Skip to main content

Factors Maximizing Skin Flaps and Grafts for Diabetic Wound Coverage

  • Chapter
  • First Online:
Pressure Injury, Diabetes and Negative Pressure Wound Therapy

Part of the book series: Recent Clinical Techniques, Results, and Research in Wounds ((RCTRRW,volume 3))

  • 1227 Accesses

Abstract

Diabetes mellitus has a global impact and accounts for 46% of the 162,000 hospital admissions for foot ulcers annually. The pathophysiological mechanisms underlying diabetic foot disease are multifactorial and include neuropathy, infection, immunopathy, and ischemia. The author discusses general reconstruction, general principles for success in flaps and grafts, optimizing of patients, biomechanics, immune system, vascular disease and reperfusion, physiologic considerations in flap perfusion, intraoperative care and flap technique, tissue management (biofilm, bacteria, inflammation), various flaps, and nonsurgical management. Accurate diagnosis of the underlying cause of lower extremity ulceration is essential for successful treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. International Diabetes Federation (2013) IDF diabetes atlas, 6th edn. International Diabetes Federation, Brussels, Belgium

    Google Scholar 

  2. Reiber GE, Boyko EJ, Smith DG (1995) Lower extremity foot ulcers and amputations. In: Harris M (ed) Diabetes in America. National Institutes of Health Publication, Bethesda, MD, p 409

    Google Scholar 

  3. American Diabetes Association (2003) Preventive foot care in people with diabetes [position statement]. Diabetes Care 26:S78

    Article  Google Scholar 

  4. Davis TME, Stratton IM, Fox CJ, Holman RR, Turner RC (1997) U.K. Prospective Diabetes Study 22: effect of age at diagnosis on diabetic tissue damage during the first 6 years of NIDDM. Diabetes Care 20:1435–1441

    Article  CAS  PubMed  Google Scholar 

  5. Ellison D, Hayes L, Lane C, Tracey A, McCollum CN (2002) Evaluating the cost and efficacy of leg ulcer care provided in two large UK health authorities. J Wound Care 11:47–51

    Article  CAS  PubMed  Google Scholar 

  6. Sumpio BE, Armstrong DG, Lavery LA, Andros G (2010) The role of interdisciplinary team approach in the management of the diabetic foot: a joint statement from the Society for Vascular Surgery and the American Podiatric Medical Association. J Vasc Surg 51(6):1504–1506

    Article  PubMed  Google Scholar 

  7. Sumpio BE, Aruny J, Blume PA (2004) The multidisciplinary approach to limb salvage. Acta Chir Belg 104(6):647–653

    Article  CAS  PubMed  Google Scholar 

  8. Reiber GE, Smith DG, Vileikyte L (1999) Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care 22:157–162

    Article  CAS  PubMed  Google Scholar 

  9. Singh N, Armstrong DG, Lipsky BA (2005) Preventing foot ulcers in patients with diabetes. JAMA 293:217–228

    Article  CAS  PubMed  Google Scholar 

  10. Boulton AJ, Kirsner RS, Vileikyte L (2004) Clinical practice. Neuropathic diabetic foot ulcers. N Engl J Med 351:48–55

    Article  CAS  PubMed  Google Scholar 

  11. Janis JE, Kwon RK, Attinger CE (2011) The new reconstructive ladder: modifications to the traditional model. Plast Reconstr Surg 127(Suppl 1):205S–212S

    Article  CAS  PubMed  Google Scholar 

  12. Stedman’s medical dictionary (2005) 28th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  13. Attinger C (1995) Soft-tissue coverage for lower-extremity trauma. Orthop Clin North Am 26(2):295–334

    Article  CAS  PubMed  Google Scholar 

  14. Attinger CE (1994) Use of soft tissue techniques for salvage of the diabetic foot. In: Kominsky S (ed) Medical and surgical management of the diabetic foot. Mosby, St Louis, pp 323–366

    Google Scholar 

  15. Hirshowitz B, Mahler D (1966) T-plasty technique for excisions in the face. Plast Reconstr Surg 37(5):453–458

    Article  CAS  PubMed  Google Scholar 

  16. Hirshowitz B, Karev A, Levy Y (1977) A 5-flap procedure for axillary webs leaving the apex intact. Br J Plast Surg 30:48–51

    Article  CAS  PubMed  Google Scholar 

  17. Larrabee WF (1992) Bilobed flap reconstruction of the temporal forehead. Arch Otolaryngol Head Neck Surg 117:983–984

    Google Scholar 

  18. Attinger CE, Bulan EJ (2001) Debridement: the key initial first step in wound healing. Foot Ankle Clin 6(4):627–660

    Article  CAS  PubMed  Google Scholar 

  19. Sumpio BE, Blume PA (2002) Contemporary management of foot ulcers. In: Pierce WH, Matsumura JS, Yao JS (eds) Trends in vascular surgery. Precept Press, Chicago, pp 277–290

    Google Scholar 

  20. Marcinko DE (1988) Plastic surgery in podiatry (simplified illustrated techniques). J Foot Surg 27(2):103–110

    CAS  PubMed  Google Scholar 

  21. Satterfield VK, Jolly GP (1994) A new method of excision of painful planter forefoot lesions using a rotation advancement flap. J Foot Ankle Surg 33(2):129–134

    CAS  PubMed  Google Scholar 

  22. Huang SR, Li XY, Wang H, Huang SH, Qiu SS (2005) The use of local flap in repairing deeply burned wound of extremities. Zhonghua Wai Ke Za Zhi 43(3):182–184

    PubMed  Google Scholar 

  23. Armstrong D, Lavery L, Stern S, Harkless L (1996) Is prophylactic diabetic foot surgery dangerous? J Foot Ankle Surg 35(6):585–589

    Article  CAS  PubMed  Google Scholar 

  24. Catanzariti A, Blitch E, Karlock L (1995) Elective foot and ankle surgery in the diabetic patient. J Foot Ankle Surg 34(1):23–41

    Article  CAS  PubMed  Google Scholar 

  25. Ratner D (1998) Skin grafting: from here to there. Dermatol Clin 16:75–90

    Article  CAS  PubMed  Google Scholar 

  26. Wang AS, Armstrong EJ, Armstrong AW (2013) Corticosteroids and wound healing: clinical considerations in the perioperative period. Am J Surg 206:410–417

