS  PubMed  Google Scholar 

  • Naito T, Sano M (1965) Adenosine cyclic 3',5'-phosphate. Japanese Patent 9,063

    Google Scholar 

  • Newton RP (1995) Cytidine 3′,5′-cyclic monophosphate: a third cyclic nucleotide secondary messenger? Nucleos Nucleot 14(3–5):743–747. doi:10.1080/15257779508012463

    Article  CAS  Google Scholar 

  • Newton RP, Groot N, van Geyschem J, Diffley PE, Walton TJ, Bayliss MA, Harris FM, Games DE, Brenton AG (1997) Estimation of cytidylyl cyclase activity and monitoring of side-product formation by fast-atom bombardment mass spectrometry. Rapid Commun Mass Spectrom 11(2):189–194. doi:10.1002/(SICI)1097-0231(19970131)11:2<189::AID-RCM741>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  • Newton RP, Bayliss MA, Khan JA, Bastani A, Wilkins AC, Games DE, Walton TJ, Brenton AG, Harris FM (1999) Kinetic analysis of cyclic CMP-specific and multifunctional phosphodiesterases by quantitative positive-ion fast-atom bombardment mass spectrometry. Rapid Commun Mass Spectrom 13(7):574–584. doi:10.1002/(SICI)1097-0231(19990415)13:7<574::AID-RCM526>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  • O‘Brian CA, Roczniak SO, Bramson HN, Baraniak J, Stec WJ, Kaiser ET (1982) A kinetic-study of interactions of (Rp)-Adenosine and (Sp)-Adenosine cyclic 3′,5′-phosphorothioates with type-II bovine cardiac-muscle adenosine cyclic 3′,5′-phosphate dependent protein-kinase. Biochemistry 21(18):4371–4376. doi:10.1021/bi00261a028

    Article  PubMed  Google Scholar 

  • Painter GR, Hostetler KY (2004) Design and development of oral drugs for the prophylaxis and treatment of smallpox infection. Trends Biotechnol 22(8):423–427. doi:10.1016/j.tibtech.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  • Poppe H, Rybalkin SD, Rehmann H, Hinds TR, Tang XB, Christensen AE, Schwede F, Genieser HG, Bos JL, Døskeland SO, Beavo JA, Butt E (2008) Cyclic nucleotide analogs as probes of signaling pathways. Nat Methods 5(4):277–278. doi:10.1038/nmeth0408-277

    Article  CAS  PubMed  Google Scholar 

  • Posternak T, Weimann G (1974) The preparation of acylated derivatives of cyclic nucleotides. Methods Enzymol 38:399–409

    Article  CAS  PubMed  Google Scholar 

  • Reinecke D, Schwede F, Genieser HG, Seifert R (2013) Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N′-methylanthraniloyl-substituted purine and pyrimidine 3′,5′-cyclic nucleotides by fluorescence spectrometry. PLoS One 8(1), e54158. doi:10.1371/journal.pone.0054158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revankar GR, Robins RK (1982) Chemistry of cyclic nucleotides and cyclic nucleotide analogs. In: Nathanson JA, Kebabian JW (eds) Cyclic nucleotides, vol 58/1, Handbook of experimental pharmacology. Springer, Berlin Heidelberg, pp 17–151. doi:10.1007/978-3-642-68111-0_2

    Chapter  Google Scholar 

  • Robins MJ, Ramani G, Maccoss M (1975) Nucleic-acid related compounds.16. Direct fluorination of uracil nucleotides using trifluoromethyl hypofluorite. Can J Chem 53(9):1302–1306. doi:10.1139/v75-178

    Article  CAS  Google Scholar 

  • Sato T, Kuninaka A, Yoshino H (1982) A practically sensitive radioimmunoassay for cyclic CMP by 2′-O-acetylation. Anal Biochem 123(1):208–218

    Article  CAS  PubMed  Google Scholar 

  • Scholten A, Poh MK, van Veen TA, van Breukelen B, Vos MA, Heck AJ (2006) Analysis of the cGMP/cAMP interactome using a chemical proteomics approach in mammalian heart tissue validates sphingosine kinase type 1-interacting protein as a genuine and highly abundant AKAP. J Proteome Res 5(6):1435–1447. doi:10.1021/pr0600529

