Skip to main content

Population Genomics of Perennial Temperate Forage Legumes

  • Chapter
  • First Online:
Population Genomics

Part of the book series: Population Genomics

Abstract

Temperate forage legumes are essential components of agricultural systems around the globe with a notable economic value. Being perennials with developed root systems, forage legumes mitigate a number of foremost problems of contemporary agricultural practices including erosion and nutrient leaching. As forage legumes host rhizobium in their roots through symbiotic relationship, they fix a significant amount of atmospheric nitrogen to soil reducing the dependency on synthetic fertilizers, and thus, ensuring the sustainability of the agricultural systems. Despite their widespread cultivation and high ecological and economic value, the genomics studies in forage legumes have lagged behind other crops or domesticated animals. Owing to the recent advances of high-throughput sequencing technologies that accompanied by advanced bioinformatics tools, thousands to millions of single nucleotide polymorphisms (SNP) are easily identified and employed in virtually any crop including low-resource forage legumes. Development of these and other genomics resources, approaches, and tools has allowed to address the key questions in the population genomics of perennial temperate forage that includes examining genetic diversity and population structure of cultivated and wild populations, origin and genetic relationships among species, identification of the center of origin, understanding domestication patterns, unveiling the pattern of acclimation and adaptation to climate change, and investigating the effective use of the genomics tools such as GWAS and genome-wide selection. In the present chapter, key population genomics aspects of alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.), white clover (Trifolium repens L.), sainfoin (Onobrychis viciifolia Scop.), and birdsfoot trefoil (Lotus corniculatus L.) are synthesized and discussed. Then future perspectives of population genomics research and applications in temperate forage legumes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abberton MT, Fothergill M, Collins RP, Marshall AH. Breeding forage legumes for sustainable and profitable farming systems. Asp Appl Biol. 2007;80:81–8.

    Google Scholar 

  • Abraham EM, Ganopoulos I, Giagourta P, Osathanunkul M, Bosmali I, Tsaftaris A, et al. Genetic diversity of Lotus corniculatus in relation to habitat type, species composition and species diversity. Biochem Syst Ecol. 2015;63:59–67.

    Google Scholar 

  • Adhikari L, Missaoui AM. Quantitative trait loci mapping of leaf rust resistance in tetraploid alfalfa. Physiol Mol Plant Pathol. 2019;106:238–45.

    Google Scholar 

  • Adhikari L, Lindstrom OM, Markham J, Missaoui AM. Dissecting key adaptation traits in the polyploid perennial Medicago sativa using GBS-SNP mapping. Front Plant Sci. 2018;9:934.

    Google Scholar 

  • Akçelik SE, Avci S, Uzun S, Sancak C. Karyotype analysis of some Onobrychis (Sainfoin) species in Turkey. Arch Biol Sci. 2012;64(2):567–71.

    Google Scholar 

  • Akopian JA. On some wild relatives of cultivated sainfoin (Onobrychis L.) from the flora of Armenia. Crop Wild Relative. 2009;4:17–8.

    Google Scholar 

  • Alem D, Narancio R, Dellavalle PD, Rebuffo M, Zarza R, Dalla Rizza M. Molecular characterization of cultivars of Lotus corniculatus using transferable microsatellite markers. Int J Agric Nat Resour. 2011;38(3):453–61.

    Google Scholar 

  • Andres RJ, Dunne JC, Samayoa LF, Holland JB. Enhancing crop breeding using population genomics approaches. Cham: Springer; 2020.

    Google Scholar 

  • Annicchiarico P, Carelli M. Origin of Ladino white clover as inferred from patterns of molecular and morphophysiological diversity. Crop Sci. 2014;54(6):2696–706.

    Google Scholar 

  • Annicchiarico P, Barrett B, Brummer EC, Julier B, Marshall AH. Achievements and challenges in improving temperate perennial forage legumes. Crit Rev Plant Sci. 2015a;34(1–3):327–80.

    Google Scholar 

  • Annicchiarico P, Nazzicari N, Li X, Wei Y, Pecetti L, Brummer EC. Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genomics. 2015b;16(1):1020.

    Google Scholar 

  • Atwood SS, Hill HD. The regularity of meiosis in microsporocytes of Trifolium repens. Am J Bot. 1940:730–5.

    Google Scholar 

  • Avcı S, Ilhan E, Erayman M, Sancak C. Analysis of Onobrychis genetic diversity using SSR markers from related legume species. J Anim Plant Sci. 2014;24(2):556–66.

    Google Scholar 

  • Avise JC. Phylogeography: retrospect and prospect. J Biogeogr. 2009;36:3–15.

    Google Scholar 

  • Badr A, El-Shazly H. Molecular approaches to origin, ancestry and domestication history of crop plants: barley and clover as examples. J Genet Eng Biotechnol. 2012;10(1):1–12.

    Google Scholar 

  • Badr A, El-Shazly HH, Watson LE. Origin and ancestry of Egyptian clover (Trifolium alexandrinum L.) as revealed by AFLP markers. Genet Resour Crop Evol. 2008;55(1):21–31.

    Google Scholar 

  • Ball PW, Chrtkova-Zertova AA. Lotus L.: 173–176. In: TG Tutin et al. (eds.), Flora Europaeae. Vol 2. Cambridge. 1968.

    Google Scholar 

  • Barker RE, Kalton RR. Cool-season forage grass breeding: progress, potentials, and benefits. In: Contributions from breeding forage and turf grasses. London: Wiley; 2015. p. 5–20. https://doi.org/10.2135/cssaspecpub15.c2.

    Chapter  Google Scholar 

  • Barnes DK. A system for visually classifying alfalfa flower color, Agriculture handbook, 424. Washington: Agricultural Research Service, U.S. Department of Agriculture; 1972.

    Google Scholar 

  • Barnes DK. Alfalfa germplasm in the United States: genetic vulnerability, use, improvement, and maintenance. Washington: Department of Agriculture, Agricultural Research Service; 1977.