    Article  CAS  PubMed  Google Scholar 

  27. Imanishi N, Kish K, Chang H, Nakajima H, Aiso S (2007) Anatomical study of cutaneous venous flow of the sole. Plast Reconstr Surg 120(7):1906–1910

    Article  CAS  PubMed  Google Scholar 

  28. Hale DS, Dockery GL (1993) Giant keratoacanthoma of the planter foot: a report of two cases. J Foot Ankle Surg 32(l):75–84

    CAS  PubMed  Google Scholar 

  29. Saltzman C, Pedowitz W (1999) Diabetic foot infection. AAOS Instr Course Lect 48:317

    CAS  Google Scholar 

  30. Morag E, Pammer S, Boulton A, Young M, Deffner K, Cavanagh P (1997) Structural and functional aspects of the diabetic foot. Clin Biomech 12:S9

    Article  CAS  Google Scholar 

  31. Sumpio B (2000) Foot ulcers. N Engl J Med 343:787

    Article  CAS  PubMed  Google Scholar 

  32. Hostetter M (1990) Handicaps to host defense. Effects of hyperglycemia on C3 and Candida albicans. Diabetes Care 39:271

    Article  CAS  Google Scholar 

  33. Hostetter M, Krueger R, Schmeling D (1984) The biochemistry of opsonization: Central role of the reactive thioester of the third component of complement. J Infect Dis 150:653

    Article  CAS  PubMed  Google Scholar 

  34. Caballero E, Frykberg R (1998) Diabetic foot infections. J Foot Ankle Surg 7:248

    Article  Google Scholar 

  35. Louie T, Bartlett J, Tally F, Gorbach SL (1976) Aerobic and anaerobic bacteria in diabetic foot ulcers. Ann Intern Med 85:461

    Article  CAS  PubMed  Google Scholar 

  36. Sapico F, Canawati H, Witte J, Montgomerie JZ, Wagner FW Jr, Bessman AN (1980) Quantitative aerobic and anaerobic bacteriology of infected diabetic feet. J Clin Microbiol 12:413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sapico F, Witte J, Canawati H, Montgomerie JZ, Bessman AN (1984) The infected foot of the diabetic patient: quantitative microbiology and analysis of clinical features. Rev Infect Dis 6:S171

    Article  PubMed  Google Scholar 

  38. Wheat L, Allen S, Henry M (1986) Diabetic foot infections. Bacteriologic analysis. Arch Intern Med 146(10):1935

    Article  CAS  PubMed  Google Scholar 

  39. Bullock G, Stavosky J (2001) Surgical wound management of the diabetic foot. Surg Technol Int 6:301–310

    Google Scholar 

  40. Knox R, Dutch W, Blume P, Sumpio BE (2000) Diabetic foot disease. Int J Angiol 1:1–6

    Article  Google Scholar 

  41. Faglia E (2011) Characteristics of peripheral arterial disease and its relevance to the diabetic population. Int J Low Extrem Wounds 10(3):152–166

    Article  PubMed  Google Scholar 

  42. Health Quality Ontario (2010) Stenting for peripheral artery disease of the lower extremities an evidence-based analysis. Ont Health Technol Assess Ser 10(18):1–88

    Google Scholar 

  43. Crawford JD, Robbins NG, Harry LA, Wilson DG, McLafferty RB, Mitchell EL, Landry GJ, Moneta GL (2016) Characterization of tibial velocities by duplex ultrasound in severe peripheral arterial disease and controls. J Vasc Surg 63(3):646–651

    Article  PubMed  Google Scholar 

  44. Khan NA, Rahim SA, Anand SS, Simel DL, Panju A (2006) Does the clinical examination predict lower extremity peripheral arterial disease? J Am Med Assoc 295(5):536–546

    Article  CAS  Google Scholar 

  45. Kinlay S (2016) Management of critical limb ischemia. Circ Cardiovasc Interv 9(2):e001946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Basco MT, Yiu WK, Cheng SW (2010) The effects of freezing versus super cooling on vascular cells: implications for balloon cryoplasty. J Vasc Interv Radiol 21:910–915

    Article  PubMed  PubMed Central  Google Scholar 

  47. Siracuse JJ, Gill HL, Cassidy SP, Messina MD, Catz D, Egorova N, Parrack I, McKinsey JF (2014) Endovascular treatment of lesions in the below-knee popliteal artery. J Vasc Surg 60:356–361

    Article  PubMed  Google Scholar 

  48. Wu R, Yao C, Wang S, Xu X, Wang M, Li Z, Wang S (2014) Percutaneous transluminal angioplasty versus primary stenting in infrapopliteal arterial disease: a meta-analysis of randomized trials. J Vasc Surg 59:1711–1720

    Article  PubMed  Google Scholar 

  49. Jens S, Conijn AP, Koelemay MJ, Bipat S, Reekers JA (2014) Randomized trials for endovascular treatment of infrainguinal arterial disease: systematic review and meta-analysis (Part 2: Below the knee). Eur J Vasc Endovasc Surg 47:536–544

    Article  CAS  PubMed  Google Scholar 

  50. Shalaby SY, Blume P, Sumpio BE (2014) New modalities in the chronic ischemic diabetic foot management. Clin Podiatr Med Surg 31:27–42

    Article  PubMed  Google Scholar 

  51. El-Sayed HF (2013) Retrograde pedal/tibial artery access for treatment of infragenicular arterial occlusive disease. Methodist Debakey Cardiovasc J 9(2):73–78

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bazan HA, Le L, Donovan M, Sidhom T, Smith TA, Sternbergh WC (2014) Retrograde pedal access for patients with critical limb ischemia. J Vasc Surg 60(2):375–381

    Article  PubMed  Google Scholar 

  53. Taylor GI, Palmer JH, McManamny D (1990) The vascular territories of the body (angiosomes) and their clinical applications. In: McCarthy JG (ed) Plastic surgery. W.B. Saunders Company, Philadelphia, pp 329–378

    Google Scholar 

  54. Taylor GI, Corlett RJ, Caddy CM, Zelt RG (1992) An anatomic review of the delay phenomenon: II. Clinical applications. Plast Reconstr Surg 89(3):408–416

