Predictive In Vivo Models for Oncology

  • Diana BehrensEmail author
  • Jana Rolff
  • Jens Hoffmann
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 232)


Experimental oncology research and preclinical drug development both substantially require specific, clinically relevant in vitro and in vivo tumor models. The increasing knowledge about the heterogeneity of cancer requested a substantial restructuring of the test systems for the different stages of development. To be able to cope with the complexity of the disease, larger panels of patient-derived tumor models have to be implemented and extensively characterized. Together with individual genetically engineered tumor models and supported by core functions for expression profiling and data analysis, an integrated discovery process has been generated for predictive and personalized drug development.

Improved “humanized” mouse models should help to overcome current limitations given by xenogeneic barrier between humans and mice. Establishment of a functional human immune system and a corresponding human microenvironment in laboratory animals will strongly support further research.

Drug discovery, systems biology, and translational research are moving closer together to address all the new hallmarks of cancer, increase the success rate of drug development, and increase the predictive value of preclinical models.


Mouse models Patient-derived xenograft (PDX) Preclinical oncology Translational research 


  1. Alcantar-Orozco EM, Gornall H, Baldan V, Hawkins RE, Gilham DE (2013) Potential limitations of the NSG humanized mouse as a model system to optimize engineered human T cell therapy for cancer. Hum Gene Ther Methods 24(5):310–320CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26(10):1626–1634CrossRefPubMedGoogle Scholar
  3. Amendt C, Staub E, Friese-Hamim M, Störkel S, Stroh C (2014) Association of EGFR expression level and cetuximab activity in patient-derived xenograft models of human non-small cell lung cancer. Clin Cancer Res 20(17):4478–4487CrossRefPubMedGoogle Scholar
  4. Angevin E, Glukhova L, Pavon C, Chassevent A, Terrier-Lacombe MJ, Goguel AF, Bougaran J, Ardouin P, Court BH, Perrin JL, Vallancien G, Triebel F, Escudier B (1999) Human renal cell carcinoma xenografts in SCID mice: tumorigenicity correlates with a poor clinical prognosis. Lab Invest 79:879–888PubMedGoogle Scholar
  5. Bankert RB, Egilmez NK, Hess S (2001) Human-SCID mouse chimeric models for the evaluation of anti-cancer therapies. Trends Immunol 22:386–393CrossRefPubMedGoogle Scholar
  6. Bankert RB, Balu-Iyer SV, Odunsi K, Shultz LD, Kelleher RJ, Barnas JL (2011) Humanized mouse models of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis. PLoS One 6:e24420CrossRefPubMedPubMedCentralGoogle Scholar
  7. Becker M, Nitsche A, Neumann C, Aumann J, Junghahn I, Fichtner I (2002) Sensitive PCR method for the detection and real-time quantification of human cells in xenotransplantation systems. Br J Cancer 87(11):1328–1335CrossRefPubMedPubMedCentralGoogle Scholar
  8. Becker M, Sommer A, Krätzschmar JR, Seidel H, Pohlenz HD, Fichtner I (2004) Distinct gene expression patterns in a tamoxifen-sensitive human mammary carcinoma xenograft and its tamoxifen-resistant subline MaCa 3366/TAM. Mol Cancer Ther 4:151–168Google Scholar
  9. Behrens D, Hallas C, Anders D, Hoffmann J, Fichtner I (2014) In vivo models of pancreatic cancer for translational medicine. Eur J Cancer 50(Supplement 5):S1–S247Google Scholar
  10. Bosma MJ, Carroll AM (1991) The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol 9:323–335CrossRefPubMedGoogle Scholar
  11. Brischwein K, Schlereth B, Guller B, Steiger C, Wolf A, Lutterbuese R, Offner S, Locher M, Urbig T, Raum T, Kleindienst P, Wimberger P, Kimmig R, Fichtner I, Kufer P, Hofmeister R, da Silva AJ, Baeuerle PA (2006) MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol Immunol 43:1129–1143CrossRefPubMedGoogle Scholar
