pp 1-38 | Cite as

Bacteriophage-Mediated Biocontrol of Wound Infections, and Ecological Exploitation of Biofilms by Phages

  • Stephen T. AbedonEmail author
Part of the Recent Clinical Techniques, Results, and Research in Wounds book series


Considered in this chapter is the use of bacterial viruses, a.k.a., bacteriophages or phages, to control or eliminate unwanted bacteria, e.g., as may be found in association with wounds. Infected wounds often have a biofilm component, and as a consequence this chapter focuses in part on interactions between bacteriophages and biofilms. A growing literature exists exploring in vitro models of the treatment of biofilms using phages, and though not emphasized here a listing of relevant studies is provided. I then present an overview of the phage wound-treatment, animal-model literature. I follow this with emphasis on the clinical treatment of wound infections using phages. Lastly, as phage-biofilm interactions are inherently ecological, I explore their ecology, concluding with consideration of how ecological appreciation might help to improve anti-biofilm effectiveness.


  1. 1.
    Hobbs Z, Abedon ST (2016) Diversity of phage infection types and associated terminology: the problem with “lytic or lysogenic”. FEMS Microbiol Lett 363:pii: fnw047Google Scholar
  2. 2.
    Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW (2012) A review of the scientific evidence for biofilms in wounds. Wound Repair Regen 20:647–657Google Scholar
  3. 3.
    Percival SL, McCarty SM, Lipsky B (2015) Biofilms and wounds: an overview of the evidence. Adv Wound Care (New Rochelle) 4:373–381Google Scholar
  4. 4.
    Abedon ST (2016a) Commentary: phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Front Microbiol 7:1251Google Scholar
  5. 5.
    Pires DP, Melo L, Vilas BD, Sillankorva S, Azeredo J (2017a) Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 39:48–56Google Scholar
  6. 6.
    Abedon ST (2012) Spatial vulnerability: bacterial arrangements, microcolonies, and biofilms as responses to low rather than high phage densities. Virus 4:663–687Google Scholar
  7. 7.
    Abedon ST (2017a) Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiol 3:186–226Google Scholar
  8. 8.
    Abedon ST (2011) Bacteriophages and biofilms: ecology, phage therapy, plaques. Nova Science Publishers, Hauppauge, NYGoogle Scholar
  9. 9.
    Harper DR, Parracho HMR, Walker J, Sharp R, Hughes G, Werthrén M, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3:270–284Google Scholar
  10. 10.
    Parasion S, Kwiatek M, Gryko R, Mizak L, Malm A (2014) Bacteriophages as an alternative strategy for fighting biofilm development. Pol J Microbiol 63:137–145Google Scholar
  11. 11.
    Sillankorva S, Azeredo J (2014) The use of bacteriophages and bacteriophage-derived enzymes for clinically relevant biofilm control. In: Borysowski J, Miedzybrodzki R, Górski A (eds) Phage therapy: current research and applications. Caister Academic Press, Norfolk, UKGoogle Scholar
  12. 12.
    Chan BK, Abedon ST (2015) Bacteriophages and their enzymes in biofilm control. Curr Pharm Des 21:85–99Google Scholar
  13. 13.
    Abedon ST (2017b) Bacteriophage clinical use as antibactertial “drugs”: utility, precedent. Microbiol Spectr 5:BAD-0003-2016Google Scholar
  14. 14.
    Chaudhry WN, Concepcion-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR (2017) Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One 12:e0168615Google Scholar
  15. 15.
    Garcia KCOD, Corrêa IMO, Pereira LQ, Silva TM, Mioni MSR, Izidoro ACM, Bastos IHV, Gonçalves GAM, Okamoto AS, Andreatti Filho RL (2017) Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses. Poult Sci 96:3392–3398Google Scholar
  16. 16.
    Gong C, Jiang X (2017) Application of bacteriophages to reduce Salmonella attachment and biofilms on hard surfaces. Poult Sci 6:1838–1848Google Scholar
  17. 17.
    González S, Fernández L, Campelo AB, Gutiérrez D, Martínez B, Rodriguez A, García P (2017) The behavior of Staphylococcus aureus dual-species biofilms treated with bacteriophage phiIPLA-RODI depends on the accompanying microorganism. Appl Environ Microbiol 83:e02821-16Google Scholar
  18. 18.
    Gutiérrez D, Rodríguez-Rubio L, Fernández L, Martínez B, Rodríguez A, García P (2017) Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control 73:1474–1482Google Scholar
  19. 19.
    Kwiatek M, Parasion S, Rutyna P, Mizak L, Gryko R, Niemcewicz M, Olender A, Lobocka M (2017) Isolation of bacteriophages and their application to control Pseudomonas aeruginosa in planktonic and biofilm models. Res Microbiol 168:194–207Google Scholar
  20. 20.