    Article  CAS  PubMed  Google Scholar 

  • Schultz C (2003) Prodrugs of biologically active phosphate esters. Bioorg Med Chem 11(6):885–898

    Article  CAS  PubMed  Google Scholar 

  • Schultz C, Vajanaphanich M, Harootunian AT, Sammak PJ, Barrett KE, Tsien RY (1993) Acetoxymethyl esters of phosphates, enhancement of the permeability and potency of cAMP. J Biol Chem 268(9):6316–6322

    CAS  PubMed  Google Scholar 

  • Schwede F, Brustugun OT, Zorn-Kruppa M, Døskeland SO, Jastorff B (2000a) Membrane-permeant, bioactivatable analogues of cGMP as inducers of cell death in IPC-81 leukemia cells. Bioorg Med Chem Lett 10(6):571–573

    Article  CAS  PubMed  Google Scholar 

  • Schwede F, Maronde E, Genieser H, Jastorff B (2000b) Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 87(2–3):199–226

    Article  CAS  PubMed  Google Scholar 

  • Schwede F, Chepurny OG, Kaufholz M, Bertinetti D, Leech CA, Cabrera O, Zhu Y, Mei F, Cheng X, Manning Fox JE, MacDonald PE, Genieser HG, Herberg FW, Holz GG (2015) Rp-cAMPS prodrugs reveal the cAMP dependence of first-phase glucose-stimulated insulin secretion. Mol Endocrinol 29(7):988–1005. doi:10.1210/me.2014-1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scofield RE, Werner RP, Wold F (1977) N4-Aminoalkyl-cytidine derivatives: ligands for ribonuclease affinity adsorbents. Anal Biochem 77(1):152–157

    Article  CAS  PubMed  Google Scholar 

  • Simon LN, Shuman DA, Robins RK (1973) The chemistry and biological properties of nucleotides related to nucleoside 3′,5′-cyclic phosphates. Adv Cyclic Nucleotide Res 3:225–353

    CAS  PubMed  Google Scholar 

  • Smith M, Khorana HG (1959) Specific synthesis of the C5′–C3′ interribonucleotide linkage – the synthesis of uridylyl-(5′-]3′)-uridine. J Am Chem Soc 81(11):2911–2912. doi:10.1021/ja01520a079

    Article  CAS  Google Scholar 

  • Smith M, Khorana HG, Drummond GI (1961) Cyclic phosphates. 4. Ribonucleoside-3′,5′ cyclic phosphates – a general method of synthesis and some properties. J Am Chem Soc 83(3):698–706

    Article  CAS  Google Scholar 

  • Soldatenkov VA, Prasad S, Voloshin Y, Dritschilo A (1998) Sodium butyrate induces apoptosis and accumulation of ubiquitinated proteins in human breast carcinoma cells. Cell Death Differ 5(4):307–312. doi:10.1038/sj.cdd.4400345

    Article  CAS  PubMed  Google Scholar 

  • Sutherland EW, Rall TW (1957) THE properties of an adenine ribonucleotide produced with cellular particles, ATP, Mg++, and epinephrine or glucagon. J Am Chem Soc 79(13):3608–3608. doi:10.1021/ja01570a087

    Article  CAS  Google Scholar 

  • Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232(2):1077–1091

    CAS  PubMed  Google Scholar 

  • Taylor SS, Kim C, Cheng CY, Brown SH, Wu J, Kannan N (2008) Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim Biophys Acta 1784(1):16–26. doi:10.1016/j.bbapap.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  • Tazawa I, Tazawa S, Alderfer JL, Ts′o POP (1972) Studies on 2′ ortho alkyl polynucleotides. 1. Novel procedure for synthesis of 2′ ortho alkyl nucleotides. Biochemistry 11(26):4931–4937. doi:10.1021/bi00776a009

    Article  CAS  PubMed  Google Scholar 

  • Ukita T, Hayatsu H (1961) Organic phosphates. 18. Syntheses of lyxouridine 2′,3′-cyclic phosphate and related compound. Chem Pharm Bull 9(12):1000–1005

