Skip to main content

Discovery and Roles of 2′,3′-cAMP in Biological Systems

  • Chapter
  • First Online:
Non-canonical Cyclic Nucleotides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 238))

Abstract

In 2009, investigators using ultra-performance liquid chromatography-tandem mass spectrometry to measure, by selected reaction monitoring, 3′,5′-cAMP in the renal venous perfusate from isolated, perfused kidneys detected a large signal at the same m/z transition (330 → 136) as 3′,5′-cAMP but at a different retention time. Follow-up experiments demonstrated that this signal was due to a positional isomer of 3′,5′-cAMP, namely, 2′,3′-cAMP. Soon thereafter, investigative teams reported the detection of 2′,3′-cAMP and other 2′,3′-cNMPs (2′,3′-cGMP, 2′,3′-cCMP, and 2′,3′-cUMP) in biological systems ranging from bacteria to plants to animals to humans. Injury appears to be the major stimulus for the release of these unique noncanonical cNMPs, which likely are formed by the breakdown of RNA. In mammalian cells in culture, in intact rat and mouse kidneys, and in mouse brains in vivo, 2′,3′-cAMP is metabolized to 2′-AMP and 3′-AMP; and these AMPs are subsequently converted to adenosine. In rat and mouse kidneys and mouse brains, injury releases 2′,3′-cAMP, 2′-AMP, and 3′-AMP into the extracellular compartment; and in humans, traumatic brain injury is associated with large increases in 2′,3′-cAMP, 2′-AMP, 3′-AMP, and adenosine in the cerebrospinal fluid. These findings motivate the extracellular 2′,3′-cAMP-adenosine pathway hypothesis: intracellular production of 2′,3′-cAMP → export of 2′,3′-cAMP → extracellular metabolism of 2′,3′-cAMP to 2′-AMP and 3′-AMP → extracellular metabolism of 2′-AMP and 3′-AMP to adenosine. Since 2′,3′-cAMP has been shown to activate mitochondrial permeability transition pores (mPTPs) leading to apoptosis and necrosis and since adenosine is generally tissue protective, the extracellular 2′,3′-cAMP-adenosine pathway may be a protective mechanism [i.e., removes 2′,3′-cAMP (an intracellular toxin) and forms adenosine (a tissue protectant)]. This appears to be the case in the brain where deficiency in CNPase (the enzyme that metabolizes 2′,3′-cAMP to 2-AMP) leads to increased susceptibility to brain injury and neurological diseases. Surprisingly, CNPase deficiency in the kidney actually protects against acute kidney injury, perhaps by preventing the formation of 2′-AMP (which turns out to be a renal vasoconstrictor) and by augmenting the mitophagy of damaged mitochondria. With regard to 2′,3′-cNMPs and their downstream metabolites, there is no doubt much more to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akahane M, Ono H, Ohgushi H, Takakura Y (2001a) Viability of ischemia/reperfused bone determined at the gene expression level. J Reconstr Microsurg 17:203–209

    Article  CAS  PubMed  Google Scholar 

  • Akahane M, Ono H, Ohgushi H, Tamai S (2001b) Viability of ischemia/reperfused muscles in rat: a new evaluation method by RNA degradation. J Orthop Res 19:559–564

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) The cell nucleus. In: Molecular biology of the cell. Garland, New York/London, pp 481–550

    Google Scholar 

  • Albig AR, Decker CJ (2001) The target of rapamycin signaling pathway regulates mRNA turnover in the yeast Saccharomyces cerevisiae. Mol Biol Cell 12:3428–3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida A, Paul Thiery J, Magdelenat H, Radvanyi F (2004) Gene expression analysis by real-time reverse transcription polymerase chain reaction: influence of tissue handling. Anal Biochem 328:101–108

    Article  CAS  PubMed  Google Scholar 

  • Amrhein N, Filner P (1973) Adenosine 3′:5′-cyclic monophosphate in Chlamydomonas reinhardtii: isolation and characterization. Proc Natl Acad Sci U S A 70:1099–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnoys EJ, Wang JL (2007) Dual localization: proteins in extracellular and intracellular compartments. Acta Histochem 109:89–110

    Article  CAS  PubMed  Google Scholar 

  • Azarashvili T, Krestinina O, Galvita A, Grachev D, Baburina Y, Stricker R, Evtodienko Y, Reiser G (2009) Ca2+-dependent permeability transition regulation in rat brain mitochondria by 2′,3′-cyclic nucleotides and 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Am J Physiol Cell Physiol 296:1428–1439

    Article  CAS  Google Scholar 

  • Azarashvili T, Stricker R, Reiser G (2010) The mitochondria permeability transition pore complex in the brain with interacting proteins – promising targets for protection in neurodegenerative diseases. Biol Chem 391:619–629