    Article  CAS  PubMed  Google Scholar 

  55. Callegari PR, Taylor GI, Caddy CM, Minabe T (1992) An anatomic review of the delay phenomenon: I. Experimental studies. Plast Reconstr Surg 89(3):397–407

    Article  CAS  PubMed  Google Scholar 

  56. Alexandrescu V, Söderström M, Venermo M (2012) Angiosome theory: fact or fiction? Scand J Surg 101(2):125–131

    Article  CAS  PubMed  Google Scholar 

  57. Osawa S, Terashi H, Tsuji Y, Kitano I, Sugimoto K (2013) Importance of the six angiosomes concept through arterial-arterial connections in CLI. Int Angiol 32(4):375–385

    CAS  PubMed  Google Scholar 

  58. Ino K, Kiyokawa K, Akaiwa K, Ishida M, Furuyama T, Onohara T (2013) A team approach to the management of intractable leg ulcers. Ann Vasc Dis 6(1):39–45

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zheng XT, Zeng RC, Huang JY, Pan LM, Su X, Wu ZH, Yu GF (2016) The use of the angiosome concept for treating infrapopliteal critical limb ischemia through interventional therapy and determining the clinical significance of collateral vessels. Ann Vasc Surg 32:41–49

    Article  PubMed  Google Scholar 

  60. Singh KP, Sharma AM (2014) Critical limb ischemia: current approach and future directions. J Cardiovasc Transl Res 7(4):437–445

    Article  PubMed  Google Scholar 

  61. Jackson IT (ed) (1985) Local flaps in head and neck reconstruction. The CV Mosby Company, New York, pp 6–33

    Google Scholar 

  62. Lesavoy MA (1990) Local incisions and flap coverage. In: McCarthy JG (ed) Plastic surgery. W.B. Saunders Company, Philadelphia, pp 4441–4458

    Google Scholar 

  63. McCarthy JG (1990) Introduction to plastic surgery. In: McCarthy JG (ed) Plastic surgery. W.B. Saunders Company, Philadelphia, pp 55–68

    Google Scholar 

  64. Phillips BT, Lanier ST, Conkling N, Wang ED, Dagum AB, Ganz JC, Khan SU, Bui DT (2012) Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in breast reconstruction: results of a prospective trial. Plast Reconstr Surg 129(5):778e–788e

    Article  PubMed  CAS  Google Scholar 

  65. Pattani KM, Byrne P, Boahene K, Richmon J (2010) What makes a good flap go bad? A critical analysis of the literature of intraoperative factors related to free flap failure. Laryngoscope 120(4):717–723

    Article  PubMed  Google Scholar 

  66. Hidalgo DA, Shaw WW (1986) Anatomic basis of plantar flap design. Plast Reconstr Surg 78(5):627–636

    CAS  PubMed  Google Scholar 

  67. Milton SH (1961) Pedicled skin flaps: the fallacy of the length-width ratio. Br J Surg 57:502

    Article  Google Scholar 

  68. Hirshowitz F, Kaufman T, Amir I (1980) Biwinged excision for closure of rounded defect. Ann Plast Surg 5:372–380

    Article  CAS  PubMed  Google Scholar 

  69. Boffeli TJ, Peterson MC (2013) Rotational flap closure of first and fifth metatarsal head plantar ulcers: adjunctive procedure when performing first or fifth ray amputation. J Foot Ankle Surg 52(2):263–270

    Article  PubMed  Google Scholar 

  70. Dockery GL, Christensen JC (1986) Principles and descriptions of design of skin flaps for use on the lower extremity. Clin Podiatr Med Surg 3(3):563–577

    CAS  PubMed  Google Scholar 

  71. Jackson IT (1985) Local flaps in head and neck reconstruction. Mosby, New York, pp 6–33

    Google Scholar 

  72. Elliot RA (1969) Rotation flaps of the nose. Plast Reconstr Surg 44(2):147–149

    Article  Google Scholar 

  73. Chasmar LR (2007) The versatile rhomboid (Limberg) flap. Can J Plast Surg 15(2):67–71

    Article  PubMed  PubMed Central  Google Scholar 

  74. Angel MF, Giesswein P, Hawner P (2000) Skin grafting. In: Evans GRD (ed) Operative plastic surgery. McGraw-Hill, New York, pp 59–65

    Google Scholar 

  75. Barratt GE, Koopmann CF (1984) Skin grafts: physiology and clinical considerations. Otolaryngol Clin N Am 17:335–351

    Article  CAS  Google Scholar 

  76. Kirsner RS, Eaglstein WH, Kerdel FA (1997) Split-thickness skin grafting for lower extremity ulcerations. Dermatol Surg 23:85–91

    CAS  PubMed  Google Scholar 

  77. Aerden D, Bosmans I, Vanmierlo B, Spinnael J, Keymeule B, Van den Brande P (2013) Skin grafting the contaminated wound bed: reassessing the role of the preoperative swab. J Wound Care 22:85–89

    Article  CAS  PubMed  Google Scholar 

  78. Blume PA, Key JJ, Thakor P, Thakor S, Sumpio B (2010) Retrospective evaluation of clinical outcomes in subjects with split-thickness skin graft: comparing V.A.C.® therapy and conventional therapy in foot and ankle reconstructive surgeries. Int Wound J 7:480–487

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hanasono MM, Skoracki RJ (2007) Securing skin grafts to microvascular free flaps using the vacuum assisted closure (VAC) device. Ann Plast Surg 58:573–576

    Article  CAS  PubMed  Google Scholar 

  80. Scherer LA, Shiver S, Chang M, Meredith W, Owings JT (2002) The vacuum assisted closure device: a method of securing skin grafts and improving graft survival. Arch Surg 137:930–933

    Article  PubMed  Google Scholar 

  81. Ramanujam CL, Han D, Fowler S, Kilpadi K, Zgonis T (2013) Impact of diabetes and comorbidities on split-thickness skin grafts for foot wounds. J Am Podiatr Med Assoc 103:223–232

    Article  PubMed  Google Scholar 

  82. Driver VR, Goodman RA, Fabbi M (2010) The impact of a podiatric lead limb preservation team on disease outcomes and risk prediction in the diabetic lower extremity: a retrospective cohort study. J Am Podiatr Med Assoc 100:235–241

