Skip to main content

Biomarkers for Immunotherapy in Gastrointestinal Cancers

  • Chapter
  • First Online:
Immune Strategies for Gastrointestinal Cancer

Part of the book series: Cancer Immunotherapy ((CAIMUN,volume 2))

  • 51 Accesses

Abstract

Immunotherapy represents one of the most promising emerging therapies for the treatment of gastrointestinal (GI) cancers. As for targeted therapies, the results of the first trials have underlined the need for biomarkers to select patients who benefit from these molecules. After the first studies conducted in colorectal cancer, mismatch repair (MMR) deficiency, resulting in microsatellite instability (MSI), has been identified to predict response and survival to immunotherapy regardless of tumor origin. More recently, an elevated tumor mutational burden (TMB) was also validated as a tumor-origin independent predictive biomarker for response to pembrolizumab. Following the emerging concept of molecular diagnosis, the Food and Drug Administration (FDA) approved MSI/MMR deficiency and high-TMB as criteria for the indication of immunotherapy regardless of tumor origin. As in non-GI tumor locations, such as broncho-pulmonary cancer, PD-L1 overexpression in tumor cells and/or in immune cells of the tumor microenvironment has been identified and validated by the FDA as a biomarker for response to immunotherapy in gastric and esophageal cancers. However, optimal assessment method and definition of PD-L1 overexpression are still under investigation. Other immune-related biomarkers such as tumor-infiltrating lymphocyte assessment, inflamed-gene expression, or circulating neutrophil-to-lymphocyte ratio might correlate to response and/or survival in several tumor locations, but need to be further investigated. Lastly, several tumor location specific parameters appear to be promising biomarkers in selected indications, such as POLE mutations in colorectal cancer, EBV status in gastric cancer, and HPV status in anal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawakami H, Zaanan A, Sinicrope FA (2015) MSI testing and its role in the management of colorectal cancer. Curr Treat Options in Oncol 16(7):30

    Article  Google Scholar 

  2. Llosa NJ, Cruise M, Tam A et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5(1):43–51

    Article  PubMed  Google Scholar 

  3. Overman MJ, McDermott R, Leach JL et al (2017) Nivolumab in patients with metastatic DNA mismatch repair deficient/microsatellite instability–high colorectal cancer (CheckMate 142): results of an open-label, multicentre, phase 2 study. Lancet Oncol 18(9):1182

    Article  PubMed  PubMed Central  Google Scholar 

  4. Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509

    Article  PubMed  PubMed Central  Google Scholar 

  5. Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413

    Article  PubMed  PubMed Central  Google Scholar 

  6. McGranahan N, Furness AJS, Rosenthal R et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  PubMed  PubMed Central  Google Scholar 

  7. Samstein RM, Lee C-H, Shoushtari AN et al (2019) Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 51(2):202–206

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goodman AM, Kato S, Bazhenova L et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16(11):2598–2608

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marabelle A, Fakih M, Lopez J et al (2020) Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 21(10):1353–1365

    Article  PubMed  Google Scholar 

  10. Schwaederle M, Husain H, Fanta PT et al (2016) Use of liquid biopsies in clinical oncology: pilot experience in 168 patients. Clin Cancer Res 22(22):5497–5505

    Article  PubMed  Google Scholar 

  11. Khagi Y, Goodman AM, Daniels GA et al (2017) Hyper-mutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy. Clin Cancer Res 23(19):5729–5736

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kasi PM (2017) Mutational burden on circulating cell-free tumor-DNA testing as a surrogate marker of mismatch repair deficiency or microsatellite instability in patients with colorectal cancers. J Gastrointest Oncol 8(4):747–748

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sha D, Jin Z, Budczies J et al (2020) Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov 10(12):1808–1825

    Article  PubMed  PubMed Central  Google Scholar 

  14. Budczies J, Seidel A, Christopoulos P et al (2018) Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden. Onco Targets Ther. https://doi.org/10.1080/2162402X.2018.1526613