    Article  CAS  PubMed  Google Scholar 

  • Bähre H, Kaever V (2014) Measurement of 2′,3′-cyclic nucleotides by liquid chromatography–tandem mass spectrometry in cells. J Chromatogr B 964:208–211

    Article  CAS  Google Scholar 

  • Banholzer R, Nair AP, Hirsch HH, Ming XF, Moroni C (1997) Rapamycin destabilizes interleukin-3 mRNA in autocrine tumor cells by a mechanism requiring an intact 3′ untranslated region. Mol Cell Biol 17:3254–3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boadu E, Vaskinn S, Sundkvist E, Jaeger R, Sager G (2001) Inhibition by guanosine cyclic monophosphate (cGMP) analogues of uptake of [3H]3′,5′-cGMP without stimulation of ATPase activity in human erythrocyte inside-out vesicles. Biochem Pharmacol 62:425–429

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2007) Adenosine as a modulator of brain activity. Drug News Perspect 20:607–611

    Article  CAS  PubMed  Google Scholar 

  • Bordeleau E, Oberc C, Ameen E, da Silva AM, Yan H (2014) Identification of cytidine 2′,3′-cyclic monophosphate and uridine 2′,3′-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture. Bioorg Med Chem Lett 24:4520–4522

    Article  CAS  PubMed  Google Scholar 

  • Borst P, de Wolf C, van de Wetering K (2007) Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch 453:661–673

    Article  CAS  PubMed  Google Scholar 

  • Burhenne H, Tschirner S, Seifert R, Kaever V (2013) Identification and quantitation of 2′,3′-cGMP in murine tissues. BMC Pharmacol Toxicol 14:P12

    Article  PubMed Central  Google Scholar 

  • Bushfield M, Shoshani I, Johnson RA (1990) Tissue levels, source, and regulation of 3′-AMP: an intracellular inhibitor of adenylyl cyclases. Mol Pharmacol 38:848–853

    CAS  PubMed  Google Scholar 

  • Catts VS, Catts SV, Fernandez HR, Taylor JM, Coulson EJ, Lutze-Mann LH (2005) A microarray study of post-mortem mRNA degradation in mouse brain tissue. Brain Res 138:164–177

    Article  CAS  Google Scholar 

  • Chen J-F, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonca A (2007) Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and "fine tuning" modulation. Prog Neurobiol 83:310–331

    Article  CAS  PubMed  Google Scholar 

  • Cheng D, Ren J, Jackson EK (2010) Multidrug resistance protein 4 mediates cAMP efflux from rat preglomerular vascular smooth muscle cells. Clin Exp Pharmacol Physiol 37:205–207 (PMC3068533)

    Article  CAS  PubMed  Google Scholar 

  • Chevyreva I, Faull RLM, Green CR, Nicholson LFB (2008) Assessing RNA quality in postmortem human brain tissue. Exp Mol Pathol 84:71–77

    Article  CAS  PubMed  Google Scholar 

  • Chiavegatti T, Costa VL Jr, Araujo MS, Godinho RO (2008) Skeletal muscle expresses the extracellular cyclic AMP-adenosine pathway. Br J Pharmacol 153:1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Connolly GP, Duley JA (1999) Uridine and its nucleotides: biological actions, therapeutic potentials. Trends Pharmacol Sci 20:218–225

    Article  CAS  PubMed  Google Scholar 

  • Day Y-J, Huang L, Ye H, Linden J, Okusa MD (2005) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am J Physiol Renal 288:F722–F731

    Article  CAS  Google Scholar 

  • Deeley RG, Westlake C, Cole SPC (2006) Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 86:849–899

    Article  CAS  PubMed  Google Scholar 

  • Del Prete MJ, Robles MS, Guao A, Martinez-A C, Izquierdo M, Garcia-Sanz JA (2002) Degradation of cellular mRNA is a general early apoptosis-induced event. FASEB J 16:2003–2005

    PubMed  Google Scholar 

  • Denatale G, Causa P, Coscia L (1963) Su alcune attività farmacologiche del 2′ AMP, del 3′ AMP e del 2′-3′ AMP in confront con il 5′ AMP. Arch Ital Sci Farmacol 13:169–172

    CAS  PubMed  Google Scholar 

  • Do T, Sun Q, Beuve A, Kuzhikandathil EV (2007) Extracellular cAMP inhibits D1 dopamine receptor expression in CAD catecholaminergic cells via A2a adenosine receptors. J Neurochem 101:619–631

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Juhasz G, Kovacs Z, Kardos J (2011) Uridine function in the central nervous system. Curr Top Med Chem 11:1058–1067

    Article  CAS  PubMed  Google Scholar 

  • Duarte T, Menezes-Rodrigues FS, Godinho RO (2012) Contribution of the extracellular cAMP-adenosine pathway to dual coupling of β2-adrenoceptors to Gs and Gi proteins in mouse skeletal muscle. J Pharmacol Exp Ther 341:820–828