    Naser IB, Hoque MM, Abdullah A, Bari SMN, Ghosh AN, Faruque SM (2017) Environmental bacteriophages active on biofilms and planktonic forms of toxigenic Vibrio cholerae: potential relevance in cholera epidemiology. PLoS One 12:e0180838Google Scholar
  21. 21.
    Pires DP, Dotsch A, Anderson EM, Hao Y, Khursigara CM, Lam JS, Sillankorva S, Azeredo J (2017b) A genotypic analysis of five P. aeruginosa strains after biofilm infection by phages targeting different cell surface receptors. Front Microbiol 8:1229Google Scholar
  22. 22.
    Sadekuzzaman M, Yang S, Mizan MFR, Ha SD (2017a) Reduction of Escherichia coli O157:H7 in biofilms using bacteriophage BPECO 19. J Food Sci 82:1433–1442Google Scholar
  23. 23.
    Sadekuzzaman M, Yang S, Mizan MFR, Kim HS, Ha SD (2017b) Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control 78:256–263Google Scholar
  24. 24.
    Shafique M, Alvi IA, Abbas Z, Ur RS (2017) Assessment of biofilm removal capacity of a broad host range bacteriophage JHP against Pseudomonas aeruginosa. APMIS 125:579–584Google Scholar
  25. 25.
    Waters EM, Neill DR, Kaman B, Sahota JS, Clokie MR, Winstanley C, Kadioglu A (2017) Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax 72(7):666Google Scholar
  26. 26.
    Danis-Wlodarczyk K, Vandenheuvel D, Jang HB, Briers Y, Olszak T, Arabski M, Wasik S, Drabik M, Higgins G, Tyrrell J, Harvey BJ, Noben JP, Lavigne R, Drulis-Kawa Z (2016) A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections. Sci Rep 6:28115Google Scholar
  27. 27.
    Iacumin L, Manzano M, Comi G (2016) Phage inactivation of Listeria monocytogenes on san Daniele dry-cured ham and elimination of biofilms from equipment and working environments. Microorganisms 4:4Google Scholar
  28. 28.
    Liu Y, Mi Z, Niu W, An X, Yuan X, Liu H, Wang Y, Feng Y, Huang Y, Zhang X, Zhang Z, Fan H, Peng F, Li P, Tong Y, Bai C (2016) Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro. Future Microbiol 11:1383–1393Google Scholar
  29. 29.
    Mapes AC, Trautner BW, Liao KS, Ramig RF (2016) Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa. Bacteriophage 6:e1096995Google Scholar
  30. 30.
    Nale JY, Chutia M, Carr P, Hickenbotham PT, Clokie MR (2016) 'Get in early'; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages. Front Microbiol 7:1383Google Scholar
  31. 31.
    Nzakizwanayo J, Hanin A, Alves DR, McCutcheon B, Dedi C, Salvage J, Knox K, Stewart B, Metcalfe A, Clark J, Gilmore BF, Gahan CG, Jenkins AT, Jones BV (2015) Bacteriophage can prevent encrustation and blockage of urinary catheters by Proteus mirabilis. Antimicrob Agents Chemother 60(3):1530–1536Google Scholar
  32. 32.
    Singla S, Harjai K, Katare OP, Chhibber S (2016) Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS One 11:e0153777Google Scholar
  33. 33.
    Tinoco JM, Buttaro B, Zhang H, Liss N, Sassone L, Stevens R (2016) Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms. Arch Oral Biol 71:80–86Google Scholar
  34. 34.
    Abdulamir AS, Jassim SA, Hafidh RR, Bakar FA (2015) The potential of bacteriophage cocktail in eliminating methicillin-resistant Staphylococcus aureus biofilms in terms of different extracellular matrices expressed by PIA, ciaA-D and FnBPA genes. Ann Clin Microbiol Antimicrob 14:49Google Scholar
  35. 35.
    Alves DR, Perez-Esteban P, Kot W, Bean JE, Arnot T, Hansen LH, Enright MC, Jenkins AT (2015) A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol 9:61–74Google Scholar
  36. 36.
    Bhattacharjee AS, Choi JD, Motlagh AM, Mukherji ST, Goel R (2015) Bacteriophage therapy for membrane biofouling in membrane bioreactors and antibiotic-resistant bacterial biofilms. Biotechnol Bioeng 112:1644–1654Google Scholar
  37. 37.
    Chhibber S, Bansal S, Kaur S (2015) Disrupting the mixed species biofilm of Klebsiella pneumoniae B5055 and Pseudomonas aeruginosa PAO using bacteriophages alone or in combination with xylitol. Microbiology 161:1369–1377Google Scholar
  38. 38.
    Dalmasso M, de HE, Neve H, Strain R, Cousin FJ, Stockdale SR, Ross RP, Hill C (2015) Isolation of a novel phage with activity against Streptococcus mutans biofilms. PLoS One 10:e0138651Google Scholar
  39. 39.