  15. Frampton GM, Fichtenholtz A, Otto GA et al (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31(11):1023–1031

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chalmers ZR, Connelly CF, Fabrizio D et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. https://doi.org/10.1186/s13073-017-0424-2

  17. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  PubMed  PubMed Central  Google Scholar 

  18. Taube JM, Klein A, Brahmer JR et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20(19):5064–5074

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rosenberg JE, Hoffman-Censits J, Powles T et al (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single arm, phase 2 trial. Lancet 387(10031):1909–1920

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gandhi L, Rodríguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. https://doi.org/10.1056/NEJMoa1801005

  21. Ferris RL, Blumenschein G, Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375(19):1856–1867

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tang H, Liang Y, Anders RA et al (2018) PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest 128(2):580–588

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. https://doi.org/10.1186/s40425-018-0316-z

  24. Koopman M, Kortman GAM, Mekenkamp L et al (2009) Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer 100(2):266–273

    Article  PubMed  PubMed Central  Google Scholar 

  25. Overman MJ, Lonardi S, Wong KYM et al (2018) Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair–deficient/microsatellite instability–high metastatic colorectal cancer. J Clin Oncol 36(8):773–779

    Article  PubMed  Google Scholar 

  26. André T, Shiu K-K, Kim TW et al (2020) Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. N Engl J Med. https://doi.org/10.1056/NEJMoa2017699

  27. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer (2019) Ann Oncol 30(7):1096–1103

    Google Scholar 

  28. Campbell BB, Light N, Fabrizio D et al (2017) Comprehensive analysis of hypermutation in human cancer. Cell 171(5):1042–1056.e10

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fabrizio DA, George TJ, Dunne RF et al (2018) Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol 9(4):610–617

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen EX, Jonker DJ, Loree JM et al (2019) CCTG CO.26: Updated analysis and impact of plasma-detected microsatellite stability (MSS) and tumor mutation burden (TMB) in a phase II trial of durvalumab (D) plus tremelimumab (T) and best supportive care (BSC) versus BSC alone in patients (pts) with refractory metastatic colorectal carcinoma (rmCRC). J Clin Oncol 37(15_Suppl):3512–3512

    Article  Google Scholar 

  31. Pursell ZF, Isoz I, Lundström E-B et al (2007) Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 317(5834):127–130

    Article  PubMed  PubMed Central  Google Scholar 

  32. Church DN, Briggs SEW, Palles C et al (2013) DNA polymerase ɛ and δ exonuclease domain mutations in endometrial cancer. Hum Mol Genet 22(14):2820–2828

    Article  PubMed  PubMed Central  Google Scholar 

  33. Muzny DM, Bainbridge MN, Chang K et al (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337

    Article  Google Scholar 

  34. Shinbrot E, Henninger EE, Weinhold N et al (2014) Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Res 24(11):1740–1750

    Article  PubMed  PubMed Central  Google Scholar 

  35. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  PubMed  PubMed Central  Google Scholar 

  36. Domingo E, Freeman-Mills L, Rayner E et al (2016) Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol 1(3):207–216

    Article  PubMed  Google Scholar 

  37. Forgó E, Gomez AJ, Steiner D et al (2020) Morphological, immunophenotypical and molecular features of hypermutation in colorectal carcinomas with mutations in DNA polymerase ε (POLE). Histopathology 76(3):366–374

    Article  PubMed  Google Scholar 

  38. Gong J, Wang C, Lee PP et al (2017) Response to PD-1 blockade in microsatellite stable metastatic colorectal cancer harboring a POLE mutation. J Natl Compr Cancer Netw 15(2):142–147

    Article  Google Scholar 

  39. Palles C, Cazier J-B, Howarth KM et al (2013) Germline mutations in the proof-reading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 45(2):136–144

    Article  PubMed  Google Scholar 

  40. Masugi Y, Nishihara R, Yang J et al (2017) Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut 66(8):1463–1473

    Article  PubMed  Google Scholar 

  41. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800

    Article  PubMed  Google Scholar 

  42. Inaguma S, Lasota J, Wang Z et al (2017) Clinicopathologic profile, immunophenotype, and genotype of CD274 (PD-L1)-positive colorectal carcinomas. Mod Pathol 30(2):278–285