    Google Scholar 

  • Bennett MD, Leitch IJ. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot. 2011;107(3):467–590.

    Google Scholar 

  • Beuselinck PR, Steiner JJ. A proposed framework for identifying, quantifying, and utilizing plant germplasm resources. Field Crop Res. 1992;29(3):261–72.

    Google Scholar 

  • Bhattarai S, Coulman B, Biligetu B. Sainfoin (Onobrychis viciifolia Scop.): renewed interest as a forage legume for western Canada. Can J Plant Sci. 2016;96(5):748–56.

    Google Scholar 

  • Biazzi E, Nazzicari N, Pecetti L, Brummer EC, Palmonari A, Tava A, et al. Genome-wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits. PLoS One. 2017;12(1)

    Google Scholar 

  • Biazzi E, Nazzicari N, Pecetti L, Annicchiarico P. GBS-based genome-wide association and genomic selection for alfalfa (Medicago sativa) forage quality improvement. In: de Bruijn F, editor. The model legume Medicago Truncatula. Hoboken: Wiley; 2019. p. 923–7.

    Google Scholar 

  • Bingham ET, Groose RW, Woodfield DR, Kidwell KK. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci. 1994;34(4):823–9.

    Google Scholar 

  • Boland MJ, Rae AN, Vereijken JM, Meuwissen MP, Fischer AR, van Boekel MA, et al. The future supply of animal-derived protein for human consumption. Trends Food Sci Technol. 2013;29(1):62–73.

    Google Scholar 

  • Bolton JL, Goplen BP, Baenziger H. World distribution and historical developments. Alfalfa Sci Technol. 1972;15:1–34.

    Google Scholar 

  • Bouton J. The economic benefits of forage improvement in the United States. Euphytica. 2007;154(3):263–70.

    Google Scholar 

  • Bradshaw WE, Holzapfel CM. Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci. 2001;98(25):14509–11.

    Google Scholar 

  • Brummer EC. Capturing heterosis in forage crop cultivar development. Crop Sci. 1999;39(4):943–54.

    Google Scholar 

  • Brummer EC. Applying genomics to alfalfa breeding programs. Crop Sci. 2004;44(6):1904.

    Google Scholar 

  • Brummer EC, Kochert G, Bouton JH. RFLP variation in diploid and tetraploid alfalfa. TAG Theor Appl Genet. 1991;83(1):89–96.

    Google Scholar 

  • Brummer EC, Bouton JH, Kochert G. Development of an RFLP map in diploid alfalfa. Theor Appl Genet. 1993;86(2–3):329–32.

    Google Scholar 

  • Bues A, Preissel S, Reckling M, Zander P, Kuhlman T, Topp K, et al. The environmental role of protein crops in the new common agricultural policy. Strasbourg: European Parliament; 2013.

    Google Scholar 

  • Campos LP, Raelson JV, Grant WF. Genome relationships among Lotus species based on random amplified polymorphic DNA (RAPD). Theor Appl Genet. 1994;88(3–4):417–22.

    Google Scholar 

  • Çelik A, Karakaya A, Avcı S, Sancak C, Özcan S. Powdery mildews observed on Onobrychis spp. in Turkey. Australas Plant Dis Notes. 2011;6(1):49–53.

    Google Scholar 

  • Chen ZJ, Birchler JA. Polyploid and hybrid genomics. New York: Wiley; 2013.

    Google Scholar 

  • Chen J, Leach L, Yang J, Zhang F, Tao Q, Dang Z, et al. A tetrasomic inheritance model and likelihood-based method for mapping quantitative trait loci in autotetraploid species. New Phytol. 2020; https://doi.org/10.1111/nph.16413.

  • Cogan NOI, Drayton MC, Ponting RC, Vecchies AC, Bannan NR, Sawbridge TI, et al. Validation of in silico-predicted genic SNPs in white clover (Trifolium repens L.), an outbreeding allopolyploid species. Mol Genet Genomics. 2007;277(4):413–25.

    Google Scholar 

  • Collins RP, Helgadóttir Á, Frankow-Lindberg BE, Skøt L, Jones C, Skøt KP. Temporal changes in population genetic diversity and structure in red and white clover grown in three contrasting environments in northern Europe. Ann Bot. 2012;110(6):1341–50.

    Google Scholar 

  • Cornara L, Xiao J, Burlando B. Therapeutic potential of temperate forage legumes: a review. Crit Rev Food Sci Nutr. 2016;56(Suppl 1):S149–61.

    Google Scholar 

  • Corson D, Waghorn GC, Ulyatt MJ, Lee J. NIRS: forage analysis and livestock feeding. Proc Conf-New Zeal Grassland Assoc. 1999:127–32.

    Google Scholar 

  • Cox TS, Picone C, Jackson W. Research priorities in natural systems agriculture. J Crop Improv. 2004;12(1–2):511–31.

    Google Scholar 

  • Cox TS, Glover JD, Van Tassel DL, Cox CM, DeHaan LR. Prospects for developing perennial grain crops. Herndon: American Institute of Biological Sciences; 2006.

    Google Scholar 

  • Crews TE, Peoples MB. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ. 2004;102(3):279–97. https://doi.org/10.1016/j.agee.2003.09.018.

    Article  Google Scholar 

  • Daday H. Gene frequencies in wild populations of Trifolium repens L. Heredity. 1958;12(2):169–84.

    Google Scholar 

  • Davey JW, Blaxter ML. RADSeq: next-generation population genetics. Brief Funct Genomics. 2010;9(5–6):416–23. https://doi.org/10.1093/bfgp/elq031.

    Article  Google Scholar 

  • De Vega JJ, Ayling S, Hegarty M, Kudrna D, Goicoechea JL, Ergon Å, et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci Rep. 2015;5(1):17394. https://doi.org/10.1038/srep17394.

    Article  Google Scholar 

  • Dias PMB, Julier B, Sampoux J-P, Barre P, Dall’Agnol M. Genetic diversity in red clover (Trifolium pratense L.) revealed by morphological and microsatellite (SSR) markers. Euphytica. 2008a;160(2):189–205.