    Danis-Wlodarczyk K, Olszak T, Arabski M, Wasik S, Majkowska-Skrobek G, Augustyniak D, Gula G, Briers Y, Jang HB, Vandenheuvel D, Duda KA, Lavigne R, Drulis-Kawa Z (2015) Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 and their efficacy against Pseudomonas aeruginosa biofilm. PLoS One 10:e0127603Google Scholar
  40. 40.
    Gong C, Jiang X (2015) Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant. Can J Microbiol 61:539–544Google Scholar
  41. 41.
    Gutierrez D, Vandenheuvel D, Martinez B, Rodriguez A, Lavigne R, Garcia P (2015) Two phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-species staphylococcal biofilms. Appl Environ Microbiol 81:3336–3348Google Scholar
  42. 42.
    Holguin AV, Rangel G, Clavijo V, Prada C, Mantilla M, Gomez MC, Kutter E, Taylor C, Fineran PC, Barrios AF, Vives MJ (2015) Phage FPan70, a putative temperate phage, controls Pseudomonas aeruginosa in planktonic, biofilm and burn mouse model assays. Virus 7:4602–4623Google Scholar
  43. 43.
    Jamal M, Hussain T, Das CR, Andleeb S (2015) Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. J Med Microbiol 64:454–462Google Scholar
  44. 44.
    Khalifa L, Brosh Y, Gelman D, Coppenhagen-Glazer S, Beyth S, Poraduso-Cohen R, Que YA, Beyth N, Hazan R (2015) Targeting Enterococcus faecalis biofilm using phage therapy. Appl Environ Microbiol 81:2696–2705Google Scholar
  45. 45.
    Lee YD, Park JH (2015) Characterization and application of phages isolated from sewage for reduction of Escherichia coli O157:H7 in biofilm. LWT-Food Sci Technol 60:571–577Google Scholar
  46. 46.
    Maal KB, Bouzari M, Zavareh FA (2015) Biotechnological applications of two novel lytic bacteriophages of Streptococcus mutans in tooth decay bio-controlling. Curr Res Bacteriol 8:90Google Scholar
  47. 47.
    Nouraldin AAM, Baddour MM, Harfoush RAH, Essa SAM (2016) Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alexandria J Med 52:99–105Google Scholar
  48. 48.
    Tan D, Dahl A, Middelboe M (2015) Vibriophages differentially influence biofilm formation by Vibrio anguillarum strains. Appl Environ Microbiol 81:4489–4497Google Scholar
  49. 49.
    Alves DR, Gaudion A, Bean JE, Perez-Esteban P, Arnot T, Harper DR, Kot W, Hansen LH, Enright MC, Jenkins AT (2014) Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm. Appl Environ Microbiol 80:6694–6703Google Scholar
  50. 50.
    Chaitiemwong N, Hazeleger WC, Beumer RR (2014) Inactivation of Listeria monocytogenes by disinfectants and bacteriophages in suspension and stainless steel carrier tests. J Food Prot 77:2012–2020Google Scholar
  51. 51.
    Coulter LB, McLean RJ, Rohde RE, Aron GM (2014) Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Virus 6:3778–3786Google Scholar
  52. 52.
    Drilling A, Morales S, Jardeleza C, Vreugde S, Speck P, Wormald PJ (2014) Bacteriophage reduces biofilm of Staphylococcus aureus ex vivo isolates from chronic rhinosinusitis patients. Am J Rhinol Allergy 28:3–11Google Scholar
  53. 53.
    Kulsuwan R, Wongratanacheewin S, Wongratanacheewin RS, Yordpratum U, Tattawasart U (2014) Lytic capability of bacteriophages (family Myoviridae) on Burkholderia peudomallei. Southeast Asian J Trop Med Public Health 45:1344–1353Google Scholar
  54. 54.
    Lungren MP, Donlan RM, Kankotia R, Paxton BE, Falk I, Christensen D, Kim CY (2014) Bacteriophage K antimicrobial-lock technique for treatment of Staphylococcus aureus central venous catheter-related infection: a leporine model efficacy analysis. J Vasc Interv Radiol 25:1627–1632Google Scholar
  55. 55.
    Mendes JJ, Leandro C, Mottola C, Barbosa R, Silva FA, Oliveira M, Vilela CL, Melo-Cristino J, Górski A, Pimentel M, Sao-Jose C, Cavaco-Silva P, Garcia M (2014) In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. J Med Microbiol 63:1055–1065Google Scholar
  56. 56.
    Schmerer M, Molineux IJ, Ally D, Tyerman J, Cecchini N, Bull JJ (2014) Challenges in predicting the evolutionary maintenance of a phage transgene. J Biol Eng 8:21Google Scholar
  57. 57.
    Chhibber S, Nag D, Bansal S (2013a) Inhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage. BMC Microbiol 13:174Google Scholar
  58. 58.
    Chhibber S, Kaur T, Sandeep K (2013b) Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One 8:e56022Google Scholar
  59. 59.