    Article  PubMed  Google Scholar 

  83. Ramanujam CL, Stapleton JJ, Kilpadi KL, Rodriguez RH, Jeffries LC, Zgonis T (2010) Split-thickness skin grafts for closure of diabetic foot and ankle wounds: a retrospective review of 83 patients. Foot Ankle Spec 3:231–240

    Article  PubMed  Google Scholar 

  84. Armstrong DG, Lipsky BA (2004) Diabetic foot infections: stepwise medical and surgical management. Int Wound J 1:123–132

    Article  PubMed  PubMed Central  Google Scholar 

  85. Schroeder SM, Sumpio BE, Blume PA (2004) Double blind pilot study to evaluate prewounding prior to split thickness skin grafting using becaplermin gel, versus placebo gel, and standard wound care with saline wet to dry dressings. Poster Presentation, American College of Foot and Ankle Surgeons, Feb. 2, 2004, San Diego, California

    Google Scholar 

  86. KCI, Inc. P.O. Box 659508, San Antonio (TX) 78265 – 9508, Protocol VAC2001 – 03, A randomized, controlled multicenter trial of vacuum assisted closure therapy with split thickness skin grafting in the treatment and blinded evaluation of venous stasis ulcers. 10/03

    Google Scholar 

  87. Gilliland EL, Nathwani N, Dore CJ, Lewis JD (1988) Bacterial colonisation of leg ulcers and its effect on the success rate of skin grafting. Ann R Coll Surg Engl 70:105–108

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Robson MC (1997) Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am 77:637–650

    Article  CAS  PubMed  Google Scholar 

  89. Donato M, Novicki DC, Blume PA (2000) Skin grafting techniques for foot and ankle surgeons. Part II. Clin Podiatr Med Surg 17(4)

    Google Scholar 

  90. Attinger CE (2000) Plastic surgery techniques for foot and ankle surgery. In: Myerson JW (ed) Foot and ankle disorders. W.B. Saunders, Philadelphia, pp 585–684

    Google Scholar 

  91. Attinger CE (1995) Use of skin grafting in the foot. J Am Podiatr Med Assoc 85(1):49–56

    Article  CAS  PubMed  Google Scholar 

  92. Deitch EA (1985) Prospective study of the effect of the recipient bed on skin graft survival after thermal injury. J Trauma 25:118–121

    Article  CAS  PubMed  Google Scholar 

  93. Cohen IK, Crossland MC, Garrett A, Diegelmann RF (1995) Topical application of epidermal growth factor onto partial-thickness wounds in human volunteers does not enhance reepithelialization. Plast Reconstr Surg 96:251–254

    Article  CAS  PubMed  Google Scholar 

  94. Fraser GL, Beaulieu JT (1979) Leukopenia secondary to sulfadiazine silver. J Am Med Assoc 241:1928–1929

    Article  CAS  Google Scholar 

  95. Van Den Hoogenband HM (1984) Treatment of leg ulcers with split-thickness skin grafts. J Dermatol Surg Oncol 10:605–608

    Article  PubMed  Google Scholar 

  96. Chu CY, Peng FC, Chiu YF, Lee HC, Chen CW, Wei JC, Lin JJ (2012) Nanohybrids of silver particles immobilized on silicate platelet for infected wound healing. PLoS One 7(6):e3836

    Google Scholar 

  97. Rudolph R, Klein L (1973) Healing processes in skin grafts. Surg Gynecol Obstet 136:641–654

    CAS  PubMed  Google Scholar 

  98. Smoot EC, Kucan JO, Roth A, Mody N, Debs N (1991) In vitro toxicity testing for antibacterials against human keratinocytes. Plast Reconstr Surg 87:917–924

    Article  PubMed  Google Scholar 

  99. Pecoraro RE, Reiber GE, Burgess EM (1990) Pathways to diabetic limb amputation: Basis for prevention. Diabetes Care 13:513–521

    Article  CAS  PubMed  Google Scholar 

  100. Boulton AJ (1990) Lawrence lecture. The diabetic foot: neuropathic in aetiology? Diabet Med 7:852–858

    Article  CAS  PubMed  Google Scholar 

  101. Brand FN, Abbott RD, Kannel WB (1989) Diabetes, intermittent claudication, and risk of cardiovascular events. The Framingham Study. Diabetes 38:504–509

    Article  CAS  PubMed  Google Scholar 

  102. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  103. Davis SC, Ricotti C, Cazzaniga A (2008) Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen 16:23–29

    Article  PubMed  Google Scholar 

  104. Ha KR, Psaltis AJ, Butcher AR (2008) In vitro activity of mupirocin on clinical isolates of Staphylococcus aureus and its potential implications in chronic rhinosinusitis. Laryngoscope 118:535–540

    Article  PubMed  Google Scholar 

  105. Hill KE, Malic S, McKee R (2010) An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities. J Antimicrob Chemother 65:1195–1206

    Article  CAS  PubMed  Google Scholar 

  106. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  107. Hoiby N, Bjarnsholt T, Givskov M (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  CAS  Google Scholar 

  108. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  109. Walker JT, Percival SL (2000) Control of biofouling in drinking water systems. In: Walker J, Surman S, Jass J (eds) Industrial biofouling: detection, prevention and control. J Wiley, Chichester, NY, pp 103–121

    Google Scholar 

  110. Percival SL, Thomas JG, Williams DW (2010) The world of microbiology and biofilmology. In: Percival S, Cutting K (eds) Microbiology of wounds. CRC Press, London, pp 1–58

    Chapter  Google Scholar 

  111. Percival SL, Rogers AA (2005) The significance and role of biofilms in chronic wounds. In: McBain A, Alison D, Pratten J, Spratt D, Upton M, Veran J (eds) Biofilm, persistence and ubiquity. Bioline, Taunton, MA, pp 171–180

    Google Scholar 

  112. Percival SL, Kite P, Stickler D (2009) The use of urinary catheters and control of biofilms using TEDTA. Urol Res 37:205–209

    Article  CAS  PubMed  Google Scholar 

  113. Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW (2012) A review of the scientific evidence for biofilms in wounds. Wound Rep Reg 20:647–657

    Article  Google Scholar 

  114. Woods E, Davis P, Barnett J, Percival SL (2010) Wound healing, immunology and biofilms. In: Percival SL, Cutting K (eds) Microbiology of wounds. CRC Press, London, pp 271–292