    Article  CAS  Google Scholar 

  • Vliem MJ, Ponsioen B, Schwede F, Pannekoek WJ, Riedl J, Kooistra MR, Jalink K, Genieser HG, Bos JL, Rehmann H (2008) 8-pCPT-2′-O-Me-cAMP-AM: an improved Epac-selective cAMP analogue. Chembiochem 9(13):2052–2054. doi:10.1002/cbic.200800216

    Article  CAS  PubMed  Google Scholar 

  • Werner K, Schwede F, Genieser HG, Geiger J, Butt E (2011) Quantification of cAMP and cGMP analogs in intact cells: pitfalls in enzyme immunoassays for cyclic nucleotides. Naunyn Schmiedebergs Arch Pharmacol 384(2):169–176. doi:10.1007/s00210-011-0662-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierenga W, Woltersom JA (1977) Efficient preparation of cyclic CMP and conversion to its dibutyryl and succinyl derivatives. J Carb-Nucleos-Nucl 4(3–4):189–198

    CAS  Google Scholar 

  • Wikberg JES, Wingren GB (1981) Investigations on the occurrence of cytidine 3′,5′ monophosphate (cCMP) in tissues. Acta Pharmacol Toxicol (Copenh) 49(1):52–58

    Article  CAS  Google Scholar 

  • Wolfertstetter S, Reinders J, Schwede F, Ruth P, Schinner E, Schlossmann J (2015) Interaction of cCMP with the cGK, cAK and MAPK kinases in murine tissues. PLoS One 10(5), e0126057. doi:10.1371/journal.pone.0126057

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolter S, Golombek M, Seifert R (2011) Differential activation of cAMP- and cGMP-dependent protein kinases by cyclic purine and pyrimidine nucleotides. Biochem Biophys Res Commun 415(4):563–566. doi:10.1016/j.bbrc.2011.10.093

    Article  CAS  PubMed  Google Scholar 

  • Wolter S, Dove S, Golombek M, Schwede F, Seifert R (2014) N4-MONOBUTYRYL-cCMP activates PKA RIalpha and PKA RIIalpha more potently and with higher efficacy than PKG Ialpha in vitro but not in vivo. Naunyn Schmiedebergs Arch Pharmacol 387(12):1163–1175. doi:10.1007/s00210-014-1042-9

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto I, Takai T, Tsuji J (1982) Enzyme immunoassay for cytidine 3′,5′-cyclic monophosphate (cyclic CMP). Immunopharmacology 4(4):331–340

    Article  CAS  PubMed  Google Scholar 

  • Yanagida M, Gohda E, Yamamoto I (1990) Dibutyrylcytidine 3′,5′-cyclic monophosphate stimulates neurite outgrowth in rat pheochromocytoma PC12. Neurosci Lett 114(3):323–328

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Yamada J, Watanabe T, Suga T, Takayama H (1990) Participation of the peroxisomal beta-oxidation system in the chain-shortening of PCA16, a metabolite of the cytosine arabinoside prodrug, YNKO1, in rat liver. Biochem Pharmacol 39(10):1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa M, Kato T, Takenishi T (1969) Studies of phosphorylation. 3. Selective phosphorylation of unprotected nucleosides. Bull Chem Soc Jpn 42(12):3505–3508. doi:10.1246/bcsj.42.3505

    Article  CAS  Google Scholar 

  • Zielinski W, Smrt J, Beranek J (1974) Nucleic-acid components and their analogs. 111. Novel preparation of cytidine 5′-phosphate and cytidine 3′,5′-cyclic phosphate. Collect Czech Chem Commun 39(12):3560–3563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Schwede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Swizterland

About this chapter

Cite this chapter

Schwede, F., Rentsch, A., Genieser, HG. (2015). Medicinal Chemistry of the Noncanonical Cyclic Nucleotides cCMP and cUMP. In: Seifert, R. (eds) Non-canonical Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 238. Springer, Cham. https://doi.org/10.1007/164_2015_41

Download citation

Publish with us

Policies and ethics