    Article  PubMed  Google Scholar 

  43. Gatalica Z, Snyder CL, Yeatts K et al (2014) Programmed death 1 (PD-1) lymphocytes and ligand (PD-L1) in colorectal cancer and their relationship to microsatellite instability status. J Clin Oncol 32(15_Suppl):3625–3625

    Article  Google Scholar 

  44. Salem ME, Puccini A, Grothey A et al (2018) Landscape of tumor mutation load, mismatch repair deficiency, and PD-L1 expression in a large patient cohort of gastrointestinal cancers. Mol Cancer Res 16(5):805–812

    Article  PubMed  PubMed Central  Google Scholar 

  45. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach (2019) Ann Oncol 30(8):1232–1243

    Google Scholar 

  46. Inoue Y, Yoshimura K, Nishimoto K et al (2020) Evaluation of programmed death ligand 1 (PD-L1) gene amplification and response to nivolumab monotherapy in non-small cell lung cancer. JAMA Netw Open. https://doi.org/10.1001/jamanetworkopen.2020.11818

  47. Goodman AM, Piccioni D, Kato S et al (2018) Prevalence of PDL1 amplification and preliminary response to immune checkpoint blockade in solid tumors. JAMA Oncol 4(9):1237–1244

    Article  PubMed  PubMed Central  Google Scholar 

  48. Huang RSP, Haberberger J, Severson E et al (2020) A pan-cancer analysis of PD-L1 immunohistochemistry and gene amplification, tumor mutation burden and microsatellite instability in 48,782 cases. Mod Pathol:1–12

    Google Scholar 

  49. Sorscher S, Resnick J, Goodman M (2017) First case report of a dramatic radiographic response to a checkpoint inhibitor in a patient with proficient mismatch repair gene expressing metastatic colorectal cancer. JCO Precis Oncol 1:1–4

    PubMed  Google Scholar 

  50. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  PubMed  Google Scholar 

  51. Rozek LS, Schmit SL, Greenson JK et al (2016) Tumor-infiltrating lymphocytes, Crohn’s-like lymphoid reaction, and survival from colorectal cancer. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djw027

  52. Galon J, Mlecnik B, Bindea G et al (2014) Towards the introduction of the “Immunoscore” in the classification of malignant tumours. J Pathol 232(2):199–209

    Article  PubMed  Google Scholar 

  53. Pagès F, Mlecnik B, Marliot F et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139

    Article  PubMed  Google Scholar 

  54. De Smedt L, Lemahieu J, Palmans S et al (2015) Microsatellite instable vs stable colon carcinomas: analysis of tumour heterogeneity, inflammation and angiogenesis. Br J Cancer 113(3):500–509

    Article  PubMed  PubMed Central  Google Scholar 

  55. Boissière-Michot F, Lazennec G, Frugier H et al (2014) Characterization of an adaptive immune response in microsatellite-instable colorectal cancer. Onco Targets Ther. https://doi.org/10.4161/onci.29256

  56. Loupakis F, Depetris I, Biason P et al (2020) Prediction of benefit from checkpoint inhibitors in mismatch repair deficient metastatic colorectal cancer: role of tumor infiltrating lymphocytes. Oncologist 25(6):481–487

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kikuchi T, Mimura K, Okayama H et al (2019) A subset of patients with MSS/MSI-low-colorectal cancer showed increased CD8(+) TILs together with up-regulated IFN-γ. Oncol Lett 18(6):5977–5985

    PubMed  PubMed Central  Google Scholar 

  58. Coutzac C, Pernot S, Chaput N, Zaanan A (2019) Immunotherapy in advanced gastric cancer, is it the future? Crit Rev Oncol Hematol 133:25–32

    Article  PubMed  Google Scholar 

  59. Fuchs CS, Doi T, Jang RW et al (2018) Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.0013

  60. Shitara K, Özgüroğlu M, Bang Y-J et al (2018) Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 392(10142):123–133