    Chapter  Google Scholar 

  115. Percival SL, Cooper R, Lipsky B (2010) Antimicrobial interventions for wounds. In: Percival SL, Cutting K (eds) Microbiology of wounds. CRC Press, London, pp 293–328

    Chapter  Google Scholar 

  116. Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701

    Article  CAS  PubMed  Google Scholar 

  117. James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44

    Article  PubMed  Google Scholar 

  118. Harrison-Balestra C, Cazzaniga AL, Davis SC (2003) A wound-isolated Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. Dermatol Surg 29:631–635

    PubMed  Google Scholar 

  119. Gardner SE, Frantz RA, Doebbeling BN (2001) The validity of the clinical signs and symptoms used to identify localized chronic wound infection. Wound Repair Regen 9:178–186

    Article  CAS  PubMed  Google Scholar 

  120. Schultz GS, Sibbald RG, Falanga V (2003) Wound bed preparation: a systematic approach to wound management. Wound Repair Regen 11:S1–S28

    Article  PubMed  Google Scholar 

  121. Ugur A, Ceylan O (2003) Occurrence of resistance to antibiotics, metals, and plasmids in clinical strains of Staphylococcus spp. Arch Med Res 34:130–136

    Article  CAS  Google Scholar 

  122. Gjodsbol K, Christensen JJ, Karlsmark T, Jorgensen B, Klein BM, Krogfelt KA (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3:225–231

    Article  PubMed  PubMed Central  Google Scholar 

  123. Percival SL, Slone W, Linton S, Okel T, Corum L, Thomas JG (2011) The antimicrobial efficacy of a silver alginate dressing against a broad spectrum of clinically relevant wound isolates. Int Wound J 8:237–243

    Article  PubMed  PubMed Central  Google Scholar 

  124. Percival SL, Thomas J, Linton S, Okel T, Corum L, Slone W (2011) The antimicrobial efficacy of silver on antibiotic-resistant bacteria isolated from burn wounds. Int Wound J 19:1742–1748

    Google Scholar 

  125. Thomson PD (2000) Immunology, microbiology, and the recalcitrant wound. Ostomy Wound Manage 46:77S–84S

    CAS  PubMed  Google Scholar 

  126. Scherer LA, Shiver S, Chang M (2002) The vacuum assisted closure device: a method of securing skin grafts and improving graft survival. Arch Surg 137:930–934

    Article  PubMed  Google Scholar 

  127. Zekri A, King W (1995) Success of skin grafting on a contaminated recipient surface. Eur J Plast Surg 18:40–42

    Article  Google Scholar 

  128. Wolcott RD, Rhoads DD (2008) A study of biofilm-based wound management in subjects with critical limb ischemia. J Wound Care 17:145–155

    Article  CAS  PubMed  Google Scholar 

  129. Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, Madsen KG, Phipps R, Krogfelt K, Høiby N, Givskov M (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16:2–10

    Article  PubMed  Google Scholar 

  130. Amato B, Coretti G, Compagna R, Amato M, Buffone G, Gigliotti D, Grande R, Serra R, de Franciscis S (2013) Role of matrix metalloproteinases in non-healing venous ulcers. Int Wound J 12:641–645

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347

    Article  CAS  PubMed  Google Scholar 

  132. Aiba T, Akeno N, Kawane T, Okamoto H, Horiuchi N (1996) Matrix metalloproteinases-1 and −8 and TIMP-1 mRNA levels in normal and diseased human gingivae. Eur J Oral Sci 104:562–569

    Article  CAS  PubMed  Google Scholar 

  133. Zhang Q, Gould LJ (2013) Hyperbaric oxygen reduces matrix metalloproteinases in ischemic wounds through a redox-dependent mechanism. J Invest Dermatol 134:237–246

    Article  PubMed  CAS  Google Scholar 

  134. Ming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525

    Article  CAS  Google Scholar 

  135. Konturek PC, Brzozowski T, Kouturek SJ, Kwiecien S, Dem-binski A, Hahn EG (2001) Influence of bacterial lipopolysaccharide on healing of chronic experimental ulcer in rat. Scand J Gastroenterol 36:1239–1247

    Article  CAS  PubMed  Google Scholar 

  136. Wolcott RD, Rhoads DD, Dowd SE (2008) Biofilms and chronic wound inflammation. J Wound Care 17:333–341

    Article  CAS  PubMed  Google Scholar 

  137. Rhoads DD, Wolcott RD, Percival SL (2008) Biofilms in wounds: management strategies. J Wound Care 17:502–508

    Article  CAS  PubMed  Google Scholar 

  138. Voigt J, Wendelken M, Driver V, Alvarez OM (2011) Low-frequency ultrasound (20–40 kHz) as an adjunctive therapy for chronic wound healing: a systematic review of the literature and meta-analysis of eight randomized controlled trials. Int J Low Extrem Wounds 10:190–199

    Article  PubMed  Google Scholar 

  139. Opletalova K, Blaizot X, Mourgeon B, Chene Y, Creveuil C, Combemale P, Laplaud AL, Sohyer-Lebreuilly I, Dompmartin A (2012) Maggot therapy for wound debridement: a randomized multicenter trial. Arch Dermatol 148:432–438

    Article  PubMed  Google Scholar 

  140. Ross RE, Aflaki P, Gendics C, Lantis JC II (2011) Complex lower extremity wounds treated with skin grafts and nPWT: a retrospective review. J Wound Care 20:490–495

    Article  CAS  PubMed  Google Scholar 

  141. Wysocki AB, Staiano-Koiko L, Grinnell F (1993) Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J Invest Dermatol 101:64–68

    Article  CAS  PubMed  Google Scholar 

  142. Weckroth M, Vaheri A, Lauharanta J (1996) Matrix metalloproteinases, gelatinase and collagenase, in chronic leg ulcers. J Invest Dermatol 106:1119–1124

    Article  CAS  PubMed  Google Scholar 

  143. Mirastschijski U, Impola U, Jahkola T (2002) Ectopic localization of matrix metalloproteinase-9 in chronic cutaneous wounds. Hum Pathol 33:355–364

    Article  CAS  PubMed  Google Scholar 

  144. Rayment EA, Upton Z, Shooter GK (2008) Increased matrix metalloproteinase- 9 (MMP-9) activity observed in chronic wound fluid is related to the clinical severity of the ulcer. Br J Dermatol 29:951–961