    Article  CAS  PubMed  Google Scholar 

  • Dubey RK, Mi Z, Gillespie DG, Jackson EK (1996) Cyclic AMP-adenosine pathway inhibits vascular smooth muscle cell growth. Hypertension 28:765–771

    Article  CAS  PubMed  Google Scholar 

  • Dubey RK, Gillespie DG, Jackson EK (1998) Cyclic AMP-adenosine pathway induces nitric oxide synthesis in aortic smooth muscle cells. Hypertension 31:296–302

    Article  CAS  PubMed  Google Scholar 

  • Dubey RK, Gillespie DG, Mi Z, Jackson EK (2000a) Cardiac fibroblasts express the cAMP-adenosine pathway. Hypertension 36:337–342

    Article  CAS  PubMed  Google Scholar 

  • Dubey RK, Gillespie DG, Shue H, Jackson EK (2000b) A2B receptors mediate antimitogenesis in vascular smooth muscle cells. Hypertension 35:267–272

    Article  CAS  PubMed  Google Scholar 

  • Dubey RK, Gillespie DG, Mi Z, Jackson EK (2001) Endogenous cyclic AMP-adenosine pathway regulates cardiac fibroblast growth. Hypertension 37:1095–1100

    Article  CAS  PubMed  Google Scholar 

  • Dubey RK, Gillespie DG, Mi Z, Jackson EK (2010) Extracellular 3′,5′-cyclic AMP-adenosine pathway inhibits glomerular mesangial cell growth. J Pharmacol Exp Ther 333:808–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar JM, McLaughlin M, Werner HB, McCulloch MC, Barrie JA, Brown A, Faichney AB, Snaidero N, Nave K-A, Griffiths IR (2009) Early ultrastructural defects of axons and axon–glia junctions in mice lacking expression of Cnp1. GLIA 57:1815–1824

    Article  PubMed  Google Scholar 

  • Eltzschig HK (2009) Adenosine: an old drug newly discovered. Anesthesiology 111:904–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eltzschig HK (2013) Extracellular adenosine signaling in molecular medicine. J Mol Med 91:141–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eltzschig HK, Sitkovsky MV, Robson SC (2012) Purinergic signaling during inflammation. N Engl J Med 367:2322–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fern R, Waxman SG, Ransom BR (1994) Modulation of anoxic injury in CNS white matter by adenosine and interaction between adenosine and GABA. J Neurophysiol 72:2609–2616

    CAS  PubMed  Google Scholar 

  • Fiszman ML, Stefano FJ (1984) Amphetamine-clonidine interaction on neurotransmission in the vas deferens of the rat. Naunyn Schmiedebergs Arch Pharmacol 328:148–153

    Article  CAS  PubMed  Google Scholar 

  • Fleming WA, McNeill TA (1976) Cellular responsiveness to stimulation in vitro: increased responsiveness to colony stimulating factor of bone marrow colony-forming cells treated with surface-active agents and cyclic 3′5′ AMP. J Cell Physiol 88:323–329

    Article  CAS  PubMed  Google Scholar 

  • Forman MB, Gillespie DG, Cheng D, Jackson EK (2014) A novel adenosine precursor 2′, 3′-cyclic adenosine monophosphate inhibits formation of post-surgical adhesions. Dig Dis Sci 59:1–8

    Article  CAS  Google Scholar 

  • Fruhbeis C, Frohlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, Kirchhoff F, Mobius W, Goebbels S, Nave KA, Schneider A, Simons M, Klugmann M, Trotter J, Kramer-Albers EM (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 11:9

    Article  CAS  Google Scholar 

  • Fuhr JE, Stidham JD (1980) Inhibitory effect of cyclic adenosine 2′,3′-monophosphate on leucine incorporation by L5178Y cells. J Cell Physiol 103:71–75

    Article  CAS  PubMed  Google Scholar 

  • Fujimori H, Pan-Hou H (1998) Formation of adenosine 3′-monophosphate in rat liver mitochondria. Biol Pharm Bull 21:624–627

    Article  CAS  PubMed  Google Scholar 

  • Fujimori H, Sato R, Yasuda M, Pan-Hou H (1998) A specific and rapid method for determination of adenosine 3′-monophosphate (3′-AMP) content and 3′-AMP forming enzyme activity in rat liver mitochondria, using reversed-phase HPLC with fluorescence detection. Biol Pharm Bull 21:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Garrison JC, Haynes RC Jr (1975) The hormonal control of gluconeogenesis by regulation of mitochondrial pyruvate carboxylation in isolated rat liver cells. J Biol Chem 250:2769–2777