    Ganegama Arachchi GJ, Cridge AG, Dias-Wanigasekera BM, Cruz CD, McIntyre L, Liu R, Flint SH, Mutukumira AN (2013) Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm. J Ind Microbiol Biotechnol 40:1105–1116Google Scholar
  60. 60.
    Hosseinidoust Z, Tufenkji N, van de Ven TG (2013) Formation of biofilms under phage predation: considerations concerning a biofilm increase. Biofouling 29:457–468Google Scholar
  61. 61.
    Lungren MP, Christensen D, Kankotia R, Falk I, Paxton BE, Kim CY (2013) Bacteriophage K for reduction of Staphylococcus aureus biofilm on central venous catheter material. Bacteriophage 3:e26825Google Scholar
  62. 62.
    Moons P, Faster D, Aertsen A (2013) Lysogenic conversion and phage resistance development in phage exposed Escherichia coli biofilms. Virus 5:150–161Google Scholar
  63. 63.
    Phee A, Bondy-Denomy J, Kishen A, Basrani B, Azarpazhooh A, Maxwell K (2013) Efficacy of bacteriophage treatment on Pseudomonas aeruginosa biofilms. J Endod 39:364–369Google Scholar
  64. 64.
    Vandersteegen K, Kropinski AM, Nash JH, Noben JP, Hermans K, Lavigne R (2013) Romulus and Remus, two phage isolates representing a distinct clade within the Twortlikevirus genus, display suitable properties for phage therapy applications. J Virol 87:3237–3247Google Scholar
  65. 65.
    Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M (2013) Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am 95:117–125Google Scholar
  66. 66.
    Zhang Y, Hu Z (2013) Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine. Biotechnol Bioeng 110:286–295Google Scholar
  67. 67.
    Zhang Y, Hunt HK, Hu Z (2013) Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems. Water Res 47:4507–4518Google Scholar
  68. 68.
    Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG, Shanahan F, Coffey A, Ross RP, Hill C (2012) Bacteriophages fMR299-2 and fNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio 3:e00029-12Google Scholar
  69. 69.
    Chibeu A, Lingohr EJ, Masson L, Manges A, Harel J, Ackermann HW, Kropinski AM, Boerlin P (2012) Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms. Virus 4:471–487Google Scholar
  70. 70.
    Gutiérrez D, Martínez B, Rodríguez A, García P (2012) Genomic characterization of two Staphylococcus epidermidis bacteriophages with anti-biofilm potential. BMC Genomics 13:228Google Scholar
  71. 71.
    Kelly D, McAuliffe O, Ross RP, Coffey A (2012) Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. Lett Appl Microbiol 54:286–291Google Scholar
  72. 72.
    Kim S, Rahman M, Seol SY, Yoon SS, Kim J (2012) Pseudomonas aeruginosa bacteriophage PA1O requires type IV pili for infection and shows broad bactericidal and biofilm removal activities. Appl Environ Microbiol 78:6380–6385Google Scholar
  73. 73.
    Montanez-Izquierdo VY, Salas-Vazquez DI, Rodriguez-Jerez JJ (2012) Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces. Food Control 23:470–477Google Scholar
  74. 74.
    Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF (2012) Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol 65:395–398Google Scholar
  75. 75.
    Thawal ND, Yele AB, Sahu PK, Chopade BA (2012) Effect of a novel podophage AB7-IBB2 on Acinetobacter baumannii biofilm. Curr Microbiol 65:66–72Google Scholar
  76. 76.
    Yele AB, Thawal ND, Sahu PK, Chopade BA (2012) Novel lytic bacteriophage AB7-IBB1 of Acinetobacter baumannii: isolation, characterization and its effect on biofilm. Arch Virol 157:1441–1450Google Scholar
  77. 77.
    Ahiwale S, Tamboli N, Thorat K, Kulkarni R, Ackermann H, Kapadnis B (2011) In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7-like lytic phage. Curr Microbiol 62:335–340Google Scholar
  78. 78.
    Castillo-Ruiz M, Vines ED, Montt C, Fernandez J, Delgado JM, Hormazabal JC, Bittner M (2011) Isolation of a novel Aggregatibacter actinomycetemcomitans serotype b bacteriophage capable of lysing bacteria within a biofilm. Appl Environ Microbiol 77:3157–3159Google Scholar
  79. 79.
    Cornelissen A, Ceyssens PJ, T'Syen J, Van PH, Noben JP, Shaburova OV, Krylov VN, Volckaert G, Lavigne R (2011) The T7-related pseudomonas putida phage phi15 displays virion-associated biofilm degradation properties. PLoS One 6:e18597Google Scholar
  80. 80.
    Kay MK, Erwin TC, McLean RJ, Aron GM (2011) Bacteriophage ecology in Escherichia coli and Pseudomonas aeruginosa mixed biofilm communities. Appl Environ Microbiol 77:821–829Google Scholar
  81. 81.