    Article  CAS  Google Scholar 

  145. Wolcott RD, Rumbaugh KP, James G (2010) Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. J Wound Care 19(8):320

    Article  CAS  PubMed  Google Scholar 

  146. Nguyen KT, Seth AK, Hong SJ, Geringer MR, Xie P, Leung KP, Mustoe TA, Galiano RD (2013) Deficient cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound healing in diabetic, biofilm-containing chronic wounds. Wound Repair Regen 21(6):833–841

    Article  PubMed  Google Scholar 

  147. Black CE, Costerton JW (2010) Current concepts regarding the effect of wound microbial ecology and biofilms on wound healing. Surg Clin North Am 90:1147–1160

    Article  PubMed  Google Scholar 

  148. Wolcott R, Cutting K, Dowd S, Percival SL (2008) Surgical site infections: biofilms, dehiscence and wound healing. US Dermatol Touch Briefings, London, pp 56–59

    Google Scholar 

  149. Morykwas MJ, Argenta LC, Shelton-Brown EI (1997) Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation. Ann Plast Surg 38:553–562

    Article  CAS  PubMed  Google Scholar 

  150. Sieggreen MY, Maklebust J (1997) Debridement: choices and challenges. Adv Wound Care 10:32–37

    CAS  PubMed  Google Scholar 

  151. Ramundo J, Gray M (2008) Enzymatic wound debridement. J Wound Ostomy Continence Nurs 35:273–280

    Article  PubMed  Google Scholar 

  152. Morykwas MJ, Faler BJ, Pearce DJ (2001) Effects of varying levels of subatmospheric pressure on the rate of granulation tissue formation in experimental wounds in swine. Ann Plast Surg 47:547–551

    Article  CAS  PubMed  Google Scholar 

  153. Timmers MS, Le Cessie S, Banwell P (2005) The effects of varying degrees of pressure delivered by negative-pressure wound therapy on skin perfusion. Ann Plast Surg 55:665–671

    Article  CAS  PubMed  Google Scholar 

  154. Gabriel A, Shores J, Heinrich C (2008) Negative pressure wound therapy with instillation: a pilot study describing a new method for treating infected wounds. Int Wound J 5:399–413

    Article  PubMed  PubMed Central  Google Scholar 

  155. O’Meara SM, Cullum NA, Majid M (2001) Systematic review of antimicrobial agents used for chronic wounds. Br J Surg 88:4–21

    Article  PubMed  Google Scholar 

  156. Kessler L, Piemont Y, Ortega F (2006) Comparison of microbiological results of needle puncture vs. superficial swab in infected diabetic foot ulcer with osteomyelitis. Diabet Med 23:99–102

    Article  CAS  PubMed  Google Scholar 

  157. Sharp CS, Bessman AN, Wagner FW Jr (1978) Microbiology of deep tissue in diabetic gangrene. Diabetes Care 1:289–292

    Article  CAS  PubMed  Google Scholar 

  158. Sharp CS, Bessmen AN, Wagner FW Jr (1979) Microbiology of superficial and deep tissues in infected diabetic gangrene. Surg Gynecol Obste 149:217–219

    CAS  Google Scholar 

  159. Slater RA, Lazarovitch T, Boldur I (2004) Swab cultures accurately identify bacterial pathogens in diabetic foot wounds not involving bone. Diabet Med 21:705–709

    Article  CAS  PubMed  Google Scholar 

  160. Dowd SE, Sun Y, Secor PR (2008) Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 8:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Wolcott RD, Dowd SE (2008) A rapid molecular method for characterizing bacterial bioburden in chronic wounds. J Wound Care 17:513–516

    Article  CAS  PubMed  Google Scholar 

  162. Sun Y, Smith E, Wolcott R (2009) Propagation of anaerobic bacteria within an aerobic multi-species chronic wound biofilm model. J Wound Care 18:426–431

    Article  CAS  PubMed  Google Scholar 

  163. Percival SL, Slone W, Linton S (2011) Use of flow cytometry to compare the antimicrobial efficacy of silver-containing wound dressings against planktonic Staphylococcus aureus and Pseudomonas aeruginosa. Wound Repair Regen 19:436–441

    Article  PubMed  Google Scholar 

  164. Thomas JG, Slone W, Linton S (2011) A comparison of the antimicrobial efficacy of two silver-containing wound dressings on burn wound isolates. J Wound Care 20:580–586

    Article  CAS  PubMed  Google Scholar 

  165. Lima AF, Costa LB, Silva JL (2011) Interventions for wound healing among diabetic patients infected with Staphylococcus aureus: a systematic review. Sao Paulo Med J 129:165–170

    Article  PubMed  Google Scholar 

  166. Daroczy J (2006) Quality control in chronic wound management: the role of local povidone-iodine (Betadine) therapy. Dermatology 212:82–87

    Article  CAS  PubMed  Google Scholar 

  167. Lund-Nielsen B, Adamsen L, Gottrup F (2011) Qualitative bacteriology in malignant wounds–a prospective, randomized, clinical study to compare the effect of honey and silver dressings. Ostomy Wound Manage 57:28–36

    PubMed  Google Scholar 

  168. Ammons MC, Ward LS, James GA (2011) Anti-biofilm efficacy of a lactoferrin/ xylitol wound hydrogel used in combination with silver wound dressings. Int Wound J 8:268–273

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kostenko V, Lyczak J, Turner K (2010) Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrob Agents Chemother 54:5120–5131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lipp C, Kirker K, Agostinho A (2010) Testing wound dressings using an in vitro wound model. J Wound Care 19(6):220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Beele H, Meuleneire F, Nahuys M (2010) A prospective randomised open label study to evaluate the potential of a new silver alginate/carboxymethylcellulose antimicrobial wound dressing to promote wound healing. Int Wound J 7:262–270

    Article  PubMed  PubMed Central  Google Scholar 

  172. Percival SL, Bowler P, Woods EJ (2008) Assessing the effect of an antimicrobial wound dressing on biofilms. Wound Repair Regen 16:52–57

    Article  PubMed  Google Scholar 

  173. Thorn RM, Austin AJ, Greenman J, Wilkins JP, Davis PJ (2009) In vitro comparison of antimicrobial activity of iodine and silver dressings against biofilms. J Wound Care 18:343–346