    CAS  PubMed  Google Scholar 

  • Giron MC, Bin A, Brun P, Etteri S, Bolego C, Florio C, Gaion RM (2008) Cyclic AMP in rat ileum: evidence for the presence of an extracellular cyclic AMP-adenosine pathway. Gastroenterology 134:1116–1126

    Article  CAS  PubMed  Google Scholar 

  • Grenz A, Osswald H, Eckle T, Yang D, Zhang H, Tran ZV, Klingel K, Ravid K, Eltzschig HK (2008) The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med/PLoS 5, e137

    Article  CAS  Google Scholar 

  • Gu H, Zhang S, Wong KY, Radak BK, Dissanayake T, Kellerman DL, Dai Q, Miyagi M, Anderson VE, York DM, Piccirilli JA, Harris ME (2013) Experimental and computational analysis of the transition state for ribonuclease a-catalyzed RNA 2′-O-transphosphorylation. Proc Natl Acad Sci U S A 110:13002–13007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagemeyer N, Goebbels S, Papiol S, Kästner A, Hofer S, Begemann M, Gerwig UC, Boretius S, Wieser GL, Ronnenberg A, Gurvich A, Heckers SH, Frahm J, Nave K-A, Ehrenreich H (2012) A myelin gene causative of a catatonia-depression syndrome upon aging. EMBO Mol Med 4:528–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartzell HC (1979) Adenosine receptors in frog sinus venosus: slow inhibitory potentials produced by adenine compounds and acetylcholine. J Physiol 293:23–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haselkorn ML, Shellington D, Jackson E, Vagni VA, Janesko KL, Dubey RK, Gillespie DG, Cheng D, Bell MJ, Jenkins LW, Homanics GE, Schnermann J, Kochanek PM (2010) Adenosine A1 receptor activation as a brake on the microglial response after experimental traumatic brain injury in mice. J Neurotrauma 27:901–910

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashemolhosseini S, Nagamine Y, Morley SJ, Desrivieres S, Mercep L, Ferrari S (1998) Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J Biol Chem 273:14424–14429

    Article  CAS  PubMed  Google Scholar 

  • Heemskerk S, Masereeuw R, Moesker O, Bouw MPWJM, van der Hoeven JG, Peters WHM, Russel FGM, Pickkers P, Group AS (2009) Alkaline phosphatase treatment improves renal function in severe sepsis or septic shock patients. Crit Care Med 37(417–423), e411

    Google Scholar 

  • Hendrich K, Shore P, Jackson E, Melick J, Janesko K, Wisniewski S, Clark R, Williams D, Kochanek P (2001) Adenosine receptor agonists increase cerebral perfusion: MRI assessment in normal and traumatically injured rat brain. Crit Care Med 29:A22–A22

    Google Scholar 

  • Hinman JD, Chen C-D, Oh S-Y, Hollander W, Abraham CR (2008) Age-dependent accumulation of ubiquitinated 2′,3′-cyclic nucleotide 3′-phosphodiesterase in myelin lipid rafts. GLIA 56:118–133

    Article  PubMed  Google Scholar 

  • Hong KW, Shin HK, Kim HH, Choi JM, Rhim BY, Lee WS (1999) Metabolism of cAMP to adenosine: role in vasodilation of rat pial artery in response to hypotension. Am J Physiol 276:H376–H382

    CAS  PubMed  Google Scholar 

  • Ichikawa A, Esumi K, Takagi M, Yatsunami K, Negishi M, Yokoyama K, Tomita K (1980) Effect of adenosine and adenosine 5′-monophosphate on cell division of cultured mastocytoma P-815 cells. J Pharmacobiodyn 3:123–135

    Article  CAS  PubMed  Google Scholar 

  • Jackson EK (1991) Adenosine: a physiological brake on renin release. Annu Rev Pharmacol Toxicol 31:1–35

    Article  CAS  PubMed  Google Scholar 

  • Jackson EK (2004) Intraperitoneal administration of adenosine inhibits formation of abdominal adhesions. Dis Colon Rectum 47:1390–1396

    Article  PubMed  Google Scholar 

  • Jackson EK, Gillespie DG (2012) Extracellular 2′,3′-cAMP and 3′,5′-cAMP stimulate proliferation of preglomerular vascular endothelial cells and renal epithelial cells. Am J Physiol Renal Physiol 303:F954–F962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson EK, Gillespie DG (2013a) Extracellular 2′,3′-cAMP-adenosine pathway in proximal tubular, thick ascending limb, and collecting duct epithelial cells. Am J Physiol Renal 304:F49–F55

    Article  CAS  Google Scholar 

  • Jackson EK, Gillespie DG (2013b) Regulation of cell proliferation by the guanosine–adenosine mechanism: role of adenosine receptors. Physiol Rep 1, e00024

    PubMed  PubMed Central  Google Scholar 

  • Jackson EK, Mi Z (2000) Preglomerular microcirculation expresses the cAMP-adenosine pathway. J Pharmacol Exp Ther 295:23–28