    Google Scholar 

  • Dias PMB, Pretz VF, Dall’Agnol M, Schifino-Wittmann MT, Zuanazzi JA. Analysis of genetic diversity in the core collection of red clover (Trifolium pratense) with isozyme and RAPD markers. Crop Breed Appl Biotechnol. 2008b;8(3)

    Google Scholar 

  • Doerge RW, Craig BA. Model selection for quantitative trait locus analysis in polyploids. Proc Natl Acad Sci. 2000;97(14):7951–6.

    Google Scholar 

  • Dubé M-P, Castonguay Y, Duceppe M-O, Bertrand A, Michaud R. SRAP polymorphisms associated to cell wall degradability in lignified stems of alfalfa. Bioenergy Res. 2013;6(2):644–50.

    Google Scholar 

  • Dugar YN, Popov VN. Genetic structure and diversity of Ukrainian red clover cultivars revealed by microsatellite markers. Open J Genet. 2013;3(4):235.

    Google Scholar 

  • Echt CS, Kidwell KK, Knapp SJ, Osborn TC, McCoy TJ. Linkage mapping in diploid alfalfa (Medicago sativa). Genome. 1994;37(1):61–71.

    Google Scholar 

  • Elliott FC, Johnson IJ, Schonhorst MH. Breeding for forage yield and quality. Alfalfa Sci Technol (alfalfasciencet). 1972:319–33.

    Google Scholar 

  • Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL. Molecular phylogenetics of the clover genus (Trifolium—Leguminosae). Mol Phylogenet Evol. 2006;39(3):688–705.

    Google Scholar 

  • Elmadfa I, Meyer AL. Animal proteins as important contributors to a healthy human diet. Annu Rev Anim Biosci. 2017;5:111–31.

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.

    Google Scholar 

  • Ergon Å, Skøt L, Sæther VE, Rognli OA. Allele frequency changes provide evidence for selection and identification of candidate loci for survival in red clover (Trifolium pratense L.). Front Plant Sci. 2019;10:718.

    Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, et al. Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet. 2004;108(3):414–22. https://doi.org/10.1007/s00122-003-1450-6.

    Article  Google Scholar 

  • Feliner GN. Southern European glacial refugia: a tale of tales. Taxon. 2011;60(2):365–72.

    Google Scholar 

  • Ferreira RCU, Lara LA d C, Chiari L, Barrios SCL, do Valle CB, Valério JR, et al. Genetic mapping with allele dosage information in tetraploid Urochloa decumbens (Stapf) RD Webster reveals insights into spittlebug (Notozulia entreriana Berg) resistance. Front Plant Sci. 2019;10:92.

    Google Scholar 

  • Fjellstrom RG, Beuselinck PR, Steiner JJ. RFLP marker analysis supports tetrasonic inheritance in Lotus corniculatus L. Theor Appl Genet. 2001;102(5):718–25.

    Google Scholar 

  • Frame J, Charlton JFL, Laidlaw AS. Temperate forage legumes. Wallingford: Cab International; 1998.

    Google Scholar 

  • Fyfe JL. Polyploidy in sainfoin. Nature. 1946;158(4012):418.

    Google Scholar 

  • Gallais A. Quantitative genetics and breeding theory of autopolyploid plants. In: Gallais A, editor. Quantitative Genetics and Breeding Methods: Proceedings of the Fourth Meeting of the Section [on] Biometrics in Plant Breeding, Poitiers, France, September 2-4, 1981. Versailles: INRA; 1981.

    Google Scholar 

  • Gaut BS, Díez CM, Morrell PL. Genomics and the contrasting dynamics of annual and perennial domestication. Trends Genet. 2015;31(12):709–19.

    Google Scholar 

  • Gauthier P, Lumaret R, Bédécarrats A. Genetic variation and gene flow in Alpine diploid and tetraploid populations of Lotus (L. alpinus (D.C.) Schleicher/L. corniculatus L.). I. Insights from morphological and allozyme markers. Heredity. 1998;80(6):683–93. https://doi.org/10.1046/j.1365-2540.1998.00334.x.

    Article  Google Scholar 

  • George J, Dobrowolski MP, van Zijll de Jong E, Cogan NO, Smith KF, Forster JW. Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by SSR polymorphisms. Genome. 2006;49(8):919–30.

    Google Scholar 

  • Giller KE, Cadisch G. Future benefits from biological nitrogen fixation: an ecological approach to agriculture. In: Ladha JK, et al., editors. Management of biological nitrogen fixation for the development of more productive and sustainable agricultural systems. Dordrecht: Kluwer Academic Publishers; 1995. p. 255–77.

    Google Scholar 

  • Glover JD, Cox CM, Reganold JP. Future farming: a return to roots? Sci Am. 2007;297(2):82–9.

    Google Scholar 

  • Graham PH, Vance CP. Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res. 2000;65(2–3):93–106.

    Google Scholar 

  • Grant WF, Small E. The origin of the Lotus corniculatus (Fabaceae) complex: a synthesis of diverse evidence. Can J Bot. 1996;74(7):975–89.

    Google Scholar 

  • Grauda D, Avotiņš K, Fokina O, Kolodinska-Brantestam A, Rashal I. Genetic diversity of white clover (Trifolium repens L.) from the urban area of Rīga Baltā Āboliņa (Trifolium repens L.) Ģenētiskā Daudzveidība Rīgas Pilsētvidē. Proc Latvian Acad Sci Sect B Nat Exact Appl Sci. 2015;69(3):132–4. Sciendo

    Google Scholar 

  • Griffiths AG, Moraga R, Tausen M, Gupta V, Bilton TP, Campbell MA, et al. Breaking free: the genomics of allopolyploidy-facilitated niche expansion in white clover. Plant Cell. 2019;31(7):1466–87.

    Google Scholar 

  • Gunn CR, Skrdla WH, Spencer HC. Classification of Medicago sativa L. In: Using legume characters and flower colors. Washington: Department of Agriculture, Agricultural Research Service; 1978.

