Skip to main content

Seascape Genomics: Contextualizing Adaptive and Neutral Genomic Variation in the Ocean Environment

  • Chapter
  • First Online:
Population Genomics: Marine Organisms

Part of the book series: Population Genomics ((POGE))

Abstract

Seventy-one per cent of the earth’s surface is covered by ocean which contains almost 80% of the world’s phyla – “seascape genomics” is the study of how spatial dependence and environmental features in the ocean influence the geographic structure of genomic patterns in marine organisms. The field extends from seascape genetics where the study of small numbers of neutral loci predominates, to additionally consider larger numbers of loci from throughout the genome that may be of some functional or adaptive significance and are subject to selection. Seascape genomics is conceptually similar to landscape genomics; the disciplines share theoretical underpinnings, and the genetic measures and analytical methods are often the same. However, the spatio-temporal variability of the physical ocean environment and the biological characteristics of marine organisms (e.g. large population sizes and high dispersal ability) present some characteristic challenges and opportunities for spatial population genomics studies. This chapter provides an overview of the field of seascape genomics, outlines concepts and methods to consider when conducting seascape genomics studies, and highlights future research avenues and opportunities for the application of seascape genomics to global issues affecting our marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N. Genetic effects of harvest on wild animal populations. Trends Ecol Evol. 2008;23:327–37.

    PubMed  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11:697.

    CAS  PubMed  Google Scholar 

  • Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP. Local replenishment of coral reef fish populations in a marine reserve. Science. 2007;316:742–4.

    CAS  PubMed  Google Scholar 

  • Anderson CD, Epperson BK, Fortin MJ, Holderegger R, James PM, Rosenberg MS, Scribner KT, et al. Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol. 2010;19:3565–75.

    PubMed  Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angilletta MJ Jr, Angilletta MJ. Thermal adaptation: a theoretical and empirical synthesis. Oxford: Oxford University Press; 2009.

    Google Scholar 

  • Avise JC. Phylogeography: the history and formation of species. Cambridge: Harvard University Press; 2000.

    Google Scholar 

  • Ayre DJ, Minchinton TE, Perrin C. Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol. 2009;18:1887–903.

    CAS  PubMed  Google Scholar 

  • Balkenhol N, Fortin M-J. Basics of study design: sampling landscape heterogeneity and genetic variation for landscape genetic studies. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 58–75.

    Google Scholar 

  • Balkenhol N, Cushman S, Storfer A, Waits LP. Introduction to landscape genetics: defining, learning and applying an interdisciplinary field. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016a. p. 1–17.

    Google Scholar 

  • Balkenhol N, Cushman S, Storfer A, Waits LP. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016b.

    Google Scholar 

  • Balkenhol N, Dudaniec RY, Krutovsky KV, Johnson JS, Cairns DM, Segelbacher G, Selkoe KA, et al. Landscape genomics: understanding relationships between environmental heterogeneity and genomic characteristics of populations. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer Nature Switzerland AG; 2019. p. 261–322.

    Google Scholar 

  • Baltazar-Soares M, Hinrichsen HH, Eizaguirre C, Handling editor: Mikko Heino. Integrating population genomics and biophysical models towards evolutionary-based fisheries management. ICES J Mar Sci. 2018;75:1245–57.

    Google Scholar 

  • Barth JM, Berg PR, Jonsson PR, Bonanomi S, Corell H, Hemmer-Hansen J, Jakobsen KS, Johannesson K, Jorde PE, Knutsen H, Moksnes PO. Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Mol Ecol. 2017;26:4452–66.

    CAS  PubMed  Google Scholar 

  • Barton NH. Gene flow past a cline. Heredity. 1979;43:333.

    Google Scholar 

  • Bay RA, Harrigan RJ, Le Underwood V, Gibbs HL, Smith TB, Ruegg K. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science. 2018;359:83–6.

    CAS  PubMed  Google Scholar 

  • Benestan L, Quinn BK, Maaroufi H, Laporte M, Clark FK, Greenwood SJ, Rochette R, et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol Ecol. 2016;25:5073–92.

    PubMed  Google Scholar 

  • Bernatchez L. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. J Fish Biol. 2016;89:2519–56.

    CAS  PubMed  Google Scholar 

  • Bernatchez L, Wellenreuther M, Araneda C, Ashton DT, Barth JM, Beacham TD, Maes GE, et al. Harnessing the power of genomics to secure the future of seafood. Trends Ecol Evol. 2017;32:665–80.

    PubMed  Google Scholar 

  • Bi K, Vanderpool D, Singhal S, Linderoth T, Moritz C, Good JM. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics. 2012;13:403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bierne N, Welch J, Loire E, Bonhomme F, David P. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol Ecol. 2011;20:2044–72.

    PubMed  Google Scholar 

  • Bierne N, Gagnaire PA, David P. The geography of introgression in a patchy environment and the thorn in the side of ecological speciation. Curr Zool. 2013;59:72–86.

    Google Scholar 

  • Bierne N, Bonhomme F, Arnaud-Haond S. Editorial dedicated population genomics for the silent world: the specific questions of marine population genetics. Curr Zool. 2016;62:545–50.

    Google Scholar 

  • Blanchet FG, Legendre P, Maranger R, Monti D, Pepin P. Modelling the effect of directional spatial ecological processes at different scales. Oecologia. 2011;166:357–68.

    PubMed  Google Scholar 

  • Bode M, Leis JM, Mason LB, Williamson DH, Harrison HB, Choukroun S, Jones GP. Successful validation of a larval dispersal model using genetic parentage data. PLoS Biol. 2019;17:e3000380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonanomi S, Pellissier L, Therkildsen NO, Hedeholm RB, Retzel A, Meldrup D, Olsen SM, et al. Archived DNA reveals fisheries and climate induced collapse of a major fishery. Sci Rep. 2015;5:15395.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O. Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci Adv. 2017;3:e1602373.

    PubMed  PubMed Central  Google Scholar 

  • Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology. 1992;73:1045–55.

    Google Scholar 

  • Bourret V, Kent MP, Primmer CR, Vasemägi A, Karlsson S, Hindar K, et al. SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Mol Ecol. 2013;22:532–51.