    Article  PubMed  Google Scholar 

  61. Janjigian YY, Bendell J, Calvo E et al (2018) CheckMate-032 Study: efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J Clin Oncol 36(28):2836–2844

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bang Y-J, Ruiz EY, Van Cutsem E et al (2018) Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann Oncol 29(10):2052–2060

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kang Y-K, Boku N, Satoh T et al (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390(10111):2461–2471

    Article  PubMed  Google Scholar 

  64. Moehler M, Shitara K, Garrido M et al (2020) LBA6_PR Nivolumab (nivo) plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer (GC/GEJC)/esophageal adenocarcinoma (EAC): first results of the CheckMate 649 study. Ann Oncol 31:S1191

    Article  Google Scholar 

  65. Janjigian YY et al (2021) First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 398:27–40. https://doi.org/10.1016/S0140-6736(21)00797-2

  66. Moehler M, Dvorkin M, Boku N et al (2020) Phase III trial of avelumab maintenance after first-line induction chemotherapy versus continuation of chemotherapy in patients with gastric cancers: results From JAVELIN Gastric 100. J Clin Oncol 39(9):966–977

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bass AJ, Thorsson V, Shmulevich I et al (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202–209

    Article  Google Scholar 

  68. Pietrantonio F, Miceli R, Raimondi A et al (2019) Individual patient data meta-analysis of the value of microsatellite instability as a biomarker in gastric cancer. J Clin Oncol 37(35):3392–3400

    Article  PubMed  Google Scholar 

  69. Marabelle A, Le DT, Ascierto PA et al (2019) Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 38(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kim ST, Cristescu R, Bass AJ et al (2018) Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 24(9):1449–1458

    Article  PubMed  Google Scholar 

  71. Shitara K, Cutsem EV, Bang Y-J et al (2020) Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol 6(10):1571–1580

    Article  PubMed  Google Scholar 

  72. Cohen R, Pudlarz T, Garcia-Larnicol M-L et al (2020) Patients atteints d’un cancer gastrique localisé MSI/dMMR, pas de chimiothérapie mais une immunothérapie périopératoire: l’essai de phase II GERCOR NEONIPIGA vient d’être ouvert au recrutement. Bull Cancer (Paris) 107(4):438–446

    Article  PubMed  Google Scholar 

  73. Akiba S, Koriyama C, Herrera-Goepfert R, Eizuru Y (2008) Epstein-Barr virus associated gastric carcinoma: epidemiological and clinicopathological features. Cancer Sci 99(2):195–201

    Article  PubMed  Google Scholar 

  74. Zaanan A, Taieb J (2019) How to better select patients with advanced gastric cancer for immunotherapy. Transl Gastroenterol Hepatol. https://doi.org/10.21037/tgh.2019.01.06

  75. De Rosa S, Sahnane N, Tibiletti MG et al (2018) EBV+ and MSI gastric cancers harbor high PD-L1/PD-1 expression and high CD8+ intratumoral lymphocytes. Cancers. https://doi.org/10.3390/cancers10040102

  76. Mishima S, Kawazoe A, Nakamura Y et al (2019) Clinicopathological and molecular features of responders to nivolumab for patients with advanced gastric cancer. J Immunother Cancer. https://doi.org/10.1186/s40425-019-0514-3

  77. Shitara K, Özgüroğlu M, Bang Y-J et al (2020) The association of tissue tumor mutational burden (tTMB) using the Foundation Medicine genomic platform with efficacy of pembrolizumab versus paclitaxel in patients (pts) with gastric cancer (GC) from KEYNOTE-061. J Clin Oncol 38(15_Suppl):4537–4537

    Article  Google Scholar 

  78. Wang F, Wei XL, Wang FH et al (2019) Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/II clinical trial NCT02915432. Ann Oncol 30(9):1479–1486

    Article  PubMed  PubMed Central  Google Scholar 

  79. Auslander N, Zhang G, Lee JS et al (2018) Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med 24(10):1545–1549

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fehrenbacher L, Spira A, Ballinger M et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387(10030):1837–1846