    Google Scholar 

  • Gustine DL, Huff DR. Genetic variation within among white clover populations from managed permanent patures of the Northeastern USA. Crop Sci. 1999;39(2):524–30.

    Google Scholar 

  • Hammer K. Das domestikationssyndrom. Die Kulturpflanze. 1984;32(1):11–34.

    Google Scholar 

  • Han Y, Khu D-M, Torres-Jerez I, Udvardi M, Monteros MJ. Plant transcription factors as novel molecular markers for legumes. In: Huyghe C, editor. Sustainable use of genetic diversity in forage and turf breeding. Dordrecht: Springer; 2010. p. 421–5.

    Google Scholar 

  • Han Y, Kang Y, Torres-Jerez I, Cheung F, Town CD, Zhao PX, et al. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genomics. 2011;12(1):1–11.

    Google Scholar 

  • Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 2011;334(6052):83–6.

    Google Scholar 

  • Havananda T, Brummer EC, Maureira-Butler IJ, Doyle JJ. Relationships among diploid members of the Medicago sativa (Fabaceae) species complex based on chloroplast and mitochondrial DNA sequences. Syst Bot. 2010;35(1):140–50.

    Google Scholar 

  • Havananda T, Brummer EC, Doyle JJ. Complex patterns of autopolyploid evolution in alfalfa and allies (Medicago sativa; Leguminosae). Am J Bot. 2011;98(10):1633–46.

    Google Scholar 

  • Hawkins C, Yu L-X. Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. Crop J. 2018;6(6):565–75.

    Google Scholar 

  • Hayot Carbonero C, Carbonero F, Smith LMJ, Brown TA. Phylogenetic characterisation of Onobrychis species with special focus on the forage crop Onobrychis viciifolia Scop. Genet Resour Crop Evol. 2012;59(8):1777–88. https://doi.org/10.1007/s10722-012-9800-3.

    Article  Google Scholar 

  • Hendry GW. Alfalfa in history. Agron J. 1923;15(5):171–6.

    Google Scholar 

  • Herrmann D, Boller B, Widmer F, Kölliker R. Optimization of bulked AFLP analysis and its application for exploring diversity of natural and cultivated populations of red clover. Genome. 2005;48(3):474–86.

    Google Scholar 

  • Herrmann D, Boller B, Studer B, Widmer F, Kölliker R. QTL analysis of seed yield components in red clover (Trifolium pratense L.). Theor Appl Genet. 2006;112(3):536–45.

    Google Scholar 

  • Herrmann D, Barre P, Santoni S, Julier B. Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa. TAG Theor Appl Genet. 2010;121(5):865–76.

    Google Scholar 

  • Hufford MB, Bilinski P, Pyhäjärvi T, Ross-Ibarra J. Teosinte as a model system for population and ecological genomics. Trends Genet. 2012;28(12):606–15.

    Google Scholar 

  • Humphreys MO. Genetic improvement of forage crops–past, present and future. J Agric Sci. 2005;143(6):441–8.

    Google Scholar 

  • İlhan D, Li X, Brummer EC, Şakiroğlu M. Genetic diversity and population structure of tetraploid accessions of the Medicago sativa–falcata Complex. Crop Sci. 2016;56(3):1146–56.

    Google Scholar 

  • Inostroza L, Bhakta M, Acuña H, Vásquez C, Ibáñez J, Tapia G, et al. Understanding the complexity of cold tolerance in white clover using temperature gradient locations and a GWAS approach. The Plant Genome. 2018;11(3):1–14.

    Google Scholar 

  • Isobe S, Klimenko I, Ivashuta S, Gau M, Kozlov NN. First RFLP linkage map of red clover (Trifolium pratense L.) based on cDNA probes and its transferability to other red clover germplasm. Theor Appl Genet. 2003;108(1):105–12.

    Google Scholar 

  • Isobe S, Kölliker R, Hisano H, Sasamoto S, Wada T, Klimenko I, et al. Construction of a consensus linkage map for red clover (Trifolium pratense L.). BMC Plant Biol. 2009;9(1):57. https://doi.org/10.1186/1471-2229-9-57.

    Article  Google Scholar 

  • Isobe SN, Hisano H, Sato S, Hirakawa H, Okumura K, Shirasawa K, et al. Comparative genetic mapping and discovery of linkage disequilibrium across linkage groups in white clover (Trifolium repens L.). G3. 2012;2(5):607–17.

    Google Scholar 

  • Isobe S, Boller B, Klimenko I, Kölliker S, Rana JC, Sharma TR, et al. Genome-wide SNP marker development and QTL identification for genomic selection in red clover. In: Barth S, Milbourne D, editors. Breeding strategies for sustainable forage and turf grass improvement. Dordrecht: Springer Science and Business Media; 2013. p. 29–36.

    Google Scholar 

  • Ištvánek J, Jaroš M, Křenek A, Řepková J. Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae). Am J Bot. 2014;101(2):327–37. https://doi.org/10.3732/ajb.1300340.

    Article  Google Scholar 

  • Jia C, Zhao F, Wang X, Han J, Zhao H, Liu G, et al. Genomic prediction for 25 agronomic and quality traits in alfalfa (Medicago sativa). Front Plant Sci. 2018;9:1220.

    Google Scholar 

  • Jin Y, He T, Lu B-R. Fine scale genetic structure in a wild soybean (Glycine soja) population and the implications for conservation. New Phytol. 2003;159(2):513–9.

    Google Scholar 

  • Jones C, De Vega J, Lloyd D, Hegarty M, Ayling S, Powell W, et al. Population structure and genetic diversity in red clover (Trifolium pratense L.) germplasm. Sci Rep. 2020;10(1):1–12.

    Google Scholar 

  • Joyce TA, Abberton MT, Michaelson-Yeates TPT, Forster JW. Relationships between genetic distance measured by RAPD-PCR and heterosis in inbred lines of white clover (Trifolium repens L.). Euphytica. 1999;107(3):159–65.