    CAS  PubMed  Google Scholar 

  • Bradbury IR, Hubert S, Higgins B, Bowman S, Borza T, Paterson IG, et al. Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish. Evol Appl. 2013;6:450–61.

    PubMed  PubMed Central  Google Scholar 

  • Campbell NR, Harmon SA, Narum SR. Genotyping-in-thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Resour. 2014;15(4):855–67.

    PubMed  Google Scholar 

  • Capblancq T, Luu K, Blum MG, Bazin E. Evaluation of redundancy analysis to identify signatures of local adaptation. Mol Ecol Resour. 2018;18:1223–33.

    CAS  PubMed  Google Scholar 

  • Case RA, Hutchinson WF, Hauser L, Van Oosterhout C, Carvalho GR. Macro-and micro-geographic variation in pantophysin (PanI) allele frequencies in NE Atlantic cod Gadus morhua. Mar Ecol Prog Ser. 2005;301:267–78.

    CAS  Google Scholar 

  • Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Dickson M, Grimwood J, Schmutz J, et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science. 2005;307:1928–33.

    CAS  PubMed  Google Scholar 

  • Cowen RK, Sponaugle S. Larval dispersal and marine population connectivity. Ann Rev Mar Sci. 2009;1:443–66.

    PubMed  Google Scholar 

  • Crandall ED, Treml EA, Barber PH. Coalescent and biophysical models of stepping-stone gene flow in neritid snails. Mol Ecol. 2012;21:5579–98.

    PubMed  Google Scholar 

  • Crandall ED, Riginos C, Bird CE, Liggins L, Treml E, Beger M, Barber PH, Connolly SR, Cowman PF, DiBattista JD, Eble JA. The molecular biogeography of the Indo-Pacific: testing hypotheses with multispecies genetic patterns. Glob Ecol Biogeogr. 2019;28:943–60.

    Google Scholar 

  • D’Aloia CC, Bogdanowicz SM, Francis RK, Majoris JE, Harrison RG, Buston PM. Patterns, causes, and consequences of marine larval dispersal. Proc Natl Acad Sci U S A. 2015;112:13940–5.

    PubMed  PubMed Central  Google Scholar 

  • Dale MR, Fortin MJ. Spatial analysis: a guide for ecologists: Cambridge University Press; 2014.

    Google Scholar 

  • Dalongeville A, Andrello M, Mouillot D, Lobreaux S, Fortin MJ, Lasram F, Belmaker J, Rocklin D, Manel S. Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol Appl. 2018a;11:1437–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S. Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics. 2018b;19:217.

    PubMed  PubMed Central  Google Scholar 

  • Davey JW, Blaxter ML. RADSeq: next-generation population genetics. Brief Funct Genomics. 2010;9:416–23.

    CAS  PubMed  Google Scholar 

  • Davies SW, Treml EA, Kenkel CD, Matz MV. Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific Ocean. Mol Ecol. 2015;24:70–82.

    CAS  PubMed  Google Scholar 

  • Dawson MN, Hays CG, Grosberg RK, Raimondi PT. Dispersal potential and population genetic structure in the marine intertidal of the eastern North Pacific. Ecol Monogr. 2014;84:435–56.

    Google Scholar 

  • de Villemereuil P, Gaggiotti OE. A new FST-based method to uncover local adaptation using environmental variables. Methods Ecol Evol. 2015;6:1248–58.

    Google Scholar 

  • de Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE. Genome scan methods against more complex models: when and how much should we trust them? Mol Ecol. 2014;23:2006–19.

    PubMed  Google Scholar 

  • de Wit P, Palumbi SR. Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol Ecol. 2013;22:2884–97.

    PubMed  Google Scholar 

  • de Wit P, Pespeni MH, Ladner JT, Barshis DJ, Seneca F, Jaris H, Therkildsen NO, Morikawa M, Palumbi SR. The simple fool's guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Resour. 2012;12:1058–67.

    PubMed  Google Scholar 

  • DeBoer TS, Naguit MR, Erdmann MV, Ablan-Lagman MC, Carpenter KE, Toha AH, Barber PH. Concordance between phylogeographic and biogeographic boundaries in the Coral Triangle: conservation implications based on comparative analyses of multiple giant clam species. Bull Mar Sci. 2014;90:277–300.

    Google Scholar 

  • Dennenmoser S, Vamosi SM, Nolte AW, Rogers SM. Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq. Mol Ecol. 2017;26:25–42.

    CAS  PubMed  Google Scholar 

  • Diopere E, Vandamme SG, Hablützel PI, Cariani A, Van Houdt J, Rijnsdorp A, Tinti F, FishPopTrace Consortium, Volckaert FA, Maes GE. Seascape genetics of a flatfish reveals local selection under high levels of gene flow. ICES J Mar Sci. 2017;75:675–89.

    Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JR, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36:27–46.

    Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model. 2006;196:483–93.

    Google Scholar 

  • Duforet-Frebourg N, Bazin E, Blum MG. Genome scans for detecting footprints of local adaptation using a Bayesian factor model. Mol Biol Evol. 2014;31:2483–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duranton M, Allal F, Fraïsse C, Bierne N, Bonhomme F, Gagnaire PA. The origin and remolding of genomic islands of differentiation in the European sea bass. Nat Commun. 2018;9:2518.

    PubMed  PubMed Central  Google Scholar 

  • Dyer RJ. Is there such a thing as landscape genetics? Mol Ecol. 2015;24:3518–28.

    PubMed  Google Scholar 

  • Dyer RJ, Nason JD. Population graphs: the graph theoretic shape of genetic structure. Mol Ecol. 2004;13:1713–27.

    PubMed  Google Scholar 

  • Dyer RJ, Nason JD, Garrick RC. Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol. 2010;19:3746–59.

    PubMed  Google Scholar 

  • Eaton DA. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics. 2014;30:1844–9.

    CAS  PubMed  Google Scholar 

  • Eldon B, Riquet F, Yearsley J, Jollivet D, Broquet T. Current hypotheses to explain genetic chaos under the sea. Curr Zoo. 2016;62:551–66.