    Maura D, Morello E, du ML, Bomme P, Le BC, Debarbieux L (2011) Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ Microbiol 14:1844–1854Google Scholar
  82. 82.
    Patel J, Sharma M, Millner P, Calaway T, Singh M (2011) Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog Dis 8:541–546Google Scholar
  83. 83.
    Pires D, Sillankorva S, Faustino A, Azeredo J (2011) Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res Microbiol 162:798–806Google Scholar
  84. 84.
    Rahman M, Kim S, Kim SM, Seol SY, Kim J (2011) Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling 27:1087–1093Google Scholar
  85. 85.
    Sillankorva S, Oliveira D, Moura A, Henriques M, Faustino A, Nicolau A, Azeredo J (2011) Efficacy of a broad host range lytic bacteriophage against E. coli adhered to urothelium. Curr Microbiol 62:1128–1132Google Scholar
  86. 86.
    Siringan P, Connerton PL, Payne RJ, Connerton IF (2011) Bacteriophage-mediated dispersal of Campylobacter jejuni biofilms. Appl Environ Microbiol 77:3320–3326Google Scholar
  87. 87.
    Krylov V, Shaburova O, Krylov S, Pleteneva E (2013) A genetic approach to the development of new therapeutic phages to fight Pseudomonas aeruginosa in wound infections. Virus 5:15–53Google Scholar
  88. 88.
    Loc-Carrillo C, Wu S, Beck JP (2012) Phage therapy of wounds and related purulent infections. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, UK, pp 185–202Google Scholar
  89. 89.
    Carson L, Gorman SP, Gilmore BF (2010) The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunol Med Microbiol 59:447–455Google Scholar
  90. 90.
    Gino E, Starosvetsky J, Kurzbaum E, Armon R (2010) Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium. Environ Sci Technol 44:3123–3129Google Scholar
  91. 91.
    Sillankorva S, Neubauer P, Azeredo J (2010) Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus. Biofouling 26:567–575Google Scholar
  92. 92.
    Son JS, Lee SJ, Jun SY, Yoon SJ, Kang SH, Paik HR, Kang JO, Choi YJ (2010) Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol 86:1439–1449Google Scholar
  93. 93.
    Soni KA, Nannapaneni R (2010) Removal of Listeria monocytogenes biofilms with bacteriophage P100. J Food Prot 73:1519–1524Google Scholar
  94. 94.
    Verma V, Harjai K, Chhibber S (2010) Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae. Biofouling 26:729–737Google Scholar
  95. 95.
    Bedi MS, Verma V, Chhibber S (2009) Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World J Microbiol Biotechnol 25:1145–1151Google Scholar
  96. 96.
    Verma V, Harjai K, Chhibber S (2009) Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. J Antimicrob Chemother 64:1212–1218Google Scholar
  97. 97.
    Knezevic P, Petrovic O (2008) A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm. J Microbiol Methods 74:114–118Google Scholar
  98. 98.
    Sillankorva S, Oliveira R, Vieira MJ, Azeredo J (2008a) Real-time quantification of Pseudomonas fluorescens cell removal from glass surfaces due to bacteriophage jS1 application. J Appl Microbiol 105:196–202Google Scholar
  99. 99.
    Sillankorva S, Neubauer P, Azeredo J (2008b) Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol 8:79Google Scholar
  100. 100.
    Cerca N, Oliveria R, Azeredo J (2007) Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K. Lett Appl Microbiol 45:313–317Google Scholar
  101. 101.
    Del Pozo JL, Alonso M, Arciola CR, Gonzalez R, Leiva J, Lasa I, Penades J (2007) Biotechnological war against biofilms. Could phages mean the end of device-related infections? Int J Artif Organs 30:805–812Google Scholar
  102. 102.
    Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202Google Scholar
  103. 103.
    Moons P, Werckx W, Van Houdt R, Aertsen A, Michiels CW (2006) Resistance development of bacterial biofilms against bacteriophage attack. Commun Agric Appl Biol Sci 71:297–300Google Scholar
  104. 104.
    Sharma M, Ryu JH, Beuchat LR (2005) Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. J Appl Microbiol 99:449–459Google Scholar
  105. 105.
    Sillankorva S, Oliveira R, Vieira MJ, Sutherland IW, Azeredo J (2004) Bacteriophage F S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling 20:133–138Google Scholar
  106. 106.
    Tait K, Skilman LC, Sutherland IW (2002) The efficacy of bacteriophage as a method of biofilm eradication. Biofouling 18:305–311Google Scholar
  107. 107.
    Corbin BD, McLean RJC, Aron GM (2001) Bacteriophage T4 multiplication in a glucose-limited Escherichia coli biofilm. Can J Microbiol 47:680–684Google Scholar
  108. 108.
    Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67:2746–2753Google Scholar
  109. 109.
    Wood HL, Holden SR, Bayston R (2001) Susceptibility of Staphylococcus epidermidis biofilm in CSF shunts to bacteriophage attack. Eur J Pediatr Surg 11:S56–SS7Google Scholar
  110. 110.