    Google Scholar 

  • Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, et al. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol. 2003;3(1):9. https://doi.org/10.1186/1471-2229-3-9.

    Article  Google Scholar 

  • Kaló P, Endre G, Zimanyi L, Csanadi G, Kiss GB. Construction of an improved linkage map of diploid alfalfa (Medicago sativa). TAG Theor Appl Genet. 2000;100(5):641–57.

    Google Scholar 

  • Karlen DL, Lemunyon JL, Singer JW. Forages for conservation and improved soil quality. In: Barnes RF, Nelson CJ, Moore KF, Collins M, editors. Sixth edition of forages: the science of grassland agriculture, volume II. Ames: Blackwell Publishing, Inc.; 2006. p. 149–66.

    Google Scholar 

  • Kempf K, Mora-Ortiz M, Smith LM, Kölliker R, Skøt L. Characterization of novel SSR markers in diverse sainfoin (Onobrychis viciifolia) germplasm. BMC Genet. 2016;17(1):124.

    Google Scholar 

  • Kidwell KK, Austin DF, Osborn TC. RFLP evaluation of nine Medicago accessions representing the original germplasm sources for north American alfalfa cultivars. Crop Sci. 1994;34(1):230.

    Google Scholar 

  • Kiss GB, Csanádi G, Kálmán K, Kaló P, Ökrész L. Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet MGG. 1993;238(1–2):129–37.

    Google Scholar 

  • Kjaergaard T. A plant that changed the world: the rise and fall of clover 1000-2000. Landsc Res. 2003;28(1):41–9.

    Google Scholar 

  • Kölliker R, Jones ES, Drayton MC, Dupal MP, Forster JW. Development and characterisation of simple sequence repeat (SSR) markers for white clover (Trifolium repens L.). Theor Appl Genet. 2001a;102(2–3):416–24.

    Google Scholar 

  • Kölliker R, Jones ES, Jahufer MZZ, Forster JW. Bulked AFLP analysis for the assessment of genetic diversity in white clover (Trifolium repens L.). Euphytica. 2001b;121(3):305–15.

    Google Scholar 

  • Kölliker R, Herrmann D, Boller B, Widmer F. Swiss Mattenklee landraces, a distinct and diverse genetic resource of red clover (Trifolium pratense L.). Theor Appl Genet. 2003;107(2):306–15.

    Google Scholar 

  • Kong J, Pei Z, Du M, Sun G, Zhang X. Effects of arbuscular mycorrhizal fungi on the drought resistance of the mining area repair plant Sainfoin. Int J Min Sci Technol. 2014;24(4):485–9.

    Google Scholar 

  • Kooyers NJ, Olsen KM. Searching for the bull’s eye: agents and targets of selection vary among geographically disparate cyanogenesis clines in white clover (Trifolium repens L.). Heredity. 2013;111(6):495–504.

    Google Scholar 

  • Kooyers NJ, Olsen KM. Adaptive cyanogenesis clines evolve recurrently through geographical sorting of existing gene deletions. J Evol Biol. 2014;27(11):2554–8.

    Google Scholar 

  • Kooyers NJ, Gage LR, Al-Lozi A, Olsen KM. Aridity shapes cyanogenesis cline evolution in white clover (T rifolium repens L.). Mol Ecol. 2014;23(5):1053–70.

    Google Scholar 

  • Kovi MR, Amdahl H, Alsheikh M, Rognli OA. De novo and reference transcriptome assembly of transcripts expressed during flowering provide insight into seed setting in tetraploid red clover. Sci Rep. 2017;7(1):44383. https://doi.org/10.1038/srep44383.

    Article  Google Scholar 

  • Ladizinsky G. Plant evolution under domestication. Berlin: Springer Science and Business Media; 2012.

    Google Scholar 

  • Larsen K. Cytotaxonomical studies in Lotus IV. Some cases of polyploidy. Bot Tidsskr. 1958;54:44–56.

    Google Scholar 

  • Lesins K, Gillies CB. Taxonomy and cytogenetics of Medicago. Alfalfa Science and Technology. 1972:53–86.

    Google Scholar 

  • Lesins KA, Lesins I. Genus Medicago (Leguminosae): A taxogenetic study. Dr. W. Junk bv Publishers; 1979.

    Google Scholar 

  • Lesins KA, Lesins I. Genus Medicago (Leguminosae), a taxogenetic study. Plant Ecol. 1982;50(2):92.

    Google Scholar 

  • Li X, Brummer EC. Applied genetics and genomics in alfalfa breeding. Agronomy. 2012;2(1):40–61.

    Google Scholar 

  • Li X, Acharya A, Farmer AD, Crow JA, Bharti AK, Kramer RS, et al. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing. BMC Genomics. 2012;13(1):568.

    Google Scholar 

  • Li X, Han Y, Wei Y, Acharya A, Farmer AD, Ho J, et al. Development of an alfalfa SNP array and its use to evaluate patterns of population structure and linkage disequilibrium. PLoS One. 2014;9(1):e84329.

    Google Scholar 

  • Li X, Wei Y, Acharya A, Hansen JL, Crawford JL, Viands DR, et al. Genomic prediction of biomass yield in two selection cycles of a Tetraploid alfalfa breeding population. Plant Genome. 2015;8(2) https://doi.org/10.3835/plantgenome2014.12.0090.

  • Li W, Riday H, Riehle C, Edwards A, Dinkins R. Identification of single nucleotide polymorphism in red clover (Trifolium pratense L) using targeted genomic amplicon sequencing and RNA-seq. Front Plant Sci. 2019;10:1257. https://doi.org/10.3389/fpls.2019.01257.

    Article  Google Scholar 

  • Lin S, Medina CA, Boge B, Hu J, Fransen S, Norberg S, et al. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biol. 2020;20(1):1–18.