    Google Scholar 

  • Epling C, Dobzhansky T. Genetics of natural populations. VI. Microgeographic races in Linanthus parryae. Genetics. 1942;27:317.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epperson BK. Geographical genetics (MPB-38). Princeton: Princeton University Press; 2003.

    Google Scholar 

  • Ewers-Saucedo C, Pringle JM, Sepúlveda HH, Byers JE, Navarrete SA, Wares JP. The oceanic concordance of phylogeography and biogeography: a case study in Notochthamalus. Ecol Evol. 2016;6:4403–20.

    PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Hofer T, Foll M. Detecting loci under selection in a hierarchically structured population. Heredity. 2009;103:285.

    CAS  PubMed  Google Scholar 

  • Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol. 2012;61:717–26.

    PubMed  Google Scholar 

  • Faurby S, Barber PH. Theoretical limits to the correlation between pelagic larval duration and population genetic structure. Mol Ecol. 2012;21:3419–32.

    PubMed  Google Scholar 

  • Feder ME, Mitchell-Olds T. Evolutionary and ecological functional genomics. Nat Rev Genet. 2003;4:649.

    Google Scholar 

  • Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett. 2015;18:1–6.

    PubMed  Google Scholar 

  • Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl. 2018;11:1035–52.

    PubMed  Google Scholar 

  • Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol. 2016;25:104–20.

    CAS  PubMed  Google Scholar 

  • Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol Ecol. 2018;27:2215–33.

    CAS  PubMed  Google Scholar 

  • Foster NL, Paris CB, Kool JT, Baums IB, Stevens JR, Sanchez JA, Bastidas C, et al. Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol Ecol. 2012;21:1143–57.

    PubMed  Google Scholar 

  • François O, Waits LP. Clustering and assignment methods in landscape genetics. In: Balkenhol N, Storfer A, Cushman SA, Waits LP, editors. Landscape genetics: concepts, methods, applications. Wiley: Chichester; 2015. p. 114–28.

    Google Scholar 

  • François O, Martins H, Caye K, Schoville SD. Controlling false discoveries in genome scans for selection. Mol Ecol. 2016;25:454–69.

    PubMed  Google Scholar 

  • Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frichot E, Schoville SD, de Villemereuil P, Gaggiotti OE, François O. Detecting adaptive evolution based on association with ecological gradients: orientation matters! Heredity. 2015;115:22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaggiotti OE. Metapopulations of marine species with larval dispersal: a counterpoint to Ilkka’s Glanville fritillary metapopulations. Ann Zool Fenn. 2017;54(1–4):97–113. Finnish Zoological and Botanical Publishing Board

    Google Scholar 

  • Gagnaire PA, Gaggiotti OE. Detecting polygenic selection in marine populations by combining population genomics and quantitative genetics approaches. Curr Zoo. 2016;62:603–16.

    Google Scholar 

  • Gagnaire PA, Normandeau E, Côté C, Hansen MM, Bernatchez L. The genetic consequences of spatially varying selection in the panmictic American eel (Anguilla rostrata). Genetics. 2012;190:725–36.

    PubMed  PubMed Central  Google Scholar 

  • Gagnaire PA, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, Arnaud-Haond S, et al. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl. 2015;8:769–86.

    PubMed  PubMed Central  Google Scholar 

  • Gaither MR, Rocha LA. Origins of species richness in the Indo-Malay-Philippine biodiversity hotspot: evidence for the centre of overlap hypothesis. J Biogeogr. 2013;40:1638–48.

    Google Scholar 

  • Galindo HM, Olson DB, Palumbi SR. Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr Biol. 2006;16:1622–6.

    CAS  PubMed  Google Scholar 

  • Gerlach G, Atema J, Kingsford MJ, Black KP, Miller-Sims V. Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci U S A. 2007;104:858–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Getis A, Ord JK. The analysis of spatial association by use of distance statistics. In: Perspectives on spatial data analysis. Berlin: Springer; 2010. p. 127–45.

    Google Scholar 

  • Gleason LU, Burton RS. Genomic evidence for ecological divergence against a background of population homogeneity in the marine snail Chlorostoma funebralis. Mol Ecol. 2016;25:3557–73.

    PubMed  Google Scholar 

  • Gould AL, Dunlap PV. Genomic analysis of a cardinalfish with larval homing potential reveals genetic admixture in the Okinawa Islands. Mol Ecol. 2017;26:3870–82.

    CAS  PubMed  Google Scholar 

  • Grummer JA, Beheregaray LB, Bernatchez L, Hand BK, Luikart G, Narum SR, et al. Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol Evol. 2019;34(7):641–54.

    PubMed  Google Scholar 

  • Guillot G, Rousset F. Dismantling the Mantel tests. Methods Ecol Evol. 2013;4:336–44.

    Google Scholar 

  • Guillot G, Leblois R, Coulon A, Frantz AC. Statistical methods in spatial genetics. Mol Ecol. 2009;18:4734–56.

    PubMed  Google Scholar 

  • Guillot G, Vitalis R, le Rouzic A, Gautier M. Detecting correlation between allele frequencies and environmental variables as a signature of selection. A fast computational approach for genome-wide studies. Spat Stat. 2014;8:145–55.

    Google Scholar 

  • Günther T, Coop G. Robust identification of local adaptation from allele frequencies. Genetics. 2013;195:205–20.

    PubMed  PubMed Central  Google Scholar 

  • Guo B, DeFaveri J, Sotelo G, Nair A, Merilä J. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol. 2015;13:19.

    PubMed  PubMed Central  Google Scholar 

  • Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009;5:e1000695.

    PubMed  PubMed Central  Google Scholar 

  • Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G. Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol. 2015;30:161–8.

    PubMed  Google Scholar 

  • Hansen MM, Hemmer-Hansen J. Landscape genetics goes to sea. J Biol. 2007;6:6.

    PubMed  PubMed Central  Google Scholar 

  • Hansen MM, Olivieri I, Waller DM, Nielsen EE, GeM Working Group. Monitoring adaptive genetic responses to environmental change. Mol Ecol. 2012;21:1311–29.

    PubMed  Google Scholar 

  • Hauser L, Carvalho GR. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish. 2008;9:333–62.