    Hughes KA, Sutherland IW, Jones MV (1998) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:3039–3047Google Scholar
  111. 111.
    Hibma AM, Jassim SA, Griffiths MW (1997) Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. Int J Food Microbiol 34:197–207Google Scholar
  112. 112.
    Doolittle MM, Cooney JJ, Caldwell DE (1996) Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes. J Ind Microbiol 16:331–341Google Scholar
  113. 113.
    Doolittle MM, Cooney JJ, Caldwell DE (1995) Lytic infection of Escherichia coli biofilms by bacteriophage T4. Can J Microbiol 41:12–18Google Scholar
  114. 114.
    Chadha P, Katare OP, Chhibber S (2017) Liposome loaded phage cocktail: enhanced therapeutic potential in resolving Klebsiella pneumoniae mediated burn wound infections. Burns 43:1532–1543Google Scholar
  115. 115.
    Sarhan WA, Azzazy HM (2017) Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine (London) 12:2055–2067Google Scholar
  116. 116.
    Chadha P, Katare OP, Chhibber S (2016) In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice. Microb Pathog 99:68–77Google Scholar
  117. 117.
    Kishor C, Mishra RR, Saraf SK, Kumar M, Srivastav AK, Nath G (2016) Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J Med Res 143:87–94Google Scholar
  118. 118.
    Regeimbal JM, Jacobs AC, Corey BW, Henry MS, Thompson MG, Pavlicek RL, Quinones J, Hannah RM, Ghebremedhin M, Crane NJ, Zurawski DV, Teneza-Mora NC, Biswas B, Hall ER (2016) Personalized therapeutic cocktail of wild environmental phages rescues mice from Acinetobacter baumannii wound infections. Antimicrob Agents Chemother 60:5806–5816Google Scholar
  119. 119.
    Basu S, Agarwal M, Kumar BS, Nath G, Kumar S (2015) V. An in vivo wound model utilizing bacteriophage therapy of Pseudomonas aeruginosa biofilms. Ostomy Wound Manage 61:16–23Google Scholar
  120. 120.
    Shivaswamy VC, Kalasuramath SB, Sadanand CK, Basavaraju AK, Ginnavaram V, Bille S, Ukken SS, Pushparaj UN (2015) Ability of bacteriophage in resolving wound infection caused by multidrug-resistant Acinetobacter baumannii in uncontrolled diabetic rats. Microb Drug Resist 21:171–177Google Scholar
  121. 121.
    Mendes JJ, Leandro C, Corte-Real S, Barbosa R, Cavaco-Silva P, Melo-Cristino J, Górski A, Garcia M (2013) Wound healing potential of topical bacteriophage therapy on diabetic cutaneous wounds. Wound Repair Regen 21:595–603Google Scholar
  122. 122.
    Seth AK, Geringer MR, Nguyen KT, Agnew SP, Dumanian Z, Galiano RD, Leung KP, Mustoe TA, Hong SJ (2013) Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Plast Reconstr Surg 131:225–234Google Scholar
  123. 123.
    Trigo G, Martins TG, Fraga AG, Longatto-Filho A, Castro AG, Azeredo J, Pedrosa J (2013) Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS Negl Trop Dis 7:e2183Google Scholar
  124. 124.
    Kumari S, Harjai K, Chhibber S (2011) Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol 60:205–210Google Scholar
  125. 125.
    Wills QF, Kerrigan C, Soothill JS (2005) Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother 49:1220–1221Google Scholar
  126. 126.
    Kumari S, Harjai K, Chhibber S (2010) Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice. J Microbiol Biotechnol 20:935–941Google Scholar
  127. 127.
    Kumari S, Harjai K, Chhibber S (2009a) Bacteriophage treatment of burn wound infection caused by Pseudomonas aeruginosa PAO in BALB/c mice. Am J Biomed Sci 1:385–394Google Scholar
  128. 128.
    Kumari S, Harjai K, Chhibber S (2009b) Efficacy of bacteriophage treatment in murine burn wound infection induced by Klebsiella pneumoniae. J Microbiol Biotechnol 19:622–628Google Scholar
  129. 129.
    Malik R, Chhibber S (2009) Protection with bacteriophage KØ1 against fatal Klebsiella pneumoniae-induced burn wound infection in mice. J Microbiol Immunol Infect 42:134–140Google Scholar
  130. 130.
    McVay CS, Velasquez M, Fralick JA (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51:1934–1938Google Scholar
  131. 131.
    Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother 51:2765–2773Google Scholar
  132. 132.
    Soothill JS (1994) Bacteriophage prevents destruction of skin grafts by Pseudomonas aeruginosa. Burns 20:209–211Google Scholar
  133. 133.
    Walker JE (1931) The effect of bacteriophage in experimental Staphylococcus and Streptococcus skin infections. South Med J 24:1087–1089Google Scholar
  134. 134.