    Google Scholar 

  • Liu X-P, Yu L-X. Genome-wide association mapping of loci associated with plant growth and forage production under salt stress in alfalfa (Medicago sativa L.). Front Plant Sci. 2017;8:853.

    Google Scholar 

  • Liu Z, Chen T, Ma L, Zhao Z, Zhao PX, Nan Z, et al. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS One. 2013;8(12):e83549.

    Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science. 2011;333(6042):616–20.

    Google Scholar 

  • Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population genomics: advancing understanding of nature. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer Nature Switzerland AG; 2019. p. 3–79.

    Google Scholar 

  • Maureira IJ, Ortega F, Campos H, Osborn TC. Population structure and combining ability of diverse Medicago sativa germplasms. TAG Theor Appl Genet. 2004;109(4):775–82.

    Google Scholar 

  • McCoy TJ, Bingham ET. Cytology and cytogenetics of alfalfa. Alfalfa and Alfalfa Improvement. 1988;29:737–76.

    Google Scholar 

  • Merkouropoulos G, Hilioti Z, Abraham EM, Lazaridou M. Evaluation of Lotus corniculatus L. accessions from different locations at different altitudes reveals phenotypic and genetic diversity. Grass Forage Sci. 2017;72(4):851–6.

    Google Scholar 

  • Moler ER, Abakir A, Eleftheriou M, Johnson JS, Krutovsky KV, Lewis LC, et al. Population epigenomics: advancing understanding of phenotypic plasticity, acclimation, adaptation and diseases. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer Nature Switzerland AG; 2019. p. 179–260.

    Google Scholar 

  • Mora-Ortiz M, Swain MT, Vickers MJ, Hegarty MJ, Kelly R, Smith LMJ, et al. De-novo transcriptome assembly for gene identification, analysis, annotation, and molecular marker discovery in Onobrychis viciifolia. BMC Genomics. 2016;17(1):756. https://doi.org/10.1186/s12864-016-3083-6.

    Article  Google Scholar 

  • Morrill WL, Ditterline RL, Cash SD. Insect pests and associated root pathogens of sainfoin in western USA. Field Crop Res. 1998;59(2):129–34.

    Google Scholar 

  • Mosjidis JA, Greene SL, Klingler KA, Afonin A. Isozyme diversity in wild red clover populations from the Caucasus. Crop Sci. 2004;44(2):665–70.

    Google Scholar 

  • Muller M-H, Prosperi JM, Santoni S, Ronfort J. Inferences from mitochondrial DNA patterns on the domestication history of alfalfa (Medicago sativa). Mol Ecol. 2003;12(8):2187–99.

    Google Scholar 

  • Muller M-H, Poncet C, Prosperi JM, Santoni S, Ronfort J. Domestication history in the Medicago sativa species complex: inferences from nuclear sequence polymorphism. Mol Ecol. 2006;15(6):1589–602.

    Google Scholar 

  • Narasimhamoorthy B, Bouton JH, Olsen KM, Sledge MK. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa. Theor Appl Genet. 2007;114(5):901–13.

    Google Scholar 

  • Nosrati H, Feizi MAH, Tarrah SS, Haghighi AR. Population genetic variation in sainfoin (Fabaceae) revealed by RAPD markers. Analele Universitatii Din Oradea Fascicula Biologie. 2012;19(1)

    Google Scholar 

  • Obrycki JF, Karlen DL. Forages for conservation and improved soil quality. In: Moore KJ, Collins M, Nelson CJ, Redfearn DD, editors. Forages: the science of grassland agriculture, vol. 2. 7th ed. Hoboken: Wiley; 2020. p. 227–47.

    Google Scholar 

  • Olsen KM, Sutherland BL, Small LL. Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.). Mol Ecol. 2007;16(19):4180–93.

    Google Scholar 

  • Pagnotta MA, Annicchiarico P, Farina A, Proietti S. Characterizing the molecular and morphophysiological diversity of Italian red clover. Euphytica. 2011;179(3):393–404.

    Google Scholar 

  • Porqueddu C, Maltoni S, McIvor JG, McGilloway DA. Strategies to mitigate seasonality of production in grassland-based systems. Grassland: A Global Resource; 2005. p. 111–22.

    Google Scholar 

  • Poulton JE. Cyanogenesis in plants. Plant Physiol. 1990;94(2):401–5.

    Google Scholar 

  • Prosperi J-M, Jenczewski E, Muller M-H, Fourtier S, Sampoux J-P, Ronfort J. Alfalfa domestication history, genetic diversity and genetic resources. Legume Perspect. 2014;4:13–4. https://doi.org/hal-01216251v2f

    Google Scholar 

  • Quiros CF, Bauchan GR. The genus Medicago and the origin of the Medicago sativa complex. Alfalfa and Alfalfa Improv. 1988;29

    Google Scholar 

  • Raelson JV, Grant WF. Evaluation of hypotheses concerning the origin of Lotus corniculatus (Fabaceae) using isoenzyme data. Theor Appl Genet. 1988;76(2):267–76.

    Google Scholar 

  • Rajora OP. Population genomics: concepts, approaches and applications. Cham: Springer Nature Switzerland AG; 2019.

    Google Scholar 

  • Rasmussen J, Søegaard K, Pirhofer-Walzl K, Eriksen J. N2-fixation and residual N effect of four legume species and four companion grass species. Eur J Agron. 2012;36(1):66–74.

    Google Scholar 

  • Rasouli M, Jafari AA, Tabaei-Aghdaei SR, Shanjani PS, Darvish F. Assessment of genetic variability of 36 populations of sainfoin (Onobrychis sativa) based on RAPD markers. Int J Biosci. 2013;3:15–26.

    Google Scholar 

  • Raymond WF. The nutritive value of forage crops. In: Advances in agronomy, vol. 21. Amsterdam: Elsevier; 1969. p. 1–108.

    Google Scholar 

  • Robins JG, Luth D, Campbell TA, Bauchan GR, He C, Viands DR, et al. Genetic mapping of biomass production in tetraploid alfalfa. Crop Sci. 2007;47(1):1.