    Article  PubMed  Google Scholar 

  81. Muro K, Chung HC, Shankaran V et al (2016) Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol 17(6):717–726

    Article  PubMed  Google Scholar 

  82. Lei M, Siemers N, Pandya D et al (2019) Abstract 2673: Association of PD-L1 combined positive score and immune gene signatures with efficacy of nivolumab (NIVO) ± ipilimumab (IPI) in patients with metastatic gastroesophageal cancer (mGEC). Cancer Res 79(13 Supplement):2673–2673

    Article  Google Scholar 

  83. Ferrucci PF, Ascierto PA, Pigozzo J et al (2016) Baseline neutrophils and derived neutrophil-to-lymphocyte ratio: prognostic relevance in metastatic melanoma patients receiving ipilimumab. Ann Oncol 27(4):732–738

    Article  PubMed  Google Scholar 

  84. Mezquita L, Auclin E, Ferrara R et al (2018) Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol 4(3):351–357

    Article  PubMed  PubMed Central  Google Scholar 

  85. Li S, Zou J, Liu C et al (2020) Baseline derived neutrophil-to-lymphocyte ratio as a prognostic biomarker for non-colorectal gastrointestinal cancer patients treated with immune checkpoint blockade. Clin Immunol 212:108345

    Article  PubMed  Google Scholar 

  86. Ota Y, Takahari D, Suzuki T et al (2020) Changes in the neutrophil-to-lymphocyte ratio during nivolumab monotherapy are associated with gastric cancer survival. Cancer Chemother Pharmacol 85(2):265–272

    Article  PubMed  Google Scholar 

  87. Kato K, Cho BC, Takahashi M et al (2019) Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 20(11):1506–1517

    Article  PubMed  Google Scholar 

  88. Kojima T, Shah MA, Muro K et al (2020) Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J Clin Oncol 38(35):4138–4148

    Article  PubMed  Google Scholar 

  89. Kato K, Sun J-M, Shah MA et al (2020) LBA8_PR Pembrolizumab plus chemotherapy versus chemotherapy as first-line therapy in patients with advanced esophageal cancer: the phase 3 KEYNOTE-590 study. Ann Oncol 31:S1192–S1193

    Article  Google Scholar 

  90. Henley SJ, Ward EM, Scott S et al (2020) Annual report to the nation on the status of cancer, Part I: National cancer statistics. Cancer 126(10):2225–2249

    Article  PubMed  Google Scholar 

  91. Heusinkveld M, Goedemans R, Briet RJP et al (2012) Systemic and local human papillomavirus 16-specific T-cell immunity in patients with head and neck cancer. Int J Cancer 131(2):E74–E85

    Article  PubMed  Google Scholar 

  92. Lyford-Pike S, Peng S, Young GD et al (2013) Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res 73(6):1733–1741

    Article  PubMed  PubMed Central  Google Scholar 

  93. Partlová S, Bouček J, Kloudová K et al (2015) Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. Onco Targets Ther. https://doi.org/10.4161/21624011.2014.965570

  94. Morris VK, Salem ME, Nimeiri H et al (2017) Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study. Lancet Oncol 18(4):446–453

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ott PA, Piha-Paul SA, Munster P et al (2017) Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann Oncol 28(5):1036–1041

    Article  PubMed  PubMed Central  Google Scholar 

  96. Morris V, Rao X, Pickering C et al (2017) Comprehensive genomic profiling of metastatic squamous cell carcinoma of the anal canal. Mol Cancer Res 15(11):1542–1550

    Article  PubMed  PubMed Central  Google Scholar 

  97. El-Khoueiry AB, Sangro B, Yau T et al (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389(10088):2492–2502

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhu AX, Finn RS, Edeline J et al (2018) Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 19(7):940–952