    Chanishvili N (2012) A literature review of the practical application of bacteriophage research. Nova Publishers, Hauppauge, NYGoogle Scholar
  135. 135.
    Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1:66–85Google Scholar
  136. 136.
    Abedon ST (2015a) Phage therapy of pulmonary infections. Bacteriophage 5:e1020260Google Scholar
  137. 137.
    Morozova VV, Kozlova YN, Ganichev DA, Tikunova NV (2018) Bacteriophage treatment of infected diabetic foot ulcers. Methods Mol Biol 1693:151–158Google Scholar
  138. 138.
    Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S (2016) Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care 25(Suppl 7):S27–S33Google Scholar
  139. 139.
    Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S (2018) Bacteriophage therapy for foot ulcer treatment as an effective step for moving toward clinical trials. Methods Mol Biol 1693:159–170Google Scholar
  140. 140.
    Miedzybrodzki R, Borysowski J, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, Pawelczyk Z, Rogoz P, Klak M, Wojtasik E, Górski A (2012) Clinical aspects of phage therapy. Adv Virus Res 83:73–121Google Scholar
  141. 141.
    Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18:237–244Google Scholar
  142. 142.
    Marza JAS, Soothill JS, Boydell P, Collyns TA (2006) Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns 32:644–646Google Scholar
  143. 143.
    Jikia D, Chkhaidze N, Imedashvili E, Mgaloblishvili I, Tsitlanadze G, Katsarava R, Glenn Morris JJ, Sulakvelidze A (2005) The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus aureus-infected local radiation injuries caused by exposure to Sr90. Clin Exp Dermatol 30:23–26Google Scholar
  144. 144.
    Markoishvili K, Tsitlanadze G, Katsarava R, Morris JG Jr, Sulakvelidze A (2002) A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 41:453–458Google Scholar
  145. 145.
    Weber-Dąbrowska B, Mulczyk M, Górski A (2000) Bacteriophage therapy of bacterial infections: an update of our institute's experience. Arch Immunol Ther Exp 48:547–551Google Scholar
  146. 146.
    Ślopek S, Weber-Dąbrowska B, Dąbrowski M, Kucharewicz-Krukowska A (1987) Results of bacteriophage treatment of suppurative bacterial infections in the years 1981-1986. Arch Immunol Ther Exp 35:569–583Google Scholar
  147. 147.
    Rose T, Verbeken G, Vos DD, Merabishvili M, Vaneechoutte M, Lavigne R, Jennes S, Zizi M, Pirnay JP (2014) Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 4:66–73Google Scholar
  148. 148.
    Chanishvili N (2014) A literature review of the practical application of bacteriophage research. Nova Science Publisher, Hauppauge, NYGoogle Scholar
  149. 149.
    Kutter E, Borysowski J, Miedzybrodzki R, Górski A, Weber-Dąbrowska B, Kutateladze M, Alavidze Z, Goderdzishvili M, Adamia R (2014) Clinical phage therapy. In: Borysowski J, Miedzybrodzki R, Górski A (eds) Phage therapy: current research and applications. Caister Academic Press, Norfolk, UK, pp 257–288Google Scholar
  150. 150.
    Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86Google Scholar
  151. 151.
    Abul-Hassan HS, El-Tahank Massoud B, Gomaa R (1990) Bacteriophage therapy of Pseudomonas burn wound sepsis. Ann Med Burn Club 3:262–264Google Scholar
  152. 152.
    Ślopek S, Durlakova I, Weber-Dąbrowska B, Kucharewicz-Krukowska A, Dąbrowski M, Bisikiewicz R (1983) Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. Arch Immunol Ther Exp 31(3):267–291Google Scholar
  153. 153.
    Ślopek S, Durlakova I, Weber-Dąbrowska B, Kucharewicz-Krukowska A, Dąbrowski M, Bisikiewicz R (1983b) Results of bacteriophage treatment of suppurative bacterial infections. II. Detailed evalulation of the results. Arch Immunol Ther Exp 31:293–327Google Scholar
  154. 154.
    Ślopek S, Durlakowa I, Weber-Dąbrowska B, Dąbrowski M, Kucharewicz-Krukowska A (1984) Results of bacteriophage treatment of suppurative bacterial infections. III. Detailed evaluation of the results obtained in further 150 cases. Arch Immunol Ther Exp 32:317–335Google Scholar
  155. 155.
    Ślopek S, Kucharewicz-Krukowska A, Weber-Dąbrowska B, Dąbrowski M (1985a) Results of bacteriophage treatment of suppurative bacterial infections. IV. Evaluation of results obtained in 370 cases. Arch Immunol Ther Exp 33:219–240Google Scholar
  156. 156.
    Ślopek S, Kucharewicz-Krukowska A, Weber-Dąbrowska B, Dąbrowski M (1985b) Results of bacteriophage treatment of suppurative bacterial infections. V. Evaluation of the results obtained in children. Arch Immunol Ther Exp 33:241–259Google Scholar
  157. 157.