    Google Scholar 

  • Ross MD, Jones WT. The origin of Lotus corniculatus. Theor Appl Genet. 1985;71(2):284–8.

    Google Scholar 

  • Sæther VE. Identification of red clover (Trifolium pratense L.) SNPs whose allelic versions appear with different frequency in pure stands and in mixtures with grasses, using GBS and CAPS-markers (Master’s thesis). Norwegian University of Life Sciences, AAs; 2018.

    Google Scholar 

  • Saha B, Saha S, Das A, Bhattacharyya PK, Basak N, Sinha AK, et al. Biological nitrogen fixation for sustainable agriculture. In: Agriculturally important microbes for sustainable agriculture. Berlin: Springer; 2017. p. 81–128.

    Google Scholar 

  • Şakiroğlu M, Brummer EC. Little heterosis between alfalfa populations derived from the midwestern and southwestern United States. Crop Sci. 2007;47(6):2364–71.

    Google Scholar 

  • Sakiroglu M, Brummer EC. Presence of phylogeographic structure among wild diploid alfalfa accessions (Medicago sativa L. subsp. Microcarpa Urb.) with evidence of the center of origin. Genet Resour Crop Evol. 2013;60(1):23–31.

    Google Scholar 

  • Sakiroglu M, Brummer EC. Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. Theor Appl Genet. 2017;130(2):261–8. https://doi.org/10.1007/s00122-016-2782-3.

    Article  Google Scholar 

  • Şakiroğlu M, İlhan D. Medicago sativa species complex: re-visiting the century old problem in the light of molecular tools. Crop Sci. 2021;61:827–838. https://doi.org/10.1002/csc2.20316.

  • Sakiroglu M, Doyle JJ, Brummer EC. The population genetic structure of diploid Medicago sativa L. germplasm. Dordrecht: Springer; 2009.

    Google Scholar 

  • Şakiroğlu M, Doyle JJ, Brummer EC. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers. Theor Appl Genet. 2010;121(3):403–15.

    Google Scholar 

  • Sakiroglu M, Sherman-Broyles S, Story A, Moore KJ, Doyle JJ, Brummer EC. Patterns of linkage disequilibrium and association mapping in diploid alfalfa (M. sativa L.). Theor Appl Genet. 2012;125(3):577–90.

    Google Scholar 

  • Sakiroglu M, Dong C, Hall MB, Jungers J, Picasso V. How does nitrogen and forage harvest affect belowground biomass and non-structural carbohydrates in dual use Kernza intermediate wheatgrass? Crop Sci. 2020; https://doi.org/10.1002/csc2.20239.

  • Sato S, Isobe S, Asamizu E, Ohmido N, Kataoka R, Nakamura Y, et al. Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.). DNA Res. 2005;12(5):301–64.

    Google Scholar 

  • Savo Sardaro ML, Atallah M, Tavakol E, Russi L, Porceddu E. Diversity for AFLP and SSR in natural populations of Lotus corniculatus L. from Italy. Crop Sci. 2008;48(3):1080–9.

    Google Scholar 

  • Sawbridge T, Ong E-K, Binnion C, Emmerling M, Meath K, Nunan K, et al. Generation and analysis of expressed sequence tags in white clover (Trifolium repens L.). Plant Sci. 2003;165(5):1077–87.

    Google Scholar 

  • Seaney RR, Henson PR. Birdsfoot trefoil. Adv Agron. 1970;22:119–57.

    Google Scholar 

  • Segovia-Lerma A, Cantrell RG, Conway JM, Ray IM. AFLP-based assessment of genetic diversity among nine alfalfa germplasms using bulk DNA templates. Genome. 2003;46(1):51–8.

    Google Scholar 

  • Shen S, Chai X, Zhou Q, Luo D, Wang Y, Liu Z. Development of polymorphic EST-SSR markers and characterization of the autotetraploid genome of sainfoin (Onobrychis viciifolia). PeerJ. 2019;7:e6542. https://doi.org/10.7717/peerj.6542.

    Article  Google Scholar 

  • Sinskaya EN. Flora of cultivated plants of the USSR: XIII. Perennial leguminous plants. (Part 1, translated 1961). Jerusalem: Israel Program of Scientific Translations; 1950.

    Google Scholar 

  • Sledge MK, Ray IM, Jiang G. An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.). Theor Appl Genet. 2005;111(5):980–92.

    Google Scholar 

  • Small E. Taxonomy of glandular wild alfalfa (Medicago sativa). Can J Bot. 1986;64(9):2125–9.

    Google Scholar 

  • Small E. Alfalfa and relatives: evolution and classification of Medicago. Ottawa: NRC Research Press; 2010.

    Google Scholar 

  • Small E. Alfalfa and relatives: evolution and classification of Medicago. Ottawa: CAB International; 2011.

    Google Scholar 

  • Small E, Brookes BS. Taxonomic circumscription and identification in theMedicago sativa-falcata (alfalfa) continuum. Econ Bot. 1984;38(1):83–96.

    Google Scholar 

  • Small E, Brookes B, Lassen P. Circumscription of the genus Medicago (Leguminosae) by seed characters. Can J Bot. 1990;68(3):613–29.

    Google Scholar 

  • Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, et al. Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng. 2012;6(2):132–8.

    Google Scholar 

  • Soltis PS, Doyle JJ, Soltis DE. Molecular data and polyploid evolution in plants. In: Soltis PS, Soltis DE, Doyle JJ, editors. Molecular systematics of plants. Boston: Springer; 1992. p. 177–201.

    Google Scholar 

  • Soltis DE, Soltis PS, Rieseberg LH. Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci. 1993;12(3):243–273.

    Google Scholar 

  • Soltis DE, Visger CJ, Marchant DB, Soltis PS. Polyploidy: pitfalls and paths to a paradigm. Am J Bot. 2016;103(7):1146–66.

