Skip to main content

The Population Genomics of Aedes aegypti: Progress and Prospects

  • Chapter
  • First Online:
Population Genomics

Abstract

Despite its significance in public health, the population genomics of Aedes aegypti is in its infancy. We suspect this dichotomy is largely driven by its relatively large genome size affecting cost of sequencing. Efforts to capture the subset of genomic markers have been conducted using exome capture and microarray technologies. The focus of the population genomic studies has been largely on identifying population structure and investigating insecticide resistance. Recent advances in library preparation technology and availability of a chromosome-level reference assembly allowed whole genome sequence-based study. These developments open new questions that can be addressed with further population genomic data. As with Anopheles gambiae, interests in advancing gene drive-based mosquito control methods are propelling additional collections of Ae. aegypti datasets aimed at characterizing dispersal and population size. With increasing interest in novel genetic control and their application in the field, we expect to accelerate research in characterizing field populations using genomics approaches in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Balkenhol N. Landscape genetics: concepts, methods, applications. Hoboken: Wiley Blackwell; 2015.

    Google Scholar 

  • Bartholomay LC, Cho WL, Rocheleau TA, Boyle JP, Beck ET, Fuchs JF, et al. Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infect Immun. 2004;72(7):4114–26.

    Google Scholar 

  • Batool K, Alam I, Wu S, Liu W, Zhao G, Chen M, et al. Transcriptomic analysis of Aedes aegypti in response to Mosquitocidal Bacillus thuringiensis LLP29 toxin. Sci Rep. 2018;8(1):12650.

    Google Scholar 

  • Black WC 4th, Lanzaro GC. Distribution of genetic variation among chromosomal forms of Anopheles gambiae s.s: introgressive hybridization, adaptive inversions, or recent reproductive isolation? Insect Mol Biol. 2001;10(1):3–7.

    Google Scholar 

  • Brelsfoard CL, Mains JW, Mulligan S, Cornel A, Holeman J, Kluh S, et al. Aedes aegypti males as vehicles for insecticide delivery. Insects. 2019;10(8)

    Google Scholar 

  • Caicedo PA, Serrato IM, Sim S, Dimopoulos G, Coatsworth H, Lowenberger C, et al. Immune response-related genes associated to blocking midgut dengue virus infection in Aedes aegypti strains that differ in susceptibility. Insect Sci. 2019;26(4):635–48.

    Google Scholar 

  • Campbell CL, Harrison T, Hess AM, Ebel GD. MicroRNA levels are modulated in Aedes aegypti after exposure to Dengue-2. Insect Mol Biol. 2014;23(1):132–9.

    Google Scholar 

  • Campbell CL, Dickson LB, Lozano-Fuentes S, Juneja P, Jiggins FM, Black WC. Alternative patterns of sex chromosome differentiation in Aedes aegypti (L). BMC Genomics. 2017;18(1):943.

    Google Scholar 

  • Carballar-Lejarazu R, Ogaugwu C, Tushar T, Kelsey A, Pham TB, Murphy J, et al. Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A. 2020;117(37):22805–14.

    Google Scholar 

  • Cornel AJ, Brisco KK, Tadei WP, Secundino NF, Rafael MS, Galardo AK, et al. Anopheles darlingi polytene chromosomes: revised maps including newly described inversions and evidence for population structure in Manaus. Mem Inst Oswaldo Cruz. 2016a;111(5):335–46.

    Google Scholar 

  • Cornel AJ, Holeman J, Nieman CC, Lee Y, Smith C, Amorino M, et al. Surveillance, insecticide resistance and control of an invasive Aedes aegypti (Diptera: Culicidae) population in California. F1000Res. 2016b;5:194.

    Google Scholar 

  • Crawford JE, Alves JM, Palmer WJ, Day JP, Sylla M, Ramasamy R, et al. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biol. 2017;15(1):16.

    Google Scholar 

  • Crawford JE, Clarke DW, Criswell V, Desnoyer M, Cornel D, Deegan B, et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat Biotechnol. 2020;38(4):482–92.

    Google Scholar 

  • Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol. 2014;23(13):3133–57.

    Google Scholar 

  • David JP, Faucon F, Chandor-Proust A, Poupardin R, Riaz MA, Bonin A, et al. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing. BMC Genomics. 2014;15:174.

    Google Scholar 

  • Dickson LB, Campbell CL, Juneja P, Jiggins FM, Sylla M, Black WC. Exon-enriched libraries reveal large genic differences between Aedes aegypti from Senegal, West Africa, and populations outside Africa. G3 (Bethesda). 2017;7(2):571–82.