    Ślopek S, Kucharewicz-Krukowska A, Weber-Dąbrowska B, Dąbrowski M (1985c) Results of bacteriophage treatment of suppurative bacterial infections. VI. Analysis of treatment of suppurative staphylococcal infections. Arch Immunol Ther Exp 33:261–273Google Scholar
  158. 158.
    Cisło M, Dąbrowski M, Weber-Dąbrowska B, Woytoń A (1987) Bacteriophage treatment of suppurative skin infections. Arch Immunol Ther Exp 35:175–183Google Scholar
  159. 159.
    Shera G (1970) Phage treatment for severe burns. Br Med J 1:568–569Google Scholar
  160. 160.
    Schultz EW (1932) Bacteriophage: a possible therapeutic aid in dental infections. J Dental Res 12:295–310Google Scholar
  161. 161.
    Rice TB (1930) The use of bacteriophage filtrates in treatment of suppurative conditions: report of 300 cases. Am J Med Sci 179:345–360Google Scholar
  162. 162.
    Larkum NW (1929) Bacteriophage treatment of staphylococcic infections. J Infect Dis 45:34–41Google Scholar
  163. 163.
    McKinley EB (1923) The bacteriophage in the treatment of infections. Arch Intern Med 32:899–910Google Scholar
  164. 164.
    Mills AE (1956) Staphylococcus bacteriophage lysate aerosol therapy of sinusitis. Laryngoscope 66:846-58Google Scholar
  165. 165.
    MacNeal WJ, Frisbee FC, McRae MA (1941) Bacteriophage service in staphylococcal infections. Am J Clin Pathol 11:549–561Google Scholar
  166. 166.
    d’Hérelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. C R Acad Sci Ser D 165:373–375Google Scholar
  167. 167.
    Abedon ST (2016b) Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets? FEMS Microbiol Lett 363(3):fnv246Google Scholar
  168. 168.
    Abedon ST (2009a) Deconstructing chemostats towards greater phage-modeling precision. In: Adams HT (ed) Contemporary trends in bacteriophage research. Nova Science Publishers, Hauppauge, NY, pp 249–283Google Scholar
  169. 169.
    Bohannan BJM, Lenski RE (1997) Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78:2303–2315Google Scholar
  170. 170.
    Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pasic L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751Google Scholar
  171. 171.
    Winter C, Bouvier T, Weinbauer MG, Thingstad TF (2010) Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev 74:42–57Google Scholar
  172. 172.
    Diaz-Munoz SL, Koskella B (2014) Bacteria-phage interactions in natural environments. Adv Appl Microbiol 89:135–183Google Scholar
  173. 173.
    Payne RJH, Phil D, Jansen VAA (2000) Phage therapy: the peculiar kinetics of self-replicating pharmaceuticals. Clin Pharmacol Ther 68:225–230Google Scholar
  174. 174.
    Payne RJH, Jansen VAA (2001) Understanding bacteriophage therapy as a density-dependent kinetic process. J Theor Biol 208:37–48Google Scholar
  175. 175.
    Payne RJH, Jansen VAA (2003) Pharmacokinetic principles of bacteriophage therapy. Clin Pharmacokinet 42:315–325Google Scholar
  176. 176.
    Abedon ST (2008) Phage population growth: constraints, games, adaptation. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, UK, pp 64–93Google Scholar
  177. 177.
    Abedon ST (2009) Impact of phage properties on bacterial survival. In: Adams HT (ed) Contemporary trends in bacteriophage research. Nova Science Publishers, Hauppauge, NY, pp 217–235Google Scholar
  178. 178.
    Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47Google Scholar
  179. 179.
    Abedon ST (2017) Active bacteriophage biocontrol and therapy on sub-millimeter scales towards removal of unwanted bacteria from foods and microbiomes. AIMS Microbiol 3:649–688Google Scholar
  180. 180.
    Abedon ST (2015b) Ecology of anti-biofilm agents II. Bacteriophage exploitation and biocontrol of biofilm bacteria. Pharmaceuticals 8:559–589Google Scholar
  181. 181.
    McLean RJ, Corbin BD, Balzer GJ, Aron GM (2001) Phenotype characterization of genetically defined microorganisms and growth of bacteriophage in biofilms. Methods Enzymol 336:163–174Google Scholar
  182. 182.
    Simmons M, Drescher K, Nadell CD, Bucci V (2018) Phage mobility is a core determinant of phage-bacteria coexistence in biofilms. ISME J 12:531–543Google Scholar
  183. 183.
    Abedon ST (2018) Use of phage therapy to treat long-standing, persistent, or chronic bacterial infections. Adv Drug Deliv Rev.
  184. 184.
    Wright A, Hawkins CH, Anggård EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34:349–357Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MicrobiologyThe Ohio State UniversityMansfieldUSA

Personalised recommendations