    Google Scholar 

  • Hedgecock D. Does variance in reproductive success limit effective population sizes of marine organisms. Gen Evol Aqua Org. 1994;122:122–34.

    Google Scholar 

  • Hedrick PW. Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution. 1999;53:313–8.

    PubMed  Google Scholar 

  • Hellberg ME. Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol Syst. 2009;40:291–310.

    Google Scholar 

  • Hellberg ME, Burton RS, Neigel JE, Palumbi SR. Genetic assessment of connectivity among marine populations. Bull Mar Sci. 2002;70:273–90.

    Google Scholar 

  • Henriques R, von der Heyden S, Lipinski MR, du Toit N, Kainge P, Bloomer P, Matthee CA. Spatio-temporal genetic structure and the effects of long-term fishing in two partially sympatric offshore demersal fishes. Mol Ecol. 2016;25:5843–61.

    PubMed  Google Scholar 

  • Hoban S, Bertorelle G, Gaggiotti OE. Computer simulations: tools for population and evolutionary genetics. Nat Rev Genet. 2012;13:110.

    CAS  PubMed  Google Scholar 

  • Hoey JA, Pinsky ML. Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evol App. 2018;11:1732–47.

    CAS  Google Scholar 

  • Hoffmann A, Griffin P, Dillon S, Catullo R, Rane R, Byrne M, Jordan R, Oakeshott J, Weeks A, Joseph L, Lockhart P. A framework for incorporating evolutionary genomics into biodiversity conservation and management. Clim Change Resp. 2015;2:1.

    Google Scholar 

  • Hohenlohe PA, Phillips PC, Cresko WA. Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci. 2010;171:1059–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holderegger R, Wagner HH. Landscape genetics. Bioscience. 2008;58:199–207.

    Google Scholar 

  • Holliday JA, Hallerman EM, Haak DC. Genotyping and sequencing technologies in population genetics and genomics. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer Nature Switzerland AG; 2019. p. 83–126.

    Google Scholar 

  • Jackson TM, Roegner GC, O’Malley KG. Evidence for interannual variation in genetic structure of Dungeness crab (Cancer magister) along the California Current System. Mol Ecol. 2018;27:352–68.

    CAS  PubMed  Google Scholar 

  • Johnson MS, Black R. Chaotic genetic patchiness in an intertidal limpet, Siphonaria sp. Mar Biol. 1982;70:157–64.

    Google Scholar 

  • Johnson MS, Black R. Pattern beneath the chaos: the effect of recruitment on genetic patchiness in an intertidal limpet. Evolution. 1984;38:1371–83.

    PubMed  Google Scholar 

  • Johnston IA, Dunn JE. Temperature acclimation and metabolism in ectotherms with particular reference to teleost fish. Symp Soc Exp Biol. 1987;41:67–93.

    CAS  PubMed  Google Scholar 

  • Jombart T, Pontier D, Dufour AB. Genetic markers in the playground of multivariate analysis. Heredity. 2009;102:330.

    CAS  PubMed  Google Scholar 

  • Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, Taberlet P. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol. 2007;16:3955–69.

    CAS  PubMed  Google Scholar 

  • Karl SA, Toonen RJ, Grant WS, Bowen BW. Common misconceptions in molecular ecology: echoes of the modern synthesis. Mol Ecol. 2012;21:4171–89.

    CAS  PubMed  Google Scholar 

  • Kelley JL, Brown AP, Therkildsen NO, Foote AD. The life aquatic: advances in marine vertebrate genomics. Nat Rev Genet. 2016;17:523–34.

    CAS  PubMed  Google Scholar 

  • Kingsford MJ, Leis JM, Shanks A, Lindeman KC, Morgan SG, Pineda J. Sensory environments, larval abilities and local self-recruitment. Bull Mar Sci. 2002;70:309–40.

    Google Scholar 

  • Kinlan BP, Gaines SD. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology. 2003;84:2007–20.

    Google Scholar 

  • Knutsen H, Jorde PE, Sannæs H, Rus Hoelzel A, Bergstad OA, Stefanni S, et al. Bathymetric barriers promoting genetic structure in the deepwater demersal fish tusk (Brosme brosme). Mol Ecol. 2009;18:3151–62.

    PubMed  Google Scholar 

  • Koehn RK, Siebenaller JF. Biochemical studies of aminopeptidase polymorphism in Mytilus edulis. II. Dependence of reaction rate on physical factors and enzyme concentration. Biochem Genet. 1981;19:1143–62.

    CAS  PubMed  Google Scholar 

  • Koehn RK, Newell RI, Immermann F. Maintenance of an aminopeptidase allele frequency cline by natural selection. Proc Natl Acad Sci U S A. 1980;77:5385–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kofler R, Orozco-terWengel P, De Maio N, Pandey RV, Nolte V, Futschik A, Kosiol C, et al. PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One. 2011;6:e15925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kool JT, Moilanen A, Treml EA. Population connectivity: recent advances and new perspectives. Landsc Ecol. 2013;28:165–85.

    Google Scholar 

  • Landguth E, Cushman SA, Balkenhol N. Simulation modeling in landscape genetics. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 99–113.

    Google Scholar 

  • Le Moan A, Gagnaire PA, Bonhomme F. Parallel genetic divergence among coastal–marine ecotype pairs of European anchovy explained by differential introgression after secondary contact. Mol Ecol. 2016;25:3187–202.

    PubMed  Google Scholar 

  • Le Port A, Montgomery JC, Smith AN, Croucher AE, McLeod IM, Lavery SD. Temperate marine protected area provides recruitment subsidies to local fisheries. Proc R Soc Lond B Biol Sci. 2017;284:20171300.

    Google Scholar 

  • Legendre P, Anderson MJ. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr. 1999;69:1–24.

    Google Scholar 

  • Legendre P, Lapointe FJ, Casgrain P. Modeling brain evolution from behavior: a permutational regression approach. Evolution. 1994;48:1487–99.

    PubMed  Google Scholar 

  • Legendre P, Fortin MJ, Borcard D. Should the Mantel test be used in spatial analysis? Methods Ecol Evol. 2015;6:1239–47.

    Google Scholar 

  • Leis JM, van Herwerden L, Patterson HM. Estimating connectivity in marine fish populations: what works best? Oceanogr Mar Biol. 2011;49:193–234.