    Google Scholar 

  • Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356(6333):92–5.

    Google Scholar 

  • Etebari K, Hegde S, Saldana MA, Widen SG, Wood TG, Asgari S, et al. Global transcriptome analysis of Aedes aegypti mosquitoes in response to Zika virus infection. mSphere. 2017;2(6)

    Google Scholar 

  • Evans BR, Gloria-Soria A, Hou L, McBride C, Bonizzoni M, Zhao H, et al. A multipurpose high throughput SNP Chip for the dengue and yellow fever mosquito, Aedes aegypti. G3 (Bethesda). 2015;5(5):711–8.

    Google Scholar 

  • Faucon F, Dusfour I, Gaude T, Navratil V, Boyer F, Chandre F, et al. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Res. 2015;25(9):1347–59.

    Google Scholar 

  • Filipović I, Hapuarachchi HC, Tien WP, Razak M, Lee C, Tan CH, et al. Using spatial genetics to quantify mosquito dispersal for control programs. BMC Biol. 2020;18(1):104.

    Google Scholar 

  • Fontaine A, Filipovic I, Fansiri T, Hoffmann AA, Cheng C, Kirkpatrick M, et al. Extensive genetic differentiation between Homomorphic sex chromosomes in the mosquito vector, Aedes aegypti. Genome Biol Evol. 2017;9(9):2322–35.

    Google Scholar 

  • Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A. 2015;112(49):E6736–43.

    Google Scholar 

  • Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A. Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLoS Negl Trop Dis. 2013;7(9):e2438.

    Google Scholar 

  • Guerra CA, Reiner RC Jr, Perkins TA, Lindsay SW, Midega JT, Brady OJ, et al. A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Parasit Vectors. 2014;7:276.

    Google Scholar 

  • Hall AB, Basu S, Jiang X, Qi Y, Timoshevskiy VA, Biedler JK, et al. Sex determination. A male-determining factor in the mosquito Aedes aegypti. Science. 2015;348(6240):1268–70.

    Google Scholar 

  • Harrington LC, Fleisher A, Ruiz-Moreno D, Vermeylen F, Wa CV, Poulson RL, et al. Heterogeneous feeding patterns of the dengue vector, Aedes aegypti, on individual human hosts in rural Thailand. PLoS Negl Trop Dis. 2014;8(8):e3048.

    Google Scholar 

  • Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA, et al. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol. 2012;30(9):828–30.

    Google Scholar 

  • Hemming-Schroeder E, Lo E, Salazar C, Puente S, Yan G. Landscape genetics: a toolbox for studying vector-borne diseases. Front Ecol Evol. 21 p. 2018; https://doi.org/10.3389/fevo.2018.00021.

  • Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T, Min S, et al. Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies. BMC Genet. 2009;10:11.

    Google Scholar 

  • Ishak IH, Kamgang B, Ibrahim SS, Riveron JM, Irving H, Wondji CS. Pyrethroid resistance in Malaysian populations of dengue vector Aedes aegypti is mediated by CYP9 family of cytochrome P450 genes. PLoS Negl Trop Dis. 2017;11(1):e0005302.

    Google Scholar 

  • Juarez JG, Garcia-Luna S, Chaves LF, Carbajal E, Valdez E, Avila C, et al. Dispersal of female and male Aedes aegypti from discarded container habitats using a stable isotope mark-capture study design in South Texas. Sci Rep. 2020;10(1):6803.

    Google Scholar 

  • Jung KH, Lee J, Dardick C, Seo YS, Cao P, Canlas P, Phetsom J, Xu X, Ouyang S, An K, et al. Identification and functional analysis of light-responsive unique genes and gene family members in rice. PLoS Genet. 2008;4(8):e1000164.

    Google Scholar 

  • Kang DS, Barron MS, Lovin DD, Cunningham JM, Eng MW, Chadee DD, et al. A transcriptomic survey of the impact of environmental stress on response to dengue virus in the mosquito, Aedes aegypti. PLoS Negl Trop Dis. 2018;12(6):e0006568.

    Google Scholar 

  • Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Negl Trop Dis. 2014;8(6):e2948.

    Google Scholar 

  • Koh C, Allen SL, Herbert RI, McGraw EA, Chenoweth SF. The transcriptional response of Aedes aegypti with variable extrinsic incubation periods for dengue virus. Genome Biol Evol. 2018;10(12):3141–51.