    Google Scholar 

  • Spangenberg GC, Sawbridge T, Ong EK, Love CG, Erwin TA, Logan EG, et al. Clover ASTRA: a web-based resource for trifolium EST analysis. Molecular breeding for the genetic improvement of forage crops and turf: proceedings of the 4th international symposium on the molecular breeding of forage and turf, a satellite workshop of the XXth international grassland congress, July 2005, Aberystwyth, Wales. Wageningen: Wageningen Academic Publishers; 2005.

    Google Scholar 

  • Stanford EH. Tetrasomic inheritance in alfalfa. Agron J. 1951;43:222–5.

    Google Scholar 

  • Stanford EH, Clement WM, Bingham ET. Cytology and evolution of the Medicago sativa-falcata complex. Alfalfa Science and Technology. 1972:87–101.

    Google Scholar 

  • Steiner JJ. Birdsfoot trefoil origins and germplasm diversity. In: Beuselinck PR, editor. Trefoil: the science and technology of the lotus, CSSA special publications, vol. 28. Hoboken: Wiley; 1999. p. 81–96.

    Google Scholar 

  • Steiner JJ, Garcia de los Santos G. Adaptive ecology of Lotus corniculatus L. genotypes: I. Plant morphology and RAPD marker characterizations. Crop Sci. 2001;41(2):552–63.

    Google Scholar 

  • Steiner JJ, Poklemba CJ. Lotus corniculatus classification by seed globulin polypeptides and relationship to accession pedigrees and geographic origin. Crop Sci. 1994;34(1):255–64.

    Google Scholar 

  • Tamas E. Citological aspects of the Onobrychis genus. Bull Univ Agric Sci Vet Med Cluj-Napoca Agric. 2006;62

    Google Scholar 

  • Tavoletti S, Veronesi F, Osborn TC. RFLP linkage map of an alfalfa meiotic mutant based on an F1 population. J Hered. 1996;87(2):167–70.

    Google Scholar 

  • Taylor NL. A century of clover breeding developments in the United States. Crop Sci. 2008;48(1):1–13.

    Google Scholar 

  • Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol. 2004;13(4):921–35.

    Google Scholar 

  • Vendramini JM. Legumes for tropical and subtropical areas. In: Forages, volume 2: the science of grassland agriculture. 7th ed. Hoboken: Wiley; 2020. p. 277.

    Google Scholar 

  • Wang Y, Ying H, Yin Y, Zheng H, Cui Z. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci Total Environ. 2019;657:96–102.

    Google Scholar 

  • Williams WM, Baker MJ, Williams WM. Taxonomy and biosystematics of Trifolium repens. White Clover. 1987;323:342.

    Google Scholar 

  • Williams WM, Ellison NW, Ansari HA, Verry IM, Hussain SW. Experimental evidence for the ancestry of allotetraploid Trifolium repens and creation of synthetic forms with value for plant breeding. BMC Plant Biol. 2012;12(1):55.

    Google Scholar 

  • Woodfield DR, Brummer EC. Integrating molecular techniques to maximise the genetic potential of forage legumes. In: Spangenberg G, editor. Molecular breeding of forage crops. Developments in plant breeding, vol. 10. Dordrecht: Springer; 2001. p. 51–65.

    Google Scholar 

  • Wu R, Ma C-X, Casella G. A bivalent polyploid model for linkage analysis in outcrossing tetraploids. Theor Popul Biol. 2002;62(2):129–51. https://doi.org/10.1006/tpbi.2002.1608.

    Article  Google Scholar 

  • Xie C, Xu S. Mapping quantitative trait loci in tetraploid populations. Genet Res. 2000;76(1):105–15.

    Google Scholar 

  • Yates SA, Swain MT, Hegarty MJ, Chernukin I, Lowe M, Allison GG, et al. De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics. 2014;15(1):453. https://doi.org/10.1186/1471-2164-15-453.

    Article  Google Scholar 

  • Young ND, Udvardi M. Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol. 2009;12(2):193–201. https://doi.org/10.1016/j.pbi.2008.11.005.

    Article  Google Scholar 

  • Yu L-X. Identification of single-nucleotide polymorphic loci associated with biomass yield under water deficit in alfalfa (Medicago sativa L.) using genome-wide sequencing and association mapping. Front Plant Sci. 2017;8:1152.

    Google Scholar 

  • Yu L-X, Liu X, Boge W, Liu X-P. Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotyping-by-sequencing. Front Plant Sci. 2016;7:956.

    Google Scholar 

  • Yu L-X, Zheng P, Bhamidimarri S, Liu X-P, Main D. The impact of genotyping-by-sequencing pipelines on SNP discovery and identification of markers associated with verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Front Plant Sci. 2017a;8:89.

    Google Scholar 

  • Yu L-X, Zheng P, Zhang T, Rodringuez J, Main D. Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Mol Plant Pathol. 2017b;18(2):187–94.

    Google Scholar 

  • Zarrabian M, Majidi MM, Ehtemam MH. Genetic diversity in a worldwide collection of sainfoin using morphological, anatomical, and molecular markers. Crop Sci. 2013;53(6):2483–96.

    Google Scholar 

  • Zhang Y, Sledge MK, Bouton JH. Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theor Appl Genet. 2007;114(8):1367–78. https://doi.org/10.1007/s00122-007-0523-3.

    Article  Google Scholar 

  • Zhang T, Yu L-X, Zheng P, Li Y, Rivera M, Main D, et al. Identification of loci associated with drought resistance traits in heterozygous autotetraploid alfalfa (Medicago sativa L.) using genome-wide association studies with genotyping by sequencing. PLoS One. 2015;10(9):e0138931.

    Google Scholar 

  • Zohary M, Heller D. The genus Trifolium. Jerusalem: Israel Academy of Sciences and Humanities; 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Şakiroğlu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Şakiroğlu, M. (2021). Population Genomics of Perennial Temperate Forage Legumes. In: Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2021_90

Download citation

  • DOI: https://doi.org/10.1007/13836_2021_90

  • Published:

  • Publisher Name: Springer, Cham

Publish with us

Policies and ethics