    Google Scholar 

  • Lenormand T. Gene flow and the limits to natural selection. Trends Ecol Evol. 2002;17:183–9.

    Google Scholar 

  • Liggins L, Treml EA, Riginos C. Taking the plunge: an introduction to undertaking seascape genetic studies and using biophysical models. Geogr Compass. 2013;7:173–96.

    Google Scholar 

  • Liggins L, Treml EA, Possingham HP, Riginos C. Seascape features, rather than dispersal traits, predict spatial genetic patterns in co-distributed reef fishes. J Biogeogr. 2016;43:256–67.

    Google Scholar 

  • Limborg MT, Helyar SJ, De Bruyn M, Taylor MI, Nielsen EE, Ogden RO, Carvalho GR, FPT Consortium, Bekkevold D. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol. 2012;21:3686–703.

    CAS  PubMed  Google Scholar 

  • Lotterhos KE, Whitlock MC. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol. 2014;23:2178–92.

    PubMed  PubMed Central  Google Scholar 

  • Lotterhos KE, Whitlock MC. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol. 2015;24:1031–46.

    PubMed  Google Scholar 

  • Lowry DB, Willis JH. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 2010;8:e1000500.

    PubMed  PubMed Central  Google Scholar 

  • Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, Storfer A. Responsible RAD: striving for best practices in population genomic studies of adaptation. Mol Ecol Resour. 2017;17:366–9.

    PubMed  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.

    CAS  PubMed  Google Scholar 

  • Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population genomics: advancing understanding of nature. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer Nature Switzerland AG; 2019. p. 3–79.

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol. 2003;18:189–97.

    Google Scholar 

  • Manel S, Joost S, Epperson BK, Holderegger R, Storfer A, Rosenberg MS, Scribner KT, Bonin A, Fortin MJ. Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol Ecol. 2010;19:3760–72.

    CAS  PubMed  Google Scholar 

  • Manel S, Perrier C, Pratlong M, Abi-Rached L, Paganini J, Pontarotti P, Aurelle D. Genomic resources and their influence on the detection of the signal of positive selection in genome scans. Mol Ecol. 2016;25:170–84.

    CAS  PubMed  Google Scholar 

  • Manel S, Andrello M, Henry K, Verdelet D, Darracq A, Guerin PE, Desprez B, Devaux P. Predicting genotype environmental range from genome–environment associations. Mol Ecol. 2018;27:2823–33.

    CAS  PubMed  Google Scholar 

  • Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–20.

    CAS  PubMed  Google Scholar 

  • Marko PB, Hart MW. The complex analytical landscape of gene flow inference. Trends Ecol Evol. 2011;26:448–56.

    PubMed  Google Scholar 

  • Marshall DJ, Morgan SG. Ecological and evolutionary consequences of linked life-history stages in the sea. Curr Biol. 2011;21:R718–25.

    CAS  PubMed  Google Scholar 

  • Marshall DJ, Monro K, Bode M, Keough MJ, Swearer S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol Lett. 2010;13:128–40.

    CAS  PubMed  Google Scholar 

  • Mastretta-Yanes A, Arrigo N, Alvarez N, Jorgensen TH, Piñero D, Emerson BC. Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Mol Ecol Resour. 2015;15:28–41.

    CAS  PubMed  Google Scholar 

  • Matz MV. Fantastic beasts and how to sequence them: ecological genomics for obscure model organisms. Trends Genet. 2018;34:121–32.

    CAS  PubMed  Google Scholar 

  • Matz MV, Treml EA, Aglyamova GV, Bay LK. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet. 2018;14:e1007220.

    PubMed  PubMed Central  Google Scholar 

  • McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR. Marine defaunation: animal loss in the global ocean. Science. 2015;347:1255641.

    PubMed  Google Scholar 

  • McRae BH. Isolation by resistance. Evolution. 2006;60:1551–61.

    PubMed  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB. Using circuit theory to model connectivity in ecology and conservation. Ecology. 2008;89(10):2712–24.

    PubMed  Google Scholar 

  • Meirmans PG, Hedrick PW. Assessing population structure: FST and related measures. Mol Ecol Resour. 2011;11:5–18.

    PubMed  Google Scholar 

  • Mercer TR, Gerhardt DJ, Dinger ME, Crawford J, Trapnell C, Jeddeloh JA, Mattick JS, et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol. 2012;30:99.

    CAS  Google Scholar 

  • Munguia-Vega A, Jackson A, Marinone SG, Erisman B, Moreno-Baez M, Girón-Nava A, Pfister T, Aburto-Oropeza O, Torre J. Asymmetric connectivity of spawning aggregations of a commercially important marine fish using a multidisciplinary approach. PeerJ. 2014;2:e511.

    PubMed  PubMed Central  Google Scholar 

  • Nei M. Genetic distance between populations. Am Nat. 1972;106:283–92.

    Google Scholar 

  • Nosil P, Funk DJ, Ortiz-Barrientos DA. Divergent selection and heterogeneous genomic divergence. Mol Ecol. 2009;18:375–402.

    PubMed  Google Scholar 

  • O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci. 2007;104:1266–71.

    PubMed  PubMed Central  Google Scholar 

  • Oleksiak MF. Adaptation without boundaries: population genomics in marine systems. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer Nature Switzerland AG; 2019. p. 587–612.

    Google Scholar 

  • Palumbi SR. Marine speciation on a small planet. Trends Ecol Evol. 1992;7:114–8.

    CAS  PubMed  Google Scholar 

  • Palumbi SR. Molecular biogeography of the Pacific. Coral Reefs. 1997;16:S47–52.

    Google Scholar 

  • Palumbi SR, Pinsky ML. Marine dispersal, ecology and conservation. In: Bertness MD, Bruno JF, Silliman B, Stachowicz JJ, editors. Marine community ecology. 2nd ed. Sunderland: Sinauer; 2013. p. 57–83.

    Google Scholar 

  • Paris CB, Chérubin LM, Cowen RK. Surfing, spinning, or diving from reef to reef: effects on population connectivity. Mar Ecol Prog Ser. 2007;347:285–300.

    Google Scholar 

  • Parobek CM, Archer FI, DePrenger-Levin ME, Hoban SM, Liggins L, Strand AE. Skelesim: an extensible, general framework for population genetic simulation in R. Mol Ecol Resour. 2017;17:101–9.

    PubMed  Google Scholar 

  • Paterno M, Schiavina M, Aglieri G, Ben Souissi J, Boscari E, Casagrandi R, Chassanite A, Chiantore M, Congiu L, Guarnieri G, Kruschel C. Population genomics meet Lagrangian simulations: oceanographic patterns and long larval duration ensure connectivity among Paracentrotus lividus populations in the Adriatic and Ionian seas. Ecol Evol. 2017;7:2463–79.

    PubMed  PubMed Central  Google Scholar 

  • Pelc RA, Warner RR, Gaines SD. Geographical patterns of genetic structure in marine species with contrasting life histories. J Biogeogr. 2009;36:1881–90.

    Google Scholar 

  • Pespeni MH, Palumbi SR. Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic. Mol Ecol. 2013;22:3580–97.

    CAS  PubMed  Google Scholar 

  • Pinsky ML, Palumbi SR. Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol. 2014;23:29–39.

    PubMed  Google Scholar 

  • Pörtner HO, Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science. 2007;315:95–7.

    PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prunier JG, Kaufmann B, Fenet S, Picard D, Pompanon F, Joly P, Lena JP. Optimizing the trade-off between spatial and genetic sampling efforts in patchy populations: towards a better assessment of functional connectivity using an individual-based sampling scheme. Mol Ecol. 2013;22:5516–30.

    CAS  PubMed  Google Scholar 

  • Prunier JG, Colyn M, Legendre X, Nimon KF, Flamand MC. Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Mol Ecol. 2015;24:263–83.

    CAS  PubMed  Google Scholar 

  • Puritz JB, Lotterhos KE. Expressed exome capture sequencing: a method for cost-effective exome sequencing for all organisms. Mol Ecol Resour. 2018;18:1209–22.

    CAS  PubMed  Google Scholar 

  • Puritz JB, Hollenbeck CM, Gold JR. dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. PeerJ. 2014;2:e431.

    PubMed  PubMed Central  Google Scholar 

  • Rajora OP, Eckert AJ, Zinck JWR. Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS One. 2016;11:e0158691. https://doi.org/10.1371/journal.pone.0158691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralls K, Ballou JD, Dudash MR, Eldridge MD, Fenster CB, Lacy RC, et al. Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett. 2018;11:e12412.

    Google Scholar 

  • Ravinet M, Westram A, Johannesson K, Butlin R, André C, Panova M. Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale. Mol Ecol. 2016;25:287–305.

    PubMed  Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24:4348–70.

    PubMed  Google Scholar 

  • Riginos C, Liggins L. Seascape genetics: populations, individuals, and genes marooned and adrift. Geogr Compass. 2013;7:197–216.

    Google Scholar 

  • Riginos C, Douglas KE, Jin Y, Shanahan DF, Treml EA. Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography. 2011;34:566–75.

    Google Scholar 

  • Riginos C, Crandall ED, Liggins L, Bongaerts P, Treml E. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr Zoo. 2016;62:581–601.

    Google Scholar 

  • Riginos C, Hock K, Matias AM, Mumby PJ, van Oppen MJH, Lukoschek V. Asymmetric dispersal is a critical element of concordance between biophysical dispersal models and spatial genetic structure in Great Barrier Reef corals. Div Dist. 2019; https://doi.org/10.1111/ddi.12969.

    Google Scholar 

  • Riquet F, Liautard-Haag C, Woodall L, Bouza C, Louisy P, Hamer B, et al. Parallel pattern of differentiation at a genomic island shared between clinal and mosaic hybrid zones in a complex of cryptic seahorse lineages. Evolution. 2019;73:817–35.

    PubMed  Google Scholar 

  • Robinson JD, Coffman AJ, Hickerson MJ, Gutenkunst RN. Sampling strategies for frequency spectrum-based population genomic inference. BMC Evol Biol. 2014;14:254.

    PubMed  PubMed Central  Google Scholar 

  • Rousset F. Genetic differentiation between individuals. J Evol Biol. 2000;13:58–62.

    Google Scholar 

  • Roux C, Tsagkogeorga G, Bierne N, Galtier N. Crossing the species barrier: genomic hotspots of introgression between two highly divergent Ciona intestinalis species. Mol Biol Evol. 2013;30:1574–87.

    CAS  PubMed  Google Scholar 

  • Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S. Estimating connectivity in marine populations: an empirical evaluation of assignment tests and parentage analysis under different gene flow scenarios. Mol Ecol. 2009;18:1765–76.

    CAS  PubMed  Google Scholar 

  • Saenz-Agudelo P, DiBattista JD, Piatek MJ, Gaither MR, Harrison HB, Nanninga GB, et al. Seascape genetics along environmental gradients in the Arabian Peninsula: insights from ddRAD sequencing of anemonefishes. Mol Ecol. 2015;24:6241–55.

    PubMed  Google Scholar 

  • Saha A, Hauser L, Kent M, Planque B, Neat F, Kirubakaran TG, Huse I, Homrum EÍ, Fevolden SE, Lien S, Johansen T. Seascape genetics of saithe (Pollachius virens) across the North Atlantic using single nucleotide polymorphisms. ICES J Mar Sci. 2015;72:2732–41.

    Google Scholar 

  • Sandoval-Castillo J, Robinson NA, Hart AM, Strain LW, Beheregaray LB. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Mol Ecol. 2018;27:1603–20.

    PubMed  Google Scholar 

  • Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation. Nat Rev Genet. 2013;14:807.

    CAS  PubMed  Google Scholar 

  • Schlötterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals – mining genome-wide polymorphism data without big funding. Nat Rev Genet. 2014;15:749.

    PubMed  Google Scholar 

  • Schmidt PS, Rand DM. Intertidal microhabitat and selection at MPI: interlocus contrasts in the northern acorn barnacle, Semibalanus balanoides. Evolution. 1999;53:135–46.

    PubMed  Google Scholar 

  • Schmidt PS, Serrao EA, Pearson GA, Riginos C, Rawson PD, Hilbish TJ, et al. Ecological genetics in the North Atlantic: environmental gradients and adaptation at specific loci. Ecology. 2008;89:S91–107.

    PubMed  Google Scholar 

  • Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S. Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst. 2012;43:23–43.

    Google Scholar 

  • Schunter C, Carreras-Carbonell J, Macpherson E, Tintoré J, Vidal-Vijande E, Pascual A, Guidetti P, et al. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol Ecol. 2011;20:5167–81.

    CAS  PubMed  Google Scholar 

  • Seeb JE, Carvalho G, Hauser L, Naish K, Roberts S, Seeb LW. Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol Ecol Resour. 2011;11:1–8.

    PubMed  Google Scholar 

  • Selkoe KA, Toonen RJ. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar Ecol Prog Ser. 2011;436:291–305.

    Google Scholar 

  • Selkoe KA, Gaines SD, Caselle JE, Warner RR. Current shifts and kin aggregation explain genetic patchiness in fish recruits. Ecology. 2006;87:3082–94.

    PubMed  Google Scholar 

  • Selkoe KA, Henzler CM, Gaines SD. Seascape genetics and the spatial ecology of marine populations. Fish Fish. 2008;9:363–77.

    Google Scholar 

  • Selkoe KA, D’Aloia CC, Crandall ED, Iacchei M, Liggins L, Puritz JB, et al. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser. 2016a;554:1–19.

    Google Scholar 

  • Selkoe KA, Scribner KT, Galindo HM. Waterscape genetics – applications of landscape genetics to rivers, lakes, and seas. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016b. p. 220–46.

    Google Scholar 

  • Shafer AB, Wolf JB, Alves PC, Bergström L, Bruford MW, Brännström I, Colling G, Dalén L, De Meester L, Ekblom R, Fawcett KD. Genomics and the challenging translation into conservation practice. Trends Ecol Evol. 2015;30:78–87.

    PubMed  Google Scholar 

  • Shanks AL. Pelagic larval duration and dispersal distance revisited. Biol Bull. 2009;216:373–85.

    PubMed  Google Scholar 

  • Shima JS, Swearer SE. Larval quality is shaped by matrix effects: implications for connectivity in a marine metapopulation. Ecology. 2009;90:1255–67.

    PubMed  Google Scholar 

  • Slatkin M. Rare alleles as indicators of gene flow. Evolution. 1985;39:53–65.

    PubMed  Google Scholar 

  • Slatkin M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution. 1993;47:264–79.

    PubMed  Google Scholar 

  • Smouse PE, Long JC, Sokal RR. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool. 1986;35:627–32.

    Google Scholar 

  • Sodeland M, Jorde PE, Lien S, Jentoft S, Berg PR, Grove H, et al. Islands of divergence’ in the Atlantic cod represent polymorphic chromosomal rearrangements. Genome Biol Evol. 2016;8:1012–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Trends Gen Genom. 2013;9:901–11.

    Google Scholar 

  • Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner KI. Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol. 2010;19:3576–91.

    PubMed  Google Scholar 

  • Stone GN, Nee S, Felsenstein J. Controlling for non-independence in comparative analysis of patterns across populations within species. Phil Trans Roy Soc B: Biol Sci. 2011;366:1410–24.

    Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, et al. Putting the ‘landscape’ in landscape genetics. Heredity. 2007;98:128.

    CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP. Landscape genetics: where are we now? Mol Ecol. 2010;19:3496–514.

    PubMed  Google Scholar 

  • Strathmann RR. Why life histories evolve differently in the sea. Am Zool. 1990;30:197–207.

    Google Scholar 

  • Sylvester EV, Beiko RG, Bentzen P, Paterson I, Horne JB, Watson B, Lehnert S, et al. Environmental extremes drive population structure at the northern range limit of Atlantic salmon in North America. Mol Ecol. 2018;27:4026–40.

    PubMed  Google Scholar 

  • Teske PR, Sandoval-Castillo J, Golla TR, Emami-Khoyi A, Tine M, von der Heyden S, Beheregaray LB. Thermal selection as a driver of marine ecological speciation. Proc R Soc B. 2019;286:20182023.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Therkildsen NO, Palumbi SR. Practical low-coverage genome-wide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. Mol Ecol Resour. 2017;17:194–208.

    CAS  PubMed  Google Scholar 

  • Therkildsen NO, Hemmer-Hansen J, Hedeholm RB, Wisz MS, Pampoulie C, Meldrup D, et al. Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua. Evol Appl. 2013;6:690–705.

    PubMed  PubMed Central  Google Scholar 

  • Tigano A, Friesen VL. Genomics of local adaptation with gene flow. Mol Ecol. 2016;25:2144–64.

    PubMed  Google Scholar 

  • Tine M, Kuhl H, Gagnaire P-A, Louro B, Desmarais E, Martins RST, et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat Commun. 2014;5:5770.

    CAS  PubMed  Google Scholar 

  • Tobler WR. A computer movie simulating urban growth in the Detroit region. Econ Geogr. 1970;46(sup1):234–40.

    Google Scholar 

  • Toonen RJ, Grosberg RK. Causes of chaos: spatial and temporal genetic heterogeneity in the intertidal anomuran crab Petrolisthes cinctipes. Phylogeogr Popul Genet Crustacea. 2011;2011:75–107.

    Google Scholar 

  • Toonen RJ, Andrews KR, Baums IB, Bird CE, Concepcion GT, Daly-Engel TS, et al. Defining boundaries for ecosystem-based management: a multispecies case study of marine connectivity across the Hawaiian Archipelago. J Marine Biol. 2011;2011. pii: 460173

    Google Scholar 

  • Treml EA, Roberts JJ, Chao Y, Halpin PN, Possingham HP, Riginos C. Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integr Compar Biol. 2012;52:525–37.

    Google Scholar 

  • Treml EA, Ford JR, Black KP, Swearer SE. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea. Mov Ecol. 2015a;3:17.

    PubMed  PubMed Central  Google Scholar 

  • Treml EA, Roberts J, Halpin PN, Possingham HP, Riginos C. The emergent geography of biophysical dispersal barriers across the Indo-West Pacific. Div Dist. 2015b;21:465–76.

    Google Scholar 

  • Vandamme SG, Maes GE, Raeymaekers JA, Cottenie K, Imsland AK, Hellemans B, et al. Regional environmental pressure influences population differentiation in turbot (S cophthalmus maximus). Mol Ecol. 2014;23:618–36.

    CAS  PubMed  Google Scholar 

  • Véliz D, Bourget E, Bernatchez L. Regional variation in the spatial scale of selection at MPI∗ and GPI∗ in the acorn barnacle Semibalanus balanoides (Crustacea). J Evol Biol. 2004;17:953–66.

    PubMed  Google Scholar 

  • Vigliola L, Doherty PJ, Meekan MG, Drown DM, Jones ME, Barber PH. Genetic identity determines risk of post-settlement mortality of a marine fish. Ecology. 2007;88:1263–77.

    PubMed  Google Scholar 

  • Villacorta-Rath C, Souza CA, Murphy NP, Green BS, Gardner C, Strugnell JM. Temporal genetic patterns of diversity and structure evidence chaotic genetic patchiness in a spiny lobster. Mol Ecol. 2018;27:54–65.

    CAS  PubMed  Google Scholar 

  • von der Heyden S. Making evolutionary history count: biodiversity planning for coral reef fishes and the conservation of evolutionary processes. Coral Reefs. 2017;36:183–94.

    Google Scholar 

  • Vuilleumier S, Possingham HP. Does colonization asymmetry matter in metapopulations? Proc R Soc Lond B Biol Sci. 2006;273:1637–42.

    Google Scholar 

  • Wagner H, Fortin M-J. Basics of spatial data analysis: linking landscape and genetic data for landscape genetic studies. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 77–98.

    Google Scholar 

  • Wang IJ, Bradburd GS. Isolation by environment. Mol Ecol. 2014;23:5649–62.

    PubMed  Google Scholar 

  • Waples RS. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered. 1998;89:438–50.

    Google Scholar 

  • Waples RS, Gaggiotti O. Invited review: what is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol. 2006;15:1419–39.

    CAS  PubMed  Google Scholar 

  • Ward RD, Woodwark M, Skibinski DO. A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol. 1994;44:213–32.

    Google Scholar 

  • Waters JM, Fraser CI, Hewitt GM. Founder takes all: density-dependent processes structure biodiversity. Trends Ecol Evol. 2013;28:78–85.

    PubMed  Google Scholar 

  • Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol. 2018;33:427–40.

    PubMed  Google Scholar 

  • Wellenreuther M, Hansson B. Detecting polygenic evolution: problems, pitfalls, and promises. Trends Genet. 2016;32:155–64.

    CAS  PubMed  Google Scholar 

  • Westram AM, Galindo J, Alm Rosenblad M, Grahame JW, Panova M, Butlin RK. Do the same genes underlie parallel phenotypic divergence in different Littorina saxatilis populations? Mol Ecol. 2014;23:4603–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ. Ocean currents help explain population genetic structure. Proc R Soc Lond B Biol Sci. 2010;277:1685–94.

    Google Scholar 

  • Whitlock MC, Lotterhos KE. Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of FST. Am Nat. 2015;186:S24–36.

    PubMed  Google Scholar 

  • Whitlock MC, Mccauley DE. Indirect measures of gene flow and migration: FST≠ 1/(4Nm+ 1). Heredity. 1999;82:117–25.

    PubMed  Google Scholar 

  • Wilkinson-Herbots HM, Ettridge R. The effect of unequal migration rates on. FST Theor Popul Biol. 2004;66:185–97.

    PubMed  Google Scholar 

  • Willette DA, Allendorf FW, Barber PH, Barshis DJ, Carpenter KE, Crandall ED, et al. So, you want to use next-generation sequencing in marine systems? Insight from the Pan-Pacific Advanced Studies Institute. Bull Mar Sci. 2014;90:79–122.

    Google Scholar 

  • Wolf JB, Ellegren H. Making sense of genomic islands of differentiation in light of speciation. Nat Rev Genet. 2017;18:87.

    CAS  PubMed  Google Scholar 

  • Wood S, Paris CB, Ridgwell A, Hendy EJ. Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Global Ecol Biog. 2014;23(1):1.

    Google Scholar 

  • Wright S. Evolution in Mendelian populations. Genetics. 1931;16:97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S. Isolation by distance. Genetics. 1943;28:114–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xuereb A, Benestan L, Normandeau É, Daigle RM, Curtis JM, Bernatchez L, Fortin MJ. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RAD seq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol Ecol. 2018a;27:2347–64.

    PubMed  Google Scholar 

  • Xuereb A, Kimber CM, Curtis JM, Bernatchez L, Fortin MJ. Putatively adaptive genetic variation in the giant California sea cucumber (Parastichopus californicus) as revealed by environmental association analysis of restriction-site associated DNA sequencing data. Mol Ecol. 2018b;27:5035–48.

    CAS  PubMed  Google Scholar 

  • Yeaman S. Local adaptation by alleles of small effect. Am Nat. 2015;186:S74–89.

    PubMed  Google Scholar 

Download references

Acknowledgements

This chapter brings together ideas developed during several collaborative projects, workshops, and research activities with many colleagues and supported by several institutions. We acknowledge and appreciate the contributions of colleagues within the Diversity of the Indo-Pacific Network (DIPnet, www.diversityindopacific.net), Ira Moana Project (www.massey.ac.nz/iramoana), and C. Noble for editorial help. Our collaborations have been supported by the National Evolutionary Synthesis Center (NESCent), DIPnet Research Coordination Network Grant (NSF: DEB 1457848), and a Royal Society Te Apārangi Catalyst Seeding Fund (17-MAU-309-CSG). L.L. was supported by a New Zealand Rutherford Foundation Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libby Liggins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liggins, L., Treml, E.A., Riginos, C. (2019). Seascape Genomics: Contextualizing Adaptive and Neutral Genomic Variation in the Ocean Environment. In: Oleksiak, M., Rajora, O. (eds) Population Genomics: Marine Organisms. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2019_68

Download citation

Publish with us

Policies and ethics