    Google Scholar 

  • Kreutzer R, Kitzmiller J, Ferreira E. Inversion polymorphism in the salivary gland chromosome of Anopheles darlingi root. Mosq News. 1972;32(4):555–65.

    Google Scholar 

  • Lee Y, Schmidt H, Collier TC, Conner WR, Hanemaaijer MJ, Slatkin M, et al. Genome-wide divergence among invasive populations of Aedes aegypti in California. BioRXiv. 2017; https://doi.org/10.1101/166629.

  • Lee Y, Schmidt H, Collier TC, Conner WR, Hanemaaijer MJ, Slatkin M, et al. Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC Genomics. 2019;20(1):204.

    Google Scholar 

  • Lertkiatmongkol P, Pethuan S, Jirakanjanakit N, Rongnoparut P. Transcription analysis of differentially expressed genes in insecticide-resistant Aedes aegypti mosquitoes after deltamethrin exposure. J Vector Ecol. 2010;35(1):197–203.

    Google Scholar 

  • Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis. 2018;67:25–35.

    Google Scholar 

  • Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, et al. Development of a confinable gene drive system in the human disease vector Aedes aegypti. Elife. 2020;9

    Google Scholar 

  • Lien NTK, Ngoc NTH, Lan NN, Hien NT, Tung NV, Ngan NTT, et al. Transcriptome sequencing and analysis of changes associated with insecticide resistance in the dengue mosquito (Aedes aegypti) in Vietnam. Am J Trop Med Hyg. 2019;100(5):1240–8.

    Google Scholar 

  • Liew C, Curtis CF. Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus. Singapore Med Vet Entomol. 2005;18(4):351–60.

    Google Scholar 

  • Manel S, Holderegger R. Ten years of landscape genetics. Trends Ecol Evol. 2013;28(10):614–21.

    Google Scholar 

  • Marcantonio M, Reyes T, Barker CM. Quantifying Aedes aegypti dispersal in space and time: a modeling approach. Ecosphere. ee02977 p. 2019; https://doi.org/10.1002/ecs2.2977.

  • Marcombe S, Poupardin R, Darriet F, Reynaud S, Bonnet J, Strode C, et al. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies). BMC Genomics. 2009;10:494.

    Google Scholar 

  • Marshall JM, Buchman A, Sanchez CH, Akbari OS. Overcoming evolved resistance to population-suppressing homing-based gene drives. Sci Rep. 2017;7(1):3776.

    Google Scholar 

  • Marshall JM, Raban RR, Kandul NP, Edula JR, Leon TM, Akbari OS. Winning the tug-of-war between effector gene design and pathogen evolution in vector population replacement strategies. Front Genet. 2019;10:1072.

    Google Scholar 

  • Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature. 2018;563(7732):501–7.

    Google Scholar 

  • Muir LE, Kay BH. Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Trop Med Hyg. 1998;58(3):277–82.

    Google Scholar 

  • Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007;316(5832):1718–23.

    Google Scholar 

  • Petrarca V, Beier JC. Intraspecific chromosomal polymorphism in the Anopheles gambiae complex as a factor affecting malaria transmission in the Kisumu area of Kenya. Am J Trop Med Hyg. 1992;46(2):229–37.

    Google Scholar 

  • Pless E, Gloria-Soria A, Evans BR, Kramer V, Bolling BG, Tabachnick WJ, et al. Multiple introductions of the dengue vector, Aedes aegypti, into California. PLoS Negl Trop Dis. 2017;11(8):e0005718.

    Google Scholar 

  • Poupardin R, Srisukontarat W, Yunta C, Ranson H. Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti. PLoS Negl Trop Dis. 2014;8(3):e2743.

    Google Scholar 

  • Raban RR, Marshall JM, Akbari OS. Progress towards engineering gene drives for population control. J Exp Biol. 2020;223(Pt Suppl 1)

    Google Scholar 

  • RaÅ¡ić G, Filipovic I, Weeks AR, Hoffmann AA. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics. 2014;15:275.

    Google Scholar 

  • Redmond SN, Sharma A, Sharakhov I, Tu Z, Sharakhova M, Neafsey DE. Linked-read sequencing identifies abundant microinversions and introgression in the arboviral vector Aedes aegypti. BMC Biol. 2020;18(1):26.

    Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24(17):4348–70.

    Google Scholar 

  • Rose NH, Sylla M, Badolo A, Lutomiah J, Ayala D, Aribodor OB, et al. Climate and urbanization drive mosquito preference for humans. Curr Biol. 2020;30(18):3570–3579.e6.

    Google Scholar 

  • Saavedra-Rodriguez K, Suarez AF, Salas IF, Strode C, Ranson H, Hemingway J, et al. Transcription of detoxification genes after permethrin selection in the mosquito Aedes aegypti. Insect Mol Biol. 2012;21(1):61–77.

    Google Scholar 

  • Saavedra-Rodriguez K, Campbell CL, Lenhart A, Penilla P, Lozano-Fuentes S, Black WC. Exome-wide association of deltamethrin resistance in Aedes aegypti from Mexico. Insect Mol Biol. 2019;28(5):591–604.

    Google Scholar 

  • Sanchez CH, Bennett JB, Wu SL, Rasic G, Akbari OS, Marshall JM. Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations. BMC Biol. 2020;18(1):50.

    Google Scholar 

  • Schmidt TL, Filipovic I, Hoffmann AA, Rasic G. Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity (Edinb). 2018a;120(5):386–95.

    Google Scholar 

  • Schmidt H, Hanemaaijer MJ, Cornel AJ, Lanzaro GC, Braack L, Lee Y. Complete mitogenome sequence of Aedes (Stegomyia) aegypti derived from field isolates from California and South Africa. Mitochondrial DNA B. 2018b;3(2):994–5.

    Google Scholar 

  • Schmidt TL, van Rooyen AR, Chung J, Endersby-Harshman NM, Griffin PC, Sly A, et al. Tracking genetic invasions: genome-wide single nucleotide polymorphisms reveal the source of pyrethroid-resistant Aedes aegypti (yellow fever mosquito) incursions at international ports. Evol Appl. 2019;12(6):1136–46.

    Google Scholar 

  • Schmidt H, Collier TC, Hanemaaijer MJ, Houston PD, Lee Y, Lanzaro GC. Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of Anopheles and Aedes mosquitoes. Nat Commun. 2020;11(1):1425.

    Google Scholar 

  • Stevenson BJ, Pignatelli P, Nikou D, Paine MJ. Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance. PLoS Negl Trop Dis. 2012;6(3):e1595.

    Google Scholar 

  • Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR, et al. Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol. 2008;38(1):113–23.

    Google Scholar 

  • Sul JH, Martin LS, Eskin E. Population structure in genetic studies: confounding factors and mixed models. PLoS Genet. 2018;14(12):e1007309.

    Google Scholar 

  • Tadesse FG, Ashine T, Teka H, Esayas E, Messenger LA, Chali W, et al. Anopheles stephensi Mosquitoes as vectors of Plasmodium vivax and falciparum, Horn of Africa, 2019. Emerg Infect Dis. 2021;27(2)

    Google Scholar 

  • Terradas G, McGraw EA. Using genetic variation in Aedes aegypti to identify candidate anti-dengue virus genes. BMC Infect Dis. 2019;19(1):580.

    Google Scholar 

  • Touré Y, Petrarca V, Traore S, Coulibaly A, Maiga H, Sankare O, et al. The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia. 1998;40(4):477–511.

    Google Scholar 

  • Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Phys. 2012;104(2):126–31.

    Google Scholar 

  • Wang JM, Cheng Y, Shi ZK, Li XF, Xing LS, Jiang H, et al. Aedes aegypti HPX8C modulates immune responses against viral infection. PLoS Negl Trop Dis. 2019;13(4):e0007287.

    Google Scholar 

  • WHO. WHO fact sheet on dengue. Geneva: World Health Organization; 2020. www.who.int. Accessed 12 Jan 2021. https://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue

    Google Scholar 

  • Zhao L, Alto BW, Smartt CT, Shin D. Transcription profiling for Defensins of Aedes aegypti (Diptera: Culicidae) during development and in response to infection with Chikungunya and Zika viruses. J Med Entomol. 2018;55(1):78–89.

    Google Scholar 

  • Zhao L, Alto BW, Jiang Y, Yu F, Zhang Y. Transcriptomic analysis of Aedes aegypti innate immune system in response to ingestion of Chikungunya virus. Int J Mol Sci. 2019;20(13)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoosook Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, Y., Saavedra-Rodriguez, K., Chen, TY., Campbell, L.P., Smartt, C.T. (2021). The Population Genomics of Aedes aegypti: Progress and Prospects. In: Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2021_93

Download citation

  • DOI: https://doi.org/10.1007/13836_2021_93

  • Published:

  • Publisher Name: Springer, Cham

Publish with us

Policies and ethics