  12. Cao S, Durrani FA, Tóth K, Rustum YM (2014) Se-methylselenocysteine offers selective protection against toxicity and potentiates the antitumour activity of anticancer drugs in preclinical animal models. Br J Cancer 110(7):1733–1743CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carter TC, Dunn LC, Falconer DS (1952) Standardized nomenclature for inbred strains of mice: prepared by the committee on standardized nomenclature for inbred strains of mice. Cancer Res 12:602–613Google Scholar
  14. Chiarugi P, Paoli P, Cirri P (2014) Tumor microenvironment and metabolism in prostate cancer. Semin Oncol 41(2):267–280CrossRefPubMedGoogle Scholar
  15. Cook RS, Jacobsen KM, Wofford AM, DeRyckere D, Stanford J, Prieto AL, Redente E, Sandahl M, Hunter DM, Strunk KE, Graham DK, Earp HS 3rd (2013) MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J Clin Invest 123(8):3231–3242CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cree IA, Glaysher S, Harvey AL (2010) Efficacy of anti-cancer agents in cell lines versus human primary tumour tissue. Curr Opin Pharmacol 10(4):375–379CrossRefPubMedGoogle Scholar
  17. daChuna A, Michelin MA, Murta EF (2014) Pattern of response of dendritic cells in the tumor microenvironment and breast cancer. World J Clin Oncol 5(3):495–502CrossRefGoogle Scholar
  18. Decaudin D (2011) Primary human tumor xenografted models (“tumorgrafts”) for good management of patients with cancer. Anticancer Drugs 22:827–841CrossRefPubMedGoogle Scholar
  19. Dechantsreiter MA, Planker E, Matha B, Lohof E, Holzemann G, Jonczyk A (1999) N-methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. J Med Chem 42:3033–3040CrossRefPubMedGoogle Scholar
  20. Dreier T, Baeuerle PA, Fichtner I, Grün M, Schlereth B, Lorenczewski G, Kufer P, Lutterbüse R, Riethmüller G, Gjorstrup P, Bargou RC (2003) T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3- bispecific single-chain antibody construct. J Immunol 170:4397–4402CrossRefPubMedGoogle Scholar
  21. Duechler M, Peczek L, Szubert M, Suzin J (2014) Influence of hypoxia inducible factors on the immune microenvironment in ovarian cancer. Anticancer Res 34(6):2811–2819PubMedGoogle Scholar
  22. Fang H, DeClerk YA (2013) Targeting the tumor microenvironment: from understanding pathways to effective clinical trails. Cancer Res 73(16):4965–4977CrossRefPubMedGoogle Scholar
  23. Fichtner I, Becker M, Zeisig R, Sommer A (2004) In vivo models for endocrine-dependent breast carcinomas: special considerations of clinical relevance. Eur J Cancer 40:845–851CrossRefPubMedGoogle Scholar
  24. Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, Becker M, Merk J (2008) Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res 14(20):6456–6468CrossRefPubMedGoogle Scholar
  25. Fu S, Wang J, Sun W, Xu Y, Zhou X, Cheng W (2014) Preclinical humanized mouse model with ectopic ovarian tissues. Exp Ther Med 8(3):742–746PubMedPubMedCentralGoogle Scholar
  26. Furman WL, Stewart CF, Poquette CA, Pratt CB, Santana VM, Zamboni WC, Bowman LC, Ma MK, Hoffer FA, Meyer WH, Pappo AS, Walter AW, Houghton PJ (1999) Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol 17:1815–1824PubMedGoogle Scholar
  27. Futakuchi M, Singh RK (2013) Animal model for mammary tumor growth in the bone microenvironment. Breast Cancer 20(3):195–203CrossRefPubMedGoogle Scholar
  28. Garber K (2009) From human to mouse and back: ‘tumorgraft’ models surge in popularity. J Natl Cancer Inst 101:6–8CrossRefPubMedGoogle Scholar
  29. Garralda E, Paz K, López-Casas PP, Jones S, Katz A, Kann LM, López-Rios F, Sarno F, Al-Shahrour F, Vasquez D, Bruckheimer E, Angiuoli SV, Calles A, Diaz LA, Velculescu VE, Valencia A, Sidransky D, Hidalgo M (2014) Integrated next-generation sequencing and avatar mouse models for personalized cancer treatment. Clin Cancer Res 20(9):2476–2484CrossRefPubMedPubMedCentralGoogle Scholar
  30. Garrido-Laguna I, Uson M, Rajeshkumar NV, Tan AC, de Oliveira E, Karikari C (2011) Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res 17:5793–5800CrossRefPubMedPubMedCentralGoogle Scholar
  31. Goubran HA, Kotb RR, Stakiw J, Emara ME, Burnouf T (2014) Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer Growth Metastasis 7:9–18CrossRefPubMedPubMedCentralGoogle Scholar
  32. Haddad TC, Yee D (2008) Of mice and (wo)men: is this any way to test a new drug? J Clin Oncol 26:830–832CrossRefPubMedGoogle Scholar
  33. Hammer S, Sommer A, Fichtner I, Becker M, Rolff J, Merk J, Klar U, Hoffmann J (2010) Comparative profiling of the novel epothilone, Sagopilone, in xenografts derived from primary non-small cell lung cancer. Clin Cancer Res 16:1452–1465CrossRefPubMedGoogle Scholar
  34. Henderson D, Ogilvie LA, Hoyle N, Keilholz U, Lange B, Lehrach H, OncoTrack Consortium (2014) Personalized medicine approaches for colon cancer driven by genomics and systems biology: OncoTrack. Biotechnol J 9(9)Google Scholar
  35. Hersey P, Sosman J, O’Day S, Richards J, Bedikian A, Gonzalez R (2010) A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or − dacarbazine in patients with stage IV metastatic melanoma. Cancer 116:1526–1534CrossRefPubMedGoogle Scholar
  36. Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, Roman-Roman S, Seoane J, Trusolino L, Villanueva A (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4(9):998–1013CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hoffmann J, Fichtner I, Lemm M, Lienau P, Hess-Stumpp H, Rotgeri A, Hofmann B, Klar U (2009) Sagopilone crosses the blood–brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro Oncol 11(2):158–166CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hoffmann J, Orthmann A, Hoffmann A, Reiner R, Fichtner I (2014) Establishment and validation of models for metastasis developed from patient xenogragrafts (PDX). In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research, 2014 Apr 5–9. AACR, San Diego. Abstract 4953Google Scholar
  39. Hylander BL, Punt N, Tang H, Hillmann J, Vaughan M, Bshara W (2013) Origin of the vasculature supporting growth of primary patient tumor xenografts. J Transl Med 11:110CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kelloff GJ, Sigman CC (2012) Cancer biomarkers: selecting the right drug for the right patient. Nat Rev Drug Discov 11:201–214CrossRefPubMedGoogle Scholar
  41. Lee H (2014) Genetically engineered mouse models for drug development and preclinical trials. Biomol Ther (Seoul) 22(4):267–274CrossRefGoogle Scholar
  42. Lee TK, Na KS, Kim J, Jeong HJ (2014) Establishment of animal models with orthotopic hepatocellular carcinoma. Nucl Med Mol Imaging 48(3):173–179CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lièvre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Côté JF, Tomasic G, Penna C, Ducreux M, Rougier P, Penault-Llorca F, Laurent-Puig P (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995CrossRefPubMedGoogle Scholar
  44. Malaney P, Nicosia SV, Davé V (2014) One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett 344(1):1–12CrossRefPubMedPubMedCentralGoogle Scholar
  45. McCullough DJ, Nguyen LM, Siemann DW, Behnke BJ (2013) Effects of exercise training on tumor hypoxia and vascular function in the rodent preclinical orthotopic prostate cancer model. J Appl Physiol 115(12):1846–1854CrossRefPubMedPubMedCentralGoogle Scholar
  46. Monsma DJ, Monks NR, Cherba DM, Dylewski D, Eugster E, Jahn H, Srikanth S, Scott SB, Richardson PJ, Everts RE, Ishkin A, Nikolsky Y, Resau JH, Sigler R, Nickoloff BJ, Webb CP (2012) Genomic characterization of explant tumorgraft models derived from fresh patient tumor tissue. J Transl Med 10:125CrossRefPubMedPubMedCentralGoogle Scholar
  47. Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2(2):247–250CrossRefPubMedGoogle Scholar
  48. Nevins JR, Huang ES, Dressman H, Pittman J, Huang AT, West M (2003) Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum Mol Genet 12(Spec No 2):R153–R157CrossRefPubMedGoogle Scholar
  49. Nwabo Kamdje AH, Muller JM, Lukong KE (2014) Signaling pathways in breast cancer: therapeutic targeting of the microenvironment. Cell Signal. doi: 10.1016/j.cellsig.2014.07.034 Google Scholar
  50. O’Day S, Pavlick A, Loquai C, Lawson D, Gutzmer R, Richards J (2011) A randomised, phase II study of intetumumab, an anti-alphav-integrin mAb, alone and with dacarbazine in stage IV melanoma. Br J Cancer 105:346–352CrossRefPubMedPubMedCentralGoogle Scholar
  51. Park SI, Kim SJ, McCauley LK, Gallick GE (2010) Pre-clinical mouse models of human prostate cancer and their utility in drug discovery. Curr Protoc Pharmacol Chapter 14:Unit 14.15. doi:10.1002/0471141755.ph1415s5Google Scholar
  52. Paulsson J, Ehnman M, Ostman A (2014) PDGF receptors in tumor biology: prognostic and predictive potential. Future Oncol 10(9):1695–1708CrossRefPubMedGoogle Scholar
  53. Pechanska P, Becker M, Mayr T (2013) Mutation status of KRAS, BRAF, PIK3CA and expression level of AREG and EREG identify responders to cetuximab in a large panel of patient derived colorectal carcinoma xenografts of all four UICC stages. J Cancer Ther. doi: 10.4236/jct.2013 Google Scholar
  54. Perez-Soler R, Kemp B, Wu QP, Mao L, Gomez J, Zeleniuch-Jacquotte A, Yee H, Lee JS, Jagirdar J, Ling YH (2006) Response and determinants of sensitivity to paclitaxel in human non-small cell lung cancer tumors heterotransplanted in nude mice. Clin Cancer Res 6:4932–4938Google Scholar
  55. Peterson JK, Houghton PJ (2004) Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer 40:837–844CrossRefPubMedGoogle Scholar
  56. Rappaport A, Johnson L (2014) Genetically engineered knock-in and conditional knock-in mouse models of cancer. Cold Spring Harb Protoc 2:2014(9)Google Scholar
  57. Reisfeld RA (2013) The tumor microenvironment: a target for combination therapy of breast cancer. Crit Rev Oncog 18(1–2):115–133CrossRefPubMedGoogle Scholar
  58. Rivera M, Keil M, Boehnke K, Lange M, Schumacher D, Schäfer R, Regenbrecht CRA, Henderson D, Keilholz U, Kuehn A, El-Heliebi A, Hohensee T, Haybäck J, Reinhard C, Velasco JA, Lehrach H, Garin-Chesa P, Beran G, Hoffmann J (2014) Generation of drug response data from 57 new patient-derived colon cancer xenografts and 3D cell cultures for systematic correlation with tumor biology within the OncoTrack* project. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research, 2014 Apr 5–9. AACR, San Diego, CA. Abstract 2978Google Scholar
  59. Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, Saito Y, Marches F, Halene S, Palucka AK, Manz MG, Flavell RA (2014) Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 32(4):364–372CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rossi ML, Rehman AA, Gondi CS (2014) Therapeutic options for the management of pancreatic cancer. World J Gastroenterol 20(32):11142–11159CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C (2006) An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res 12:4652–4661CrossRefPubMedGoogle Scholar
  62. Schlereth B, Fichtner I, Lorenczewski G, Kleindienst P, Brischwein K, da Silva A, Kufer P, Lutterbuese R, Junghahn I, Kasimir-Bauer S, Wimberger P, Kimmig R, Baeuerle PA (2005) Eradication of tumors from a human colon cancer cell line and from ovarian cancer metastases in immunodeficient mice by a single-chain Ep-CAM-/CD3-bispecific antibody construct. Cancer Res 65:2882–2889CrossRefPubMedGoogle Scholar
  63. Schmieder R, Hoffmann J, Becker M, Bhargava A, Müller T, Kahmann N, Ellinghaus P, Adams R, Rosenthal A, Thierauch KH, Scholz A, Wilhelm SM, Zopf D (2014) Regorafenib (BAY 73–4506): antitumor and antimetastatic activities in preclinical models of colorectal cancer. Int J Cancer 135(6):1487–1496CrossRefPubMedPubMedCentralGoogle Scholar
  64. Scott CL, Becker MA, Haluska P, Samimi G (2013) Patient-derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment. Front Oncol 3(295):1–8Google Scholar