    CAS  PubMed  Google Scholar 

  • Jackson EK, Mi Z (2008) Regulation of renal ectophosphodiesterase by protein kinase C and sodium diet. J Pharmacol Exp Ther 325:210–216

    Article  CAS  PubMed  Google Scholar 

  • Jackson EK, Mi Z (2013) In vivo cardiovascular pharmacology of 2′, 3′-cAMP, 2′-AMP, and 3′-AMP in the rat. J Pharmacol Exp Ther 346:190–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson EK, Mi Z (2014) The guanosine-adenosine interaction exists in vivo. J Pharmacol Exp Ther 350:719–726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson EK, Mi Z, Gillespie DG, Dubey RK (1997) Metabolism of cAMP to adenosine in the renal vasculature. J Pharmacol Exp Ther 283:177–182

    CAS  PubMed  Google Scholar 

  • Jackson EK, Mi Z, Zhu C, Dubey RK (2003) Adenosine biosynthesis in the collecting duct. J Pharmacol Exp Ther 307:888–896

    Article  CAS  PubMed  Google Scholar 

  • Jackson EK, Zacharia LC, Zhang M, Gillespie DG, Zhu C, Dubey RK (2006) cAMP-adenosine pathway in the proximal tubule. J Pharmacol Exp Ther 317:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Jackson EK, Mi Z, Zacharia LC, Tofovic SP, Dubey RK (2007a) The pancreatohepatorenal cAMP-adenosine mechanism. J Pharmacol Exp Ther 321:799–809

    Article  CAS  PubMed  Google Scholar 

  • Jackson EK, Ren J, Zacharia LC, Mi Z (2007b) Characterization of renal ecto-phosphodiesterase. J Pharmacol Exp Ther 321:810–815

    Article  CAS  PubMed  Google Scholar 

  • Jackson EK, Ren J, Mi Z (2009) Extracellular 2′,3′-cAMP is a source of adenosine. J Biol Chem 284:33097–33106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson EK, Ren J, Gillespie DG, Dubey RK (2010) Extracellular 2′,3′-cyclic adenosine monophosphate is a potent inhibitor of preglomerular vascular smooth muscle cell and mesangial cell growth. Hypertension 56:151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson EK, Gillespie DG, Dubey RK (2011a) 2′-AMP and 3′-AMP inhibit proliferation of preglomerular vascular smooth muscle cells and glomerular mesangial cells via A2B receptors. J Pharmacol Exp Ther 337:444–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson EK, Ren J, Cheng D, Mi Z (2011b) Extracellular cAMP-adenosine pathways in the mouse kidney. Am J Physiol Renal Physiol 301:F565–F573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson EK, Ren J, Gillespie DG (2011c) 2′,3′-cAMP, 3′-AMP and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors. Am J Physiol Heart Circ Physiol 301:H391–H401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson EK, Cheng D, Jackson TC, Verrier JD, Gillespie DG (2013) Extracellular guanosine regulates extracellular adenosine levels. Am J Physiol Cell Physiol 304:C406–C421

    Article  CAS  PubMed  Google Scholar 

  • Jackson EK, Cheng D, Mi Z, Gillepsie DG (2014a) Guanosine regulates adenosine levels in the kidney. Physiol Rep 2, e12028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson EK, Gillespie DG, Mi Z, Cheng D, Bansal R, Janesko-Feldman K, Kochanek PM (2014b) Role of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the renal 2′,3′-cAMP-adenosine pathway. Am J Physiol Renal 307:F14–F24

    Article  CAS  Google Scholar 

  • Jackson EK, Menshikova EV, Mi Z, Verrier JD, Bansal R, Janesko-Feldman K, Jackson TC, Kochanek PM (2015) Renal 2′,3′-cyclic nucleotide 3′-phosphodiesterase is an important determinant of AKI severity after ischemia-reperfusion. J Am Soc Nephrol. doi: 10.1681/ASN.2015040397

  • Jia X, Fontaine BM, Strobel F, Weinert EE (2014) A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: basal levels of eight cNMPs and identification of 2′,3′-cIMP. Biomolecules 4:1070–1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson RA, Yeung SM, Stubner D, Bushfield M, Shoshani I (1989) Cation and structural requirements for P site-mediated inhibition of adenylate cyclase. Mol Pharmacol 35:681–688

    CAS  PubMed  Google Scholar 

  • Kim M, Chen SWC, Park SW, Kim M, D'Agati VD, Yang J, Lee HT (2009) Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia-reperfusion injury. Kidney Int 75:809–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Ho IK, Yamamoto I (2001) Uridine receptor: discovery and its involvement in sleep mechanism. Sleep 24:251–260