    Article  CAS  PubMed  Google Scholar 

  174. Cimsit M, Uzun G, Yildiz S (2009) Hyperbaric oxygen therapy as an antiinfective agent. Expert Rev Anti-Infect Ther 7:1015–1026

    Article  CAS  PubMed  Google Scholar 

  175. Gottrup F, Jorgensen B (2011) Maggot debridement: an alternative method for debridement. Eplasty 11:e33

    PubMed  PubMed Central  Google Scholar 

  176. Gray D, Acton C, Chadwick P, Fumarola S, Leaper D, Morris C, Stang D, Vowden K, Vowden P, Young T (2011) Consensus guidance for the use of debridement techniques in the UK. Wounds UK 7:77–84

    Google Scholar 

  177. Paul AG, Ahmad NW, Lee H (2009) Maggot debridement therapy with Lucilia cuprina: a comparison with conventional debridement in diabetic foot ulcers. Int Wound J 6:39–46

    Article  PubMed  PubMed Central  Google Scholar 

  178. Krasna D (2001) Chronic wound care: a clinical source book for healthcare professionals. HMP Communications, Malvern, PA

    Google Scholar 

  179. Panuncialman J, Falanga V (2007) The science of wound bed preparation. Clin Plast Surg 34:621–632

    Article  PubMed  Google Scholar 

  180. Vanwijck R, Kaba L, Boland S, Gonzales M, Delange A, Tourbach S (2010) Immediate skin grafting of sub-acute and chronic wounds debrided by hydrosurgery. J Plast Reconstr Aesthet Surg 63:544–549

    Article  CAS  PubMed  Google Scholar 

  181. Caputo WJ, Beggs DJ, DeFede JL (2008) A prospective randomised controlled clinical trial comparing hydrosurgery debridement with conventional surgical debridement in lower extremity ulcers. Int Wound J 5:288–294

    Article  PubMed  PubMed Central  Google Scholar 

  182. Baker KG, Robertson VJ, Duck FAA (2001) review of therapeutic ultrasound: biophysical effects. Phys Ther 81:1351–1358

    Article  CAS  PubMed  Google Scholar 

  183. Gravante G, Delogu D, Esposito G (2007) Versajet hydrosurgery versus classic escharectomy for burn debridment: a prospective randomized trial. J Burn Care Res 28:720–724

    Article  PubMed  Google Scholar 

  184. Mosti G, Iabichella ML, Picerni P, Magliaro A, Mattaliano V (2005) The debridement of hard to heal leg ulcers by means of a new device based on Fluidjet technology. Int Wound J 2:307–314

    Article  PubMed  PubMed Central  Google Scholar 

  185. Young S (2002) Ultrasound therapy. In: Watson T (ed) Electrotherapy: evidence-based practice. Churchill-Livingston, Edinburgh, pp 211–230

    Google Scholar 

  186. Stanisic MM, Provo BJ, Larson DL, Kloth LC (2005) Wound debridement with 25 kHz ultrasound. Adv Skin Wound Care 18:484–490

    Article  PubMed  Google Scholar 

  187. Schoenbach SF, Song IC (1980) Ultrasonic debridement: a new approach in the treatment of burn wounds. Plast Reconstr Surg 66:34–37

    Article  CAS  PubMed  Google Scholar 

  188. Scherba G, Weigel RM, O’Brien WD Jr (1991) Quantitative assessment of the germicidal efficacy of ultrasonic energy. Appl Environ Microbiol 57:2079–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Suchkova V, Siddiqi FN, Carstensen EL, Dalecki D, Child S, Francis CW (1998) Enhancement of fibrinolysis with 40-kHz ultrasound. Circulation 98:1030–1035

    Article  CAS  PubMed  Google Scholar 

  190. Suchkova V, Carstensen EL, Francis CW (2002) Ultrasound enhancement of fibrinolysis at frequencies of 27 to 100 kHz. Ultrasound Med Biol 28:377–382

    Article  PubMed  Google Scholar 

  191. Ennis WJ, Foremann P, Mozen N, Massey J, Conner-Kerr T, Menesses P (2005) Ultrasound therapy for recalcitrant diabetic foot ulcers: results of a randomized, double-blind, controlled, multicenter study. Ostomy Wound Manage 51:24–39

    PubMed  Google Scholar 

  192. Kavros SJ, Liedl DA, Boon AJ, Miller JL, Hobbs JA, Andrews KL (2008) Expedited wound healing with noncontact, low-frequency ultrasound therapy in chronic wounds: a retrospective analysis. Adv Skin Wound Care 21:416–423

    Article  PubMed  Google Scholar 

  193. Chen CE, Ko JY, Fong CY, Juhn RJ (2010) Treatment of diabetic foot infection with hyperbaric oxygen therapy. Foot Ankle Surg 16:91–95

    Article  CAS  PubMed  Google Scholar 

  194. Toriseva M, Kahari VM (2009) Proteinases in cutaneous wound healing. Cell Mol Life Sci 66:203–224

    Article  CAS  PubMed  Google Scholar 

  195. Sherman RA (2003) Maggot therapy for treating diabetic foot ulcers unresponsive to conventional therapy. Diabetes Care 26:446–451

    Article  PubMed  Google Scholar 

  196. Veves A, Falanga V, Armstrong DG (2001) Graft skin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 24:290–295

    Article  CAS  PubMed  Google Scholar 

  197. Marston WA, Hanft J, Norwood P (2003) The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26:1701–1705

    Article  PubMed  Google Scholar 

  198. Iorio ML, Goldstein J, Adams M (2011) Functional limb salvage in the diabetic patient: the use of a collagen bilayer matrix and risk factors for amputation. Plast Reconstr Surg 127:260–267

    Article  CAS  PubMed  Google Scholar 

  199. Attinger CE, Ducic I, Hess CL, Basil A, Abbruzzesse M, Cooper P (2006) Outcome of skin graft versus flap surgery in the salvage of the exposed Achilles tendon in diabetics versus nondiabetics. Plast Reconstr Surg 117(7):2460

    Article  CAS  PubMed  Google Scholar 

  200. Shores JT, Hiersche M, Gabriel A, Gupta S (2012) Tendon coverage using an artificial skin substitute. J Plast Reconstructr Aesthet Surg 65:1544–1550