  65. Sebastiani V, Ricci F, Rubio-Viqueira B, Kulesza P, Yeo CJ, Hidalgo M (2006) Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer: relationship to molecular mechanisms of gemcitabine resistance and survival. Clin Cancer Res 12:2492–2497CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sharpless NE, Depinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5:741–754CrossRefPubMedGoogle Scholar
  67. Shull JD (2007) The rat oncogenome: comparative genetics and genomics of rat models of mammary carcinogenesis. Breast Dis 28:69–86PubMedGoogle Scholar
  68. Siolas D, Hannon GJ (2013) Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res 73:5315–5319CrossRefPubMedPubMedCentralGoogle Scholar
  69. Slamon D, Pegram M (2001) Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol 28(1 Suppl 3):13–19CrossRefPubMedGoogle Scholar
  70. Smith HW, Muller WJ (2013) Transgenic mouse models – a seminal breakthrough in oncogene research. Cold Spring Harb Protoc 12:1099–1108Google Scholar
  71. Sommer A, Hoffmann J, Lichtner RB, Schneider MR, Parczyk K (2003) Studies on the development of resistance to the pure antiestrogen Faslodex in three human breast cancer cell lines. J Steroid Biochem Mol Biol 85(1):33–47CrossRefPubMedGoogle Scholar
  72. Stromnes IM, Schmitt TM, Chapuis AG, Hingorani SR, Greenberg PD (2014) Re-adapting T cells for cancer therapy: from mouse models to clinical trials. Immunol Rev 257(1):145–164CrossRefPubMedPubMedCentralGoogle Scholar
  73. Strube A, Hoffmann J, Stepina E, Hauff P, Klar U, Käkönen SM (2009) Sagopilone inhibits breast cancer bone metastasis and bone destruction due to simultaneous inhibition of both tumor growth and bone resorption. Clin Cancer Res 15(11):3751–3759CrossRefPubMedGoogle Scholar
  74. Thibaudeau L, Taubenberger AV, Holzapfel BM, Quent VM, Fuehrmann T, Hesami P, Brown TD, Dalton PD, Power CA, Hollier BG, Hutmacher DW (2014) A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Dis Model Mech 7(2):299–309CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tran PH, Tran TT, Lee BJ (2014) Biodistribution and pharmacokinetics in rats and antitumor effect in various types of tumor-bearing mice of novel self-assembled gelatin-oleic acid nanoparticles containing paclitaxel. J Biomed Nanotechnol 10(1):154–165CrossRefPubMedGoogle Scholar
  76. Tschida BR, Largaespada DA, Keng VW (2014) Mouse models of cancer: sleeping beauty transposons for insertional mutagenesis screens and reverse genetic studies. Semin Cell Dev Biol 27:86–95CrossRefPubMedGoogle Scholar
  77. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703CrossRefGoogle Scholar
  78. Wang T, Liu G, Wang R (2014) The intercellular metabolic interplay between tumor and immune cells. Front Immunol 5:358PubMedPubMedCentralGoogle Scholar
  79. Wege AK, Schmidt M, Ueberham E, Ponnath M, Ortmann O, Brockhoff G, Lehmann J (2014) Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice: a novel approach to generate tumor cell specific human antibodies. MAbs 6(4):968–977CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wenzel J, Zeisig R, Haider W, Habedank S, Fichtner I (2010) Inhibition of pulmonary metastasis in a human MT3 breast cancer xenograft model by dual liposomes preventing intravasal fibrin clot formation. Breast Cancer Res Treat 121(1):13–22CrossRefPubMedGoogle Scholar
  81. Zhang L, Cao DY, Wang J, Xiang B, Dun JN, Fang Y, Xue GQ (2013) PEG-coated irinotecan cationic liposomes improve the therapeutic efficacy of breast cancer in animals. Eur Rev Med Pharmacol Sci 17(24):3347–3361PubMedGoogle Scholar
  82. Zhou Q, Facciponte J, Jin M, Shen Q, Lin Q (2014) Humanized NOD-SCID IL2rg−/− mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. Cancer Lett 344(1):13–19CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.EPO – Experimental Pharmacology and Oncology – GmbHBerlinGermany

Personalised recommendations