    Article  CAS  PubMed  Google Scholar 

  • Kochanek PM, Jackson EK (2001) The multifaceted role of adenosine in experimental and clinical traumatic brain injury. In: Brain injury. Springer, New York, pp 37–56

    Chapter  Google Scholar 

  • Kochanek PM, Dixon CE, Shellington DK, Shin SS, Bayır H, Jackson EK, Kagan VE, Yan HQ, Swauger PV, Parks SA (2013a) Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats. J Neurotrauma 30:920–937

    Article  PubMed  Google Scholar 

  • Kochanek PM, Verrier JD, Wagner AK, Jackson EK (2013b) The many roles of adenosine in traumatic brain injury. In: Adenosine. Springer, New York, pp 307–322

    Chapter  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  • Kruh GD, Zeng H, Rea PA, Liu G, Chen ZS, Lee K, Belinsky MG (2001) MRP subfamily transporters and resistance to anticancer agents. J Bioenerg Biomembr 33:493–501

    Article  CAS  PubMed  Google Scholar 

  • Kuzhikandathil EV, Clark L, Li Y (2011) The extracellular cAMP-adenosine pathway regulates expression of renal D1 dopamine receptors in diabetic rats. J Biol Chem. doi:10.1074/jbc.M111.268136

    PubMed  PubMed Central  Google Scholar 

  • Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave K-A (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33:366–374

    Article  CAS  PubMed  Google Scholar 

  • Lee HT, Emala CW (2000) Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A1 and A3 receptors. Am J Physiol Renal 278:F380–F387

    CAS  Google Scholar 

  • Lee HT, Emala CW (2002) Adenosine attenuates oxidant injury in human proximal tubular cells via A1 and A2a adenosine receptors. Am J Physiol Renal 282:F844–F852

    Article  CAS  Google Scholar 

  • Lee KS, Schubert P, Emmert H, Kreutzberg GW (1981) Effect of adenosine versus adenine nucleotides on evoked potentials in a rat hippocampal slice preparation. Neurosci Lett 23:309–314

    Article  CAS  PubMed  Google Scholar 

  • Lee HT, Kim M, Jan M, Penn RB, Emala CW (2007) Renal tubule necrosis and apoptosis modulation by A1 adenosine receptor expression. Kidney Int 71:1249–1261

    Article  CAS  PubMed  Google Scholar 

  • Marangos PJ, von Lubitz D, Daval JL, Deckert J (1990) Adenosine: its relevance to the treatment of brain ischemia and trauma. Prog Clin Biol Res 361:331–349

    CAS  PubMed  Google Scholar 

  • Mi Z, Jackson EK (1995) Metabolism of exogenous cyclic AMP to adenosine in the rat kidney. J Pharmacol Exp Ther 273:728–733

    CAS  PubMed  Google Scholar 

  • Mi Z, Jackson EK (1998) Evidence for an endogenous cAMP-adenosine pathway in the rat kidney. J Pharmacol Exp Ther 287:926–930

    CAS  PubMed  Google Scholar 

  • Mi Z, Herzer WA, Zhang Y, Jackson EK (1994) 3-isobutyl-1-methylxanthine decreases renal cortical interstitial levels of adenosine and inosine. Life Sci 54:277–282

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto A, Takeshita M, Pan-Hou H, Fujimori H (2008) Hepatic changes in adenine nucleotide levels and adenosine 3′-monophosphate forming enzyme in streptozotocin-induced diabetic mice. J Toxicol Sci 33:209–217

    Article  CAS  PubMed  Google Scholar 

  • Müller G, Wied S, Over S, Frick W (2008) Inhibition of lipolysis by palmitate, H2O2 and the sulfonylurea drug, glimepiride, in rat adipocytes depends on cAMP degradation by lipid droplets. Biochemistry 47:1259–1273

    Article  PubMed  CAS  Google Scholar 

  • Nakane T, Chiba S (1993) Pharmacological analysis of vasodilation induced by extracellular adenosine 3′,5′-cyclic monophosphate in the isolated and perfused canine coronary artery. J Pharmacol Exp Ther 264:1253–1261

    CAS  PubMed  Google Scholar 

  • Newell EA, Exo JL, Verrier JD, Jackson TC, Gillespie DG, Janesko-Feldman K, Kochanek PM, Jackson EK (2015) 2′,3′-cAMP, 3′-AMP, 2′-AMP and adenosine inhibit TNF-α and CXCL10 production from activated primary murine microglia via A2A receptors. Brain Res 12:27–35

    Article  CAS  Google Scholar 

  • Ohkubo S, Kimura J, Matsuoka I (2000) Ecto-alkaline phosphatase in NG108-15 cells : a key enzyme mediating P1 antagonist-sensitive ATP response. Br J Pharmacol 131:1667–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okusa MD (2002) A2A adenosine receptor: a novel therapeutic target in renal disease. Am J Physiol Renal 282:F10–F18

    CAS  Google Scholar 

  • Okusa MD, Linden J, Macdonald T, Huang L (1999) Selective A2A adenosine receptor activation reduces ischemia-reperfusion injury in rat kidney. Am J Physiol Renal Physiol 277:F404

    CAS  Google Scholar 

  • Okusa MD, Linden J, Huang L, Rieger JM, Macdonald TL, Huynh LP (2000) A2A adenosine receptor-mediated inhibition of renal injury and neutrophil adhesion. Am J Physiol Renal 279:F809–F818

    CAS  Google Scholar 

  • Okusa MD, Linden J, Huang L, Rosin DL, Smith DF, Sullivan G (2001) Enhanced protection from renal ischemia-reperfusion injury with A2A-adenosine receptor activation and PDE 4 inhibition. Kidney Int 59:2114–2125

    Article  CAS  PubMed  Google Scholar 

  • Oshima N, Furuuchi T, Fujii R (1986) Cyclic nucleotide action is mediated through adenosine receptors in damselfish motile iridophores. Comp Biochem Physiol C 85:89–93

    Article  CAS  PubMed  Google Scholar 

  • Osycka-Salut C, Diez F, Burdet J, Gervasi MG, Franchi A, Bianciotti LG, Davio C, Perez-Martinez S (2014) Cyclic AMP efflux, via MRPs and A1 adenosine receptors, is critical for bovine sperm capacitation. Mol Hum Reprod 20:89–99

    Article  CAS  PubMed  Google Scholar 

  • Pabst M, Grass J, Fischl R, Léonard R, Jin C, Hinterkörner G, Borth N, Altmann F (2010) Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Anal Chem 82:9782–9788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters E, van Elsas A, Heemskerk S, Jonk L, van der Hoeven J, Arend J, Masereeuw R, Pickkers P (2013) Alkaline phosphatase as a treatment of sepsis-associated acute kidney injury. J Pharmacol Exp Ther 344:2–7

    Article  CAS  PubMed  Google Scholar 

  • Phillis JW, Goshgarian HG (2001) Adenosine and neurotrauma: therapeutic perspectives. Neurol Res 23:183–189

    Article  CAS  PubMed  Google Scholar 

  • Pickkers P, Heemskerk S, Schouten J, Laterre P-F, Vincent J-L, Beishuizen A, Jorens PG, Spapen H, Bulitta M, Peters WHM, van der Hoeven JG (2012) Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial. Crit Care 16:R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Raasakka A, Kursula P (2014) The myelin membrane-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase: on a highway to structure and function. Neurosci Bull 30:956–966

    Article  CAS  PubMed  Google Scholar 

  • Rao F, Qi Y, Murugan E, Pasunooti S, Ji Q (2010) 2′,3′-cAMP hydrolysis by metal-dependent phosphodiesterases containing DHH, EAL, and HD domains is non-specific: implications for PDE screening. Biochem Biophys Res Commun 398:500–505

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Mi Z, Stewart NA, Jackson EK (2009) Identification and quantification of 2′,3′-cAMP release by the kidney. J Pharmacol Exp Ther 328:855–865

    Article  CAS  PubMed  Google Scholar 

  • Richards H, Das S, Smith CJ, Pereira L, Geisbrecht A, Devitt NJ, Games DE, van Geyschem J, Gareth Brenton A, Newton RP (2002) Cyclic nucleotide content of tobacco BY-2 cells. Phytochemistry 61:531–537

    Article  CAS  PubMed  Google Scholar 

  • Robertson CL, Bell MJ, Kochanek PM, Adelson PD, Ruppel R, Wisniewski S, Mi Z, Janesko KL, Clark RS, Jackson EK (1999) Increased adenosine concentration in cerebrospinal fluid after severe traumatic brain injury in infants and children: association with severity of injury. Crit Care Med 27:A38

    Article  Google Scholar 

  • Schmidt S (1999) Candidate autoantigens in multiple sclerosis. Mult Scler 5:147–160

    Article  CAS  PubMed  Google Scholar 

  • Sciaraffia E, Riccomi A, Lindstedt R, Gesa V, Cirelli E, Patrizio M, De Magistris MT, Vendetti S (2014) Human monocytes respond to extracellular cAMP through A2A and A2B adenosine receptors. J Leukoc Biol 96:113–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sokurenko YV, Zelenikhin PV, Ulyanova VV, Kolpakov AI, Muller D, Ilinskaya ON (2015) Identification of 2′,3′-cGMP as an intermediate of RNA catalytic cleavage by binase and evaluation of its biological action. Russ J Bioorg Chem 41:31–36

    Article  CAS  Google Scholar 

  • Sorrentino S (1998) Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci 54:785–794

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino S, Libonati M (1997) Structure-function relationships in human ribonucleases: main distinctive features of the major RNase types. FEBS Lett 404:1–5