    Article  Google Scholar 

  201. Yeong E, Yu Y, Chan Z, Roan T (2013) Is artificial dermis an effective tool in the treatment of tendon-exposed wounds? J Burn Care Res 34:161–167

    Article  PubMed  Google Scholar 

  202. Silverstein G (2006) Dermal regeneration template in the surgical management of diabetic foot ulcers: a series of five cases. J Foot Ankle Surg 45:28–33

    Article  PubMed  Google Scholar 

  203. Egemen O, Ozkaya O, Ozturk MB, Aksan T, Orman C, Akan M (2012) Effective use of negative pressure wound therapy provides quick wound-bed preparation and complete graft take in the management of chronic venous ulcers. Int Wound J 9:199–205

    Article  PubMed  Google Scholar 

  204. Helgeson MD, Potter BK, Evans KN, Shawen SB (2007) Bioartificial dermal substitute: a preliminary report on its use for the management of complex combat-related soft tissue wounds. J Orthop Trauma 21:394–399

    Article  PubMed  Google Scholar 

  205. Azzopardi EA, Boyce DE, Dickson WA (2013) Application of topical negative pressure (vacuum- assisted closure) to split- thickness skin grafts: a structured evidence- based review. Ann Plast Surg 70:23–29

    Article  CAS  PubMed  Google Scholar 

  206. Carson SN, Overall K, Lee-Jahshan S et al (2004) Vacuum-assisted closure used for healing chronic wounds and skin grafts in the lower extremities. Ostomy Wound Manage 50(3):52–58

    PubMed  Google Scholar 

  207. Schneider AM, Morykwas MJ, Argenta LC (1998) A new and reliable method of securing skin grafts to the difficult recipient bed. Plast Reconstr Surg 102(4):1195–1198

    Article  CAS  PubMed  Google Scholar 

  208. Gupta S (2012) Optimal use of negative pressure wound therapy for skin grafts. Int Wound J 9(1):40–47

    Article  PubMed  PubMed Central  Google Scholar 

  209. Blackburn JH, Boemi L, Hall WW (1998) Negative-pressure dressings as a bolster for skin grafts. Ann Plast Surg 40:453–457

    Article  PubMed  Google Scholar 

  210. Rudolph R, Ballantyne DL (1990) Skin grafts. In: McCarthy JH (ed) Plastic surgery. W.B. Saunders Company, Philadelphia, pp 2221–2274

    Google Scholar 

  211. Hegelson MD, Potter BK, Evans KN et al (2007) Bioartificial dermal substitute: a preliminary report on its use for the management of complex combat-related soft tissue wounds. J Orthop Trauma 21(6):394–399

    Article  Google Scholar 

  212. Webster J, Scuffham P, Sherriff KL et al (2012) Negative pressure wound therapy for skin grafts and surgical wounds healing by primary intention. Cochrane Database Syst Rev 4:CD009261

    Google Scholar 

  213. Marcinko DE, Pentin-Maki R (1998) Wound healing, surgical decompression, and soft tissue coverage in the infected foot. In: Marcinko DE (ed) Infections of the Foot. Elsevier - Health Sciences Division, St Louis, MO, pp 215–221

    Google Scholar 

  214. Turcic J, Hancevic J, Antoljak T, Zic R, Alfirević I (1995) Effects of ozone on how well split thickness skin grafts according to Thiersch take in war wounds: results of prospective study. Langenbecks Arch Chir 380:144–148

    Article  CAS  PubMed  Google Scholar 

  215. Egan CA, Gerwels JW (1998) Surgical pearl: use of a sponge bolster instead of a tie-over bolster as a less invasive method of securing full-thickness skin grafts. J Am Acad Dermatol 39:1000–1001

    Article  CAS  PubMed  Google Scholar 

  216. Powers KB, Vacek JL, Lee S (1999) Noninvasive approaches to peripheral vascular disease: what’s new in evaluation and treatment? Postgrad Med 106(3):52–58. 62–64

    Article  CAS  PubMed  Google Scholar 

  217. Zierler RE, Sumner DS (1998) Physiologic assessment of peripheral arterial occlusive disease. In: Rutherford RB (ed) Vascular surgery. WB Saunders, Philadelphia, PA, pp 65–117

    Google Scholar 

  218. Lukash FN (1985) Microvascular free muscle reconstruction of a large plantar defect. Ann Plast Surg 15:252–256

    Article  CAS  PubMed  Google Scholar 

  219. Horowitz JH, Nichter LS, Kenney JG, Morgan RF (1985) Lawnmower injuries in children: lower extremity reconstruction. J Trauma 25:1138–1146

    Article  CAS  PubMed  Google Scholar 

  220. Myerson M (1989) Split-thickness skin excision: Its use for immediate wound care in crush injuries of the foot. Foot Ankle 10:54–60

    Article  CAS  PubMed  Google Scholar 

  221. Souther SG (1980) Skin grafts from the sole of the foot: case report and literature review. J Trauma 20:163–165

    Article  CAS  PubMed  Google Scholar 

  222. Wyble EJ, Yakuboff KP, Clark RG, Neale HW (1990) Use of free fasciocutaneous and muscle flaps for reconstruction of the foot. Ann Plast Surg 24:101–108

    Article  CAS  PubMed  Google Scholar 

  223. Golminz D, Bennett RG (1982) Cigarette smoking and flap and full thickness graft necrosis. Arch Dermatol 127:1012

    Article  Google Scholar 

  224. Sanstead H, Shepard G (1968) The effect of zinc deficiency on the tensile strength of healing surgical incisions in the integument of the rat. Proc Soc Exp Biol Med 128:687

    Article  Google Scholar 

  225. Smahel J (1977) The healing of skin grafts. Clin Past Surg 4:409–424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Donegan D.P.M., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Donegan, R. (2018). Factors Maximizing Skin Flaps and Grafts for Diabetic Wound Coverage. In: Shiffman, M., Low, M. (eds) Pressure Injury, Diabetes and Negative Pressure Wound Therapy. Recent Clinical Techniques, Results, and Research in Wounds, vol 3. Springer, Cham. https://doi.org/10.1007/15695_2017_48

Download citation

  • DOI: https://doi.org/10.1007/15695_2017_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10700-0

  • Online ISBN: 978-3-030-10701-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics