Skip to main content
Book cover

pp 1–21Cite as

The Population Genomics of Anopheles gambiae Species Complex: Progress and Prospects

Part of the Population Genomics book series

Abstract

Anopheles gambiae sensu lato is a species complex containing principal malaria vectors such as An. gambiae sensu stricto, An. coluzzii, and An. arabiensis. Numerous studies have shown dynamic species hybridization among member of this complex makes them an ideal model for studying evolution and speciation as well as for applied vector biology. Applying a population genomics approach to the An. gambiae and An. coluzzii species group has led to a number of important and epidemiologically relevant insights including: (1) organization of genomic divergence into “islands of speciation”; (2) competing models of population origin of An. gambiae and An. Coluzzii; (3) description of asymmetric introgression between diverged populations; (4) description of adaptive introgression as a mechanism for the rapid evolution of insecticide resistance; (5) gene/genomic region discovery associated with insecticide resistance and Plasmodium resistance; (6) assessment of gene drive resistance potential among natural populations of An. gambiae and An. coluzzii. With increasing availability of genomic tools and population genomic databases for this species group, it is poised to step further in utilizing genomics resources to answer traditionally challenging questions such as dispersal and population size estimation.

Keywords

  • Anopheles coluzzii
  • Anopheles gambiae
  • Genomics
  • Hybridization
  • Introgression
  • Malaria vector
  • Species complex

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Strictly speaking, AgamP4 should be considered An. coluzzii genome given the callability bias toward An. coluzzii in the islands of speciation (Turner et al. 2005).

References

  • Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJ, Bierne N, et al. Hybridization and speciation. J Evol Biol. 2013;26(2):229–46.

    Google Scholar 

  • Anopheles gambiae 1000 Genomes Consortium, Data Analysis Group, Partner Working Group, Sample Collections-Angola, Burkina Faso, Cameroon, Gabon, Guinea, Guinea Bissau, Kenya et al. Genetic diversity of the African malaria vector Anopheles gambiae. Nature. 2017;552(7683):96–100.

    Google Scholar 

  • Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke B, Ranson H. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans R Soc Trop Med Hyg. 2009;103(11):1139–45.

    Google Scholar 

  • Ayala FJ, Coluzzi M. Chromosome speciation: humans, Drosophila, and mosquitoes. Proc Natl Acad Sci U S A. 2005;102(Suppl 1):6535–42.

    Google Scholar 

  • Beier JC, Killeen GF, Githure JI. Short report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg. 1999;61(1):109–13.

    Google Scholar 

  • Belachew EB. Immune response and evasion mechanisms of Plasmodium falciparum parasites. J Immunol Res. 2018;2018:6529681.

    Google Scholar 

  • Bergey CM, Lukindu M, Wiltshire RM, Fontaine MC, Kayondo JK, Besansky NJ. Assessing connectivity despite high diversity in island populations of a malaria mosquito. Evol Appl. 2020;13(2):417–31.

    Google Scholar 

  • Campos M, Hanemaaijer J, Gripkey H, Collier T, Lee Y, Cornel A, et al. The origin of island populations of the African malaria mosquito, Anopheles coluzzii. Authorea. https://www.authorea.com/users/352717/articles/476853-the-origin-of-island-populations-of-the-african-malaria-mosquito-anopheles-coluzzii. 2020; https://doi.org/10.22541/au.159819143.34774248.

  • Caputo B, Nwakanma D, Jawara M, Adiamoh M, Dia I, Konate L, et al. Anopheles gambiae complex along The Gambia river, with particular reference to the molecular forms of An. gambiae s.s. Malar J. 2008;7:182.

    Google Scholar 

  • Carballar-Lejarazu R, Ogaugwu C, Tushar T, Kelsey A, Pham TB, Murphy J, et al. Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A. 2020;117(37):22805–14.

    Google Scholar 

  • Chen H, Minakawa N, Beier J, Yan G. Population genetic structure of Anopheles gambiae mosquitoes on Lake Victoria islands, West Kenya. Malar J. 2004;3:48.

    Google Scholar 

  • Clarkson CS, Weetman D, Essandoh J, Yawson AE, Maslen G, Manske M, et al. Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation. Nat Commun. 2014;5:4248.

    Google Scholar 

  • Clayton AM, Dong Y, Dimopoulos G. The Anopheles innate immune system in the defense against malaria infection. J Innate Immun. 2014;6(2):169–81.

    Google Scholar 

  • Cobos ME, Peterson AT, Barve N, Osorio-Olvera L. Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ. 2019;7:e6281.

    Google Scholar 

  • Coetzee M, Hunt RH, Wilkerson RC, della Torre A, Coulibaly MB, Besansky NJ. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa. 2013;3619(2):246–74.

    Google Scholar 

  • Cohuet A, Osta MA, Morlais I, Awono-Ambene PH, Michel K, Simard F, et al. Anopheles and Plasmodium: from laboratory models to natural systems in the field. EMBO Rep. 2006;7(12):1285–9.

    Google Scholar 

  • Coluzzi M, Sabatini A, Petrarca V, Di Deco MA. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979;73(5):483–97.

    Google Scholar 

  • Corby-Harris V, Drexler A, Watkins de Jong L, Antonova Y, Pakpour N, Ziegler R, et al. Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. PLoS Pathog. 2010;6(7):e1001003.

    Google Scholar 

  • Costantini C, Li SG, Della Torre A, Sagnon N, Coluzzi M, Taylor CE. Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a west African Sudan savanna village. Med Vet Entomol. 1996;10(3):203–19.

    Google Scholar 

  • Cox-Singh J, Davis TM, Lee KS, Shamsul SS, Matusop A, Ratnam S, et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis. 2008;46(2):165–71.

    Google Scholar 

  • Dao A, Yaro AS, Diallo M, Timbine S, Huestis DL, Kassogue Y, et al. Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature. 2014;516(7531):387–90.

    Google Scholar 

  • David JP, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, et al. The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci U S A. 2005;102(11):4080–4.

    Google Scholar 

  • Davidson G. Insecticide resistance in Anopheles gambiae Giles: a case of simple mendelian inheritance. Nature. 1956;178(4538):863–4.

    Google Scholar 

  • Davidson G. Anopheles Gambiae, a complex of species. Bull World Health Organ. 1964a;31:625–34.

    Google Scholar 

  • Davidson G. The five mating-types in the Anopheles Gambiae complex. Riv Malariol. 1964b;43:167–83.

    Google Scholar 

  • Davidson G, Hunt RH. The crossing and chromosome characteristics of a new, sixth species in the Anopheles gambiae complex. Parassitologia. 1973;15(1):121–8.

    Google Scholar 

  • Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, et al. Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics. 2009;25(24):3207–12.

    Google Scholar 

  • Dennison NJ, BenMarzouk-Hidalgo OJ, Dimopoulos G. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota. Dev Comp Immunol. 2015;49(1):170–8.

    Google Scholar 

  • Dia I, Ba H, Mohamed SA, Diallo D, Lo B, Diallo M. Distribution, host preference and infection rates of malaria vectors in Mauritania. Parasit Vectors. 2009;2(1):61.

    Google Scholar 

  • Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics. 2008;9:538.

    Google Scholar 

  • Dong Y, Taylor HE, Dimopoulos G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol. 2006;4(7):e229.

    Google Scholar 

  • Faiman R, Yaro AS, Diallo M, Dao A, Djibril S, Sanogo ZL, et al. Quantifying flight aptitude variation in wild Anopheles gambiae in order to identify long-distance migrants. Malar J. 2020;19(1):263.

    Google Scholar 

  • Favia G, Lanfrancotti A, Spanos L, Siden-Kiamos I, Louis C. Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol Biol. 2001;10(1):19–23.

    Google Scholar 

  • Fick SE, Hijmans RJ. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37(12):4302–15.

    Google Scholar 

  • Fryxell RT, Nieman CC, Fofana A, Lee Y, Traore SF, Cornel AJ, et al. Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali. Malar J. 2012;11:133.

    Google Scholar 

  • Gantz VM, Bier E. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science. 2015;348(6233):442–4.

    Google Scholar 

  • Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A. 2015;112(49):E6736–43.

    Google Scholar 

  • Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011;10:378.

    Google Scholar 

  • Ghurye J, Koren S, Small ST, Redmond S, Howell P, Phillippy AM, et al. A chromosome-scale assembly of the major African malaria vector Anopheles funestus. Gigascience. 2019;8(6)

    Google Scholar 

  • Gimonneau G, Pombi M, Choisy M, Morand S, Dabire RK, Simard F. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med Vet Entomol. 2012;26(1):9–17.

    Google Scholar 

  • Giraldo-Calderon GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P, et al. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res. 2015;43(Database issue):D707–13.

    Google Scholar 

  • Hall AB, Papathanos PA, Sharma A, Cheng C, Akbari OS, Assour L, et al. Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes. Proc Natl Acad Sci U S A. 2016;113(15):E2114–23.

    Google Scholar 

  • Hanemaaijer MJ, Collier TC, Chang A, Shott CC, Houston PD, Schmidt H, et al. The fate of genes that cross species boundaries after a major hybridization event in a natural mosquito population. Mol Ecol. 2018;27(24):4978–90.

    Google Scholar 

  • Hanemaaijer MJ, Higgins H, Eralp I, Yamasaki Y, Becker N, Kirstein OD, et al. Introgression between Anopheles gambiae and Anopheles coluzzii in Burkina Faso and its associations with kdr resistance and Plasmodium infection. Malar J. 2019;18(1):127.

    Google Scholar 

  • Hedrick PW. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol. 2013;22(18):4606–18.

    Google Scholar 

  • Hillyer JF, Estevez-Lao TY. Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. Dev Comp Immunol. 2010;34(2):141–9.

    Google Scholar 

  • Holm I, Lavazec C, Garnier T, Mitri C, Riehle MM, Bischoff E, et al. Diverged alleles of the Anopheles gambiae leucine-Rich repeat gene APL1A display distinct protective profiles against Plasmodium falciparum. PLoS One. 2012;7(12):e52684.

    Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298(5591):129–49.

    Google Scholar 

  • Isaacs AT, Jasinskiene N, Tretiakov M, Thiery I, Zettor A, Bourgouin C, et al. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc Natl Acad Sci U S A. 2012;109(28):E1922–30.

    Google Scholar 

  • Jiang X, Peery A, Hall AB, Sharma A, Chen XG, Waterhouse RM, et al. Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Genome Biol. 2014;15(9):459.

    Google Scholar 

  • Jongwutiwes S, Putaporntip C, Iwasaki T, Sata T, Kanbara H. Naturally acquired Plasmodium knowlesi malaria in human, Thailand. Emerg Infect Dis. 2004;10(12):2211–3.

    Google Scholar 

  • Kamali M, Xia A, Tu Z, Sharakhov IV. A new chromosomal phylogeny supports the repeated origin of vectorial capacity in malaria mosquitoes of the Anopheles gambiae complex. PLoS Pathog. 2012;8(10):e1002960.

    Google Scholar 

  • Khatri BS, Burt A. Robust estimation of recent effective population size from number of independent origins in soft sweeps. Mol Biol Evol. 2019;36(9):2040–52.

    Google Scholar 

  • Kingan SB, Urban J, Lambert CC, Baybayan P, Childers AK, Coates B, et al. A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio sequel II system. Gigascience. 2019;8(10)

    Google Scholar 

  • Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36(11):1062–6.

    Google Scholar 

  • Lee Y, Collier TC, Manoukis NC, Lozano-Fuentes S, Vallejo EE, Yan W, Cornel AJ, Lanzaro GC, Taylor CE. 2004. An individual-level population genomics database for arthropod disease vectors (PopI). Davis, CA.; updated 2020; accessed 2020 August. http://popi.ucdavis.edu.

    Google Scholar 

  • Lee Y, Marsden CD, Norris LC, Collier TC, Main BJ, Fofana A, et al. Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A. 2013;110(49):19854–9.

    Google Scholar 

  • Lee Y, Marsden CD, Nieman C, Lanzaro GC. A new multiplex SNP genotyping assay for detecting hybridization and introgression between the M and S molecular forms of Anopheles gambiae. Mol Ecol Resour. 2014;14(2):297–305.

    Google Scholar 

  • Lee Y, Souvannaseng L, Collier TC, Main BJ, Norris LC, Fofana A, et al. Evidence for divergent selection on immune genes between the African Malaria vectors, Anopheles coluzzii and A gambiae. Insects. 2020;11(12)

    Google Scholar 

  • Lehmann T, Dao A, Yaro AS, Adamou A, Kassogue Y, Diallo M, et al. Aestivation of the African malaria mosquito, Anopheles gambiae in the Sahel. Am J Trop Med Hyg. 2010;83(3):601–6.

    Google Scholar 

  • Love RR, Steele AM, Coulibaly MB, Traore SF, Emrich SJ, Fontaine MC, et al. Chromosomal inversions and ecotypic differentiation in Anopheles gambiae: the perspective from whole-genome sequencing. Mol Ecol. 2016;25(23):5889–906.

    Google Scholar 

  • Lukindu M, Bergey CM, Wiltshire RM, Small ST, Bourke BP, Kayondo JK, et al. Spatio-temporal genetic structure of Anopheles gambiae in the northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regions. Parasit Vectors. 2018;11(1):246.

    Google Scholar 

  • Main BJ, Lee Y, Collier TC, Norris LC, Brisco K, Fofana A, et al. Complex genome evolution in Anopheles coluzzii associated with increased insecticide usage in Mali. Mol Ecol. 2015;24(20):5145–57.

    Google Scholar 

  • Main BJ, Everitt A, Cornel AJ, Hormozdiari F, Lanzaro GC. Genetic variation associated with increased insecticide resistance in the malaria mosquito, Anopheles coluzzii. Parasit Vectors. 2018;11(1):225.

    Google Scholar 

  • Malaria Genomic Epidemiology Network. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nat Commun. 2019;10(1):5732.

    Google Scholar 

  • Mancini E, Spinaci MI, Gordicho V, Caputo B, Pombi M, Vicente JL, et al. Adaptive potential of hybridization among Malaria vectors: introgression at the immune locus TEP1 between Anopheles coluzzii and A. gambiae in ‘Far-West' Africa. PLoS One. 2015;10(6):e0127804.

    Google Scholar 

  • Marinotti O, Cerqueira GC, de Almeida LG, Ferro MI, Loreto EL, Zaha A, et al. The genome of Anopheles darlingi, the main neotropical malaria vector. Nucleic Acids Res. 2013;41(15):7387–400.

    Google Scholar 

  • Marsden CD, Lee Y, Nieman CC, Sanford MR, Dinis J, Martins C, et al. Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridization. Mol Ecol. 2011;20(23):4983–94.

    Google Scholar 

  • Marsden CD, Cornel A, Lee Y, Sanford MR, Norris LC, Goodell PB, Nieman CC, Han S, Rodrigues A, Denis J, et al. An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control. Evol Appl. 2013;6(4):706–20.

    Google Scholar 

  • Marshall JM, Buchman A, Sanchez CH, Akbari OS. Overcoming evolved resistance to population-suppressing homing-based gene drives. Sci Rep. 2017;7(1):3776.

    Google Scholar 

  • Marshall JM, Raban RR, Kandul NP, Edula JR, Leon TM, Akbari OS. Winning the tug-of-war between effector gene design and pathogen evolution in vector population replacement strategies. Front Genet. 2019;10:1072.

    Google Scholar 

  • Martinez-Torres D, Chandre F, Williamson M, Darriet F, Berge JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae ss. Insect Mol Biol. 1998;7(2):179–84.

    Google Scholar 

  • Merow C, Smith MJ, Silander JA. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography. 2013;36(10):1058–69.

    Google Scholar 

  • Mitri C, Jacques JC, Thiery I, Riehle MM, Xu J, Bischoff E, et al. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species. PLoS Pathog. 2009;5(9):e1000576.

    Google Scholar 

  • Muller P, Donnelly MJ, Ranson H. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genomics. 2007;8:36.

    Google Scholar 

  • Muller P, Chouaibou M, Pignatelli P, Etang J, Walker ED, Donnelly MJ, et al. Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in northern Cameroon. Mol Ecol. 2008;17(4):1145–55.

    Google Scholar 

  • Muturi EJ, Blackshear M Jr, Montgomery A. Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. J Vector Ecol. 2012;37(1):154–61.

    Google Scholar 

  • Ndiath MO, Cohuet A, Gaye A, Konate L, Mazenot C, Faye O, et al. Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S of Anopheles gambiae and Anopheles arabiensis. Malar J. 2011;10:269.

    Google Scholar 

  • Niare O, Markianos K, Volz J, Oduol F, Toure A, Bagayoko M, et al. Genetic loci affecting resistance to human malaria parasites in a west African mosquito vector population. Science. 2002;298(5591):213–6.

    Google Scholar 

  • Norris LC, Main BJ, Lee Y, Collier TC, Fofana A, Cornel AJ, et al. Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proc Nat Acad Sci U S A. 2015;112(3):815–20.

    Google Scholar 

  • Nwakanma DC, Neafsey DE, Jawara M, Adiamoh M, Lund E, Rodrigues A, et al. Breakdown in the process of incipient speciation in Anopheles gambiae. Genetics. 2013;193(4):1221–31.

    Google Scholar 

  • Okech BA, Gouagna LC, Yan G, Githure JI, Beier JC. Larval habitats of Anopheles gambiae s.s. (Diptera: Culicidae) influences vector competence to Plasmodium falciparum parasites. Malar J. 2007;6:50.

    Google Scholar 

  • Oliveira E, Salgueiro P, Palsson K, Vicente JL, Arez AP, Jaenson TG, et al. High levels of hybridization between molecular forms of Anopheles gambiae from Guinea Bissau. J Med Entomol. 2008;45(6):1057–63.

    Google Scholar 

  • Pardo-Diaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, Joron M, et al. Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genet. 2012;8(6):e1002752.

    Google Scholar 

  • Peterson AT, Pepes M, Soberón J. Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecol Model. 2008;213:63–72.

    Google Scholar 

  • Petrarca V, Beier JC. Intraspecific chromosomal polymorphism in the Anopheles gambiae complex as a factor affecting malaria transmission in the Kisumu area of Kenya. Am J Trop Med Hyg. 1992;46(2):229–37.

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3–4):231–59.

    Google Scholar 

  • Raban RR, Marshall JM, Akbari OS. Progress towards engineering gene drives for population control. J Exp Biol. 2020;223(Pt Suppl 1)

    Google Scholar 

  • Redmond SN, Eiglmeier K, Mitri C, Markianos K, Guelbeogo WM, Gneme A, et al. Association mapping by pooled sequencing identifies TOLL 11 as a protective factor against Plasmodium falciparum in Anopheles gambiae. BMC Genomics. 2015;16(1):779.

    Google Scholar 

  • Rich SM, Leendertz FH, Xu G, LeBreton M, Djoko CF, Aminake MN, et al. The origin of malignant malaria. Proc Natl Acad Sci U S A. 2009;106(35):14902–7.

    Google Scholar 

  • Riehle MM, Markianos K, Niare O, Xu J, Li J, Toure AM, et al. Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science. 2006;312(5773):577–9.

    Google Scholar 

  • Riehle MM, Markianos K, Lambrechts L, Xia A, Sharakhov I, Koella JC, et al. A major genetic locus controlling natural Plasmodium falciparum infection is shared by east and west African Anopheles gambiae. Malar J. 2007;6:87.

    Google Scholar 

  • Riehle MM, Guelbeogo WM, Gneme A, Eiglmeier K, Holm I, Bischoff E, et al. A cryptic subgroup of Anopheles gambiae is highly susceptible to human malaria parasites. Science. 2011;331(6017):596–8.

    Google Scholar 

  • Rottschaefer SM, Riehle MM, Coulibaly B, Sacko M, Niare O, Morlais I, et al. Exceptional diversity, maintenance of polymorphism, and recent directional selection on the APL1 malaria resistance genes of Anopheles gambiae. PLoS Biol. 2011;9(3):e1000600.

    Google Scholar 

  • Rottschaefer SM, Crawford JE, Riehle MM, Guelbeogo WM, Gneme A, Sagnon N, et al. Population genetics of Anopheles coluzzii immune pathways and genes. G3. 2015;5(3):329–39.

    Google Scholar 

  • Rozowsky J, Abyzov A, Wang J, Alves P, Raha D, Harmanci A, et al. AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol Syst Biol. 2011;7:522.

    Google Scholar 

  • Ruiz JL, Yerbanga RS, Lefevre T, Ouedraogo JB, Corces VG, Gomez-Diaz E. Chromatin changes in Anopheles gambiae induced by Plasmodium falciparum infection. Epigenetics Chromatin. 2019;12(1):5.

    Google Scholar 

  • Sanford MR, Ramsay S, Cornel AJ, Marsden CD, Norris LC, Patchoke S, et al. A preliminary investigation of the relationship between water quality and Anopheles gambiae larval habitats in Western Cameroon. Malar J. 2013;12:225.

    Google Scholar 

  • Schmidt H, Lee Y, Collier TC, Hanemaaijer MJ, Kirstein OD, Ouledi A, et al. Transcontinental dispersal of Anopheles gambiae occurred from west African origin via serial founder events. Commun Biol. 2019;2:473.

    Google Scholar 

  • Schmidt H, Collier TC, Hanemaaijer MJ, Houston PD, Lee Y, Lanzaro GC. Abundance of conserved CRISPR-Cas9 target sites within the highly polymorphic genomes of Anopheles and Aedes mosquitoes. Nat Commun. 2020;11(1):1425.

    Google Scholar 

  • Seehausen O. Hybridization and adaptive radiation. Trends Ecol Evol. 2004;19(4):198–207.

    Google Scholar 

  • Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C, Kyrou K, et al. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat Biotechnol. 2020;38(9):1054–60.

    Google Scholar 

  • Singh M, Suryanshu K, Singh G, Dubey A, Chaitanya RK. Plasmodium's journey through the Anopheles mosquito: a comprehensive review. Biochimie. 2021;181:176–90.

    Google Scholar 

  • Song Y, Endepols S, Klemann N, Richter D, Matuschka FR, Shih CH, et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol. 2011;21(15):1296–301.

    Google Scholar 

  • Surachetpong W, Pakpour N, Cheung KW, Luckhart S. Reactive oxygen species-dependent cell signaling regulates the mosquito immune response to Plasmodium falciparum. Antioxid Redox Signal. 2011;14(6):943–55.

    Google Scholar 

  • Tahar R, Boudin C, Thiery I, Bourgouin C. Immune response of Anopheles gambiae to the early sporogonic stages of the human malaria parasite Plasmodium falciparum. EMBO J. 2002;21(24):6673–80.

    Google Scholar 

  • Telang A, Qayum AA, Parker A, Sacchetta BR, Byrnes GR. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti). Med Vet Entomol. 2012;26(3):271–81.

    Google Scholar 

  • Touré Y, Petrarca V, Traore S, Coulibaly A, Maiga H, Sankare O, et al. The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, West Africa. Parassitologia. 1998;40(4):477–511.

    Google Scholar 

  • Turner TL, Hahn MW, Nuzhdin SV. Genomic islands of speciation in Anopheles gambiae. PLoS Biol. 2005;3(9):e285.

    Google Scholar 

  • Warren DL, Seifert SN. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl. 2011;21(2):335–42.

    Google Scholar 

  • Weill M, Chandre F, Brengues C, Manguin S, Akogbeto M, Pasteur N, et al. The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Mol Biol. 2000;9(5):451–5.

    Google Scholar 

  • Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011;27(11):514–22.

    Google Scholar 

  • WHO. World malaria report 2020: 20 years of global progress and challenges. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020. Geneva: World Health Organization; 2020.

    Google Scholar 

  • Zheng L, Cornel AJ, Wang R, Erfle H, Voss H, Ansorge W, et al. Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science. 1997;276(5311):425–8.

    Google Scholar 

  • Zhou D, Zhang D, Ding G, Shi L, Hou Q, Ye Y, et al. Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites. BMC Genomics. 2014;15:42.

    Google Scholar 

  • Zhuo Z, Lamont SJ, Abasht B. RNA-Seq analyses identify frequent allele specific expression and no evidence of genomic imprinting in specific embryonic tissues of chicken. Sci Rep. 2017;7(1):11944.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoosook Lee .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Schmidt, H., Kirstein, O.D., Chen, TY., Campbell, L.P., Collier, T.C., Lee, Y. (2021). The Population Genomics of Anopheles gambiae Species Complex: Progress and Prospects. In: Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2021_92

Download citation

  • DOI: https://doi.org/10.1007/13836_2021_92

  • Published:

  • Publisher Name: Springer, Cham