    Article  CAS  PubMed  Google Scholar 

  • Sprinkle TJ (1989) 2′,3′-cyclic nucleotide 3′-phosphodiesterase, an oligodendrocyte-schwann cell and myelin-associated enzyme of the nervous system. Crit Rev Neurobiol 4:235–301

    CAS  PubMed  Google Scholar 

  • Stone TW (2002) Purines and neuroprotection. Adv Exp Med Biol 513:249–280

    Article  CAS  PubMed  Google Scholar 

  • Thauerer B, Zur Nedden S, Baier-Bitterlich G (2012) Purine nucleosides: endogenous neuroprotectants in hypoxic brain. J Neurochem 121:329–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson RJ (1992) 2′,3′-cyclic nucleotide-3′-phosphohydrolase and signal transduction in central nervous system myelin. Biochem Soc Trans 20:621–626

    Article  CAS  PubMed  Google Scholar 

  • Thompson JE, Venegas FD, Raines RT (1994) Energetics of catalysis by ribonucleases: fate of the 2′,3′-cyclic phosphodiester intermediate. Biochemistry 33:7408–7414

    Article  CAS  PubMed  Google Scholar 

  • Vallon V, Muhlbauer B, Osswald H (2006) Adenosine and kidney function. Physiol Rev 86:901–940

    Article  CAS  PubMed  Google Scholar 

  • van Aubel R, Smeets PHE, Peters JGP, Bindels RJM, Russel FGM (2002) The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol 13:595

    PubMed  Google Scholar 

  • Van Damme T, Zhang Y, Lynen F, Sandra P (2012) Determination of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 909:14–21

    Article  PubMed  CAS  Google Scholar 

  • Van Damme T, Blancquaert D, Couturon P, Van Der Straeten D, Sandra P, Lynen F (2014) Wounding stress causes rapid increase in concentration of the naturally occurring 2′,3′-isomers of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues. Phytochemistry 103:59–66

    Article  PubMed  CAS  Google Scholar 

  • Verrier JD, Exo JL, Jackson TC, Ren J, Gillespie DG, Dubey RK, Kochanek PM, Jackson EK (2011) Expression of the 2′,3′-cAMP-adenosine pathway in astrocytes and microglia. J Neurochem 118:979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verrier JD, Jackson TC, Bansal R, Kochanek PM, Puccio AM, Okonkwo DO, Jackson EK (2012) The brain in vivo expresses the 2′,3′-cAMP-adenosine pathway. J Neurochem 122:115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verrier JD, Jackson TC, Gillespie DG, Janesko-Feldman K, Bansal R, Goebbels S, Nave K-A, Kochanek PM, Jackson EK (2013) Role of CNPase in the oligodendrocytic extracellular 2′,3′-cAMP-adenosine pathway. GLIA 61:1595–1606

    Article  PubMed  PubMed Central  Google Scholar 

  • Verrier JD, Kochanek PM, Jackson EK (2015) Schwann cells metabolize extracellular 2′,3′-cAMP to 2′-AMP. J Pharmacol Exp Ther 354:175–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel US, Thompson RJ (1988) Molecular structure, localization, and possible functions of the myelin-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J Neurochem 50:1667–1677

    Article  CAS  PubMed  Google Scholar 

  • Wahn HL, Lightbody LE, Tchen TT, Taylor JD (1975) Induction of neural differentiation in cultures of amphibian undetermined presumptive epidermis by cyclic AMP derivatives. Science 188:366–369

    Article  CAS  PubMed  Google Scholar 

  • Whitfeld PR, Heppel LA, Markham R (1955) The enzymic hydrolysis of ribonucleoside-2′:3′ phosphates. Biochem J 60:15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieser GL, Gerwig UC, Adamcio B, Barrette B, Nave K-A, Ehrenreich H, Goebbels S (2013) Neuroinflammation in white matter tracts of Cnp1 mutant mice amplified by a minor brain injury. GLIA. doi:10.1002/glia.22480

    PubMed  Google Scholar 

  • Willemot J, Paton DM (1981) Metabolism and presynaptic inhibitory activity of 2′,3′ and 5′-adenine nucleotides in rat vas deferens. Naunyn Schmiedebergs Arch Pharmacol 317:110–114

    Article  CAS  PubMed  Google Scholar 

  • Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2:237–246

    Article  CAS  PubMed  Google Scholar 

Download references

Grants

Supported by grants from the NIH (HL069846, DK068575, DK079307, DK091190 and NS070003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin K. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jackson, E.K. (2015). Discovery and Roles of 2′,3′-cAMP in Biological Systems. In: Seifert, R. (eds) Non-canonical Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 238. Springer, Cham. https://doi.org/10.1007/164_2015_40

Download citation

Publish with us

Policies and ethics