    Article  PubMed  Google Scholar 

  99. Finn RS, Ryoo B-Y, Merle P et al (2019) Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol 38(3):193–202

    Article  PubMed  Google Scholar 

  100. Yau T, Kang Y-K, Kim T-Y et al (2020) Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.4564

  101. Gao Q, Wang X-Y, Qiu S-J et al (2009) Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 15(3):971–979

    Article  PubMed  Google Scholar 

  102. Jung HI, Jeong D, Ji S et al (2016) Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res Treat 49(1):246–254

    Article  PubMed  PubMed Central  Google Scholar 

  103. Melero I, Neely J, Sangro B et al (2019) Abstract 2675: Assessment of inflammation biomarkers in relation to clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma in CheckMate 040. Cancer Res 79(13 Supplement):2675–2675

    Article  Google Scholar 

  104. Qi X, Li J, Deng H et al (2016) Neutrophil-to-lymphocyte ratio for the prognostic assessment of hepatocellular carcinoma: a systematic review and meta-analysis of observational studies. Oncotarget 7(29):45283–45301

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chiappini F, Gross-Goupil M, Saffroy R et al (2004) Microsatellite instability mutator phenotype in hepatocellular carcinoma in non-alcoholic and non-virally infected normal livers. Carcinogenesis 25(4):541–547

    Article  PubMed  Google Scholar 

  106. Bailey P, Chang DK, Forget M-A et al (2016) Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep. https://doi.org/10.1038/srep35848

  107. Balachandran VP, Łuksza M, Zhao JN et al (2017) Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551(7681):512–516

    Article  PubMed  PubMed Central  Google Scholar 

  108. Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  PubMed  PubMed Central  Google Scholar 

  109. Royal RE, Levy C, Turner K et al (2010) Phase 2 trial of single agent ipilimumab (Anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33(8):828–833

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lupinacci RM, Goloudina A, Buhard O et al (2018) Prevalence of microsatellite instability in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology 154(4):1061–1065

    Article  PubMed  Google Scholar 

  111. Goggins M, Offerhaus GJ, Hilgers W et al (1998) Pancreatic adenocarcinomas with DNA replication errors (RER+) are associated with wild-type K-ras and characteristic histopathology. Poor differentiation, a syncytial growth pattern, and pushing borders suggest RER+. Am J Pathol 152(6):1501–1507

    PubMed  PubMed Central  Google Scholar 

  112. Laghi L, Beghelli S, Spinelli A et al (2012) Irrelevance of microsatellite instability in the epidemiology of sporadic pancreatic ductal adenocarcinoma. PLoS One. https://doi.org/10.1371/journal.pone.0046002

  113. Yamamoto H, Itoh F, Nakamura H et al (2001) Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Res 61(7):3139–3144

    PubMed  Google Scholar 

  114. Birnbaum DJ, Finetti P, Lopresti A et al (2016) Prognostic value of PDL1 expression in pancreatic cancer. Oncotarget 7(44):71198–71210

    Article  PubMed  PubMed Central  Google Scholar 

  115. Boku N, Ryu MH, Oh D-Y et al (2020) LBA7_PR Nivolumab plus chemotherapy versus chemotherapy alone in patients with previously untreated advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer: ATTRACTION-4 (ONO-4538-37) study. Ann Oncol 31:S1192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Zaanan .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

JP has participated in consulting or advisory boards for Amgen and Servier.

JT received honoraria for speaker or advisory role from: Amgen, Baxter, BMS, MSD, Merck, Pierre Fabre, Roche, Sanofi, Servier.

AZ has participated in consulting and/or advisory boards for Amgen, Lilly, Merck, Roche, Sanofi, Servier, Baxter, MSD, Pierre Fabre, Havas Life, Alira Health, Zymeworks.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palle, J., Taïeb, J., Zaanan, A. (2021). Biomarkers for Immunotherapy in Gastrointestinal Cancers. In: Moehler, M., Foerster, F. (eds) Immune Strategies for Gastrointestinal Cancer. Cancer Immunotherapy, vol 2. Springer, Cham. https://doi.org/10.1007/13905_2021_10

Download citation

  • DOI: https://doi.org/10.1007/13905_2021_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39943-5

  • Online ISBN: 978-3-031-39944-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics