Skip to main content

Population Genomics Applied to Fishery Management and Conservation

  • Chapter
  • First Online:
Population Genomics: Marine Organisms

Part of the book series: Population Genomics ((POGE))

Abstract

In times of overfishing and climate change, marine resources are extremely vulnerable, and the vast majority of the world’s fish stocks have already collapsed. In this fragile context, the need to drive fisheries toward sustainability has become a priority. Population genomics methods, which compare DNA of individuals from different populations occupying distinct environments, are promising tools to address such need. Indeed, these methods provide new knowledge on the demographic and adaptive history of marine resources, which allows fisheries-specific issues to be resolved, so that delineation of stocks coincides with actual population boundaries and genetic diversity is maintained, ensuring the long-term sustainability of resources. In addition, the field of population genomics applied to fisheries management, or commonly referred to as “fisheries genomics,” has benefited from emerging molecular approaches that can now address fisheries management issues that could not previously be addressed. This genomics revolution is accompanied by an apparent increase in information and resolution on the main causes of marine population differentiation, which makes it possible to assess the persistence of marine species in the face of climate change and overfishing, two major threats at the heart of fisheries management issues. In this chapter, I synthesize information on empirical examples of the application of population genomics to fisheries and provide suggestions as to how modern population genomics approaches could address some of the most urgent challenges in fisheries management and conservation. I discuss the application of genomics to fishery management and conservation from four main angles: stock structure, climate change, forensics, and fishery-induced evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelrahman H, ElHady M, Alcivar-Warren A, Allen S, Al-Tobasei R, Bao L, et al. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics. 2017;18(1):191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11(10):697.

    Article  CAS  PubMed  Google Scholar 

  • Barney BT, Munkholm C, Walt DR, Palumbi SR. Highly localized divergence within supergenes in Atlantic cod (Gadus morhua) within the Gulf of Maine. BMC Genomics. 2017;18(1):271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrio AM, Lamichhaney S, Fan G, Rafati N, Pettersson M, Zhang H, et al. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. Elife. 2016;5:e12081.

    Article  Google Scholar 

  • Barth JM, Berg PR, Jonsson PR, Bonanomi S, Corell H, Hemmer-Hansen J, et al. Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Mol Ecol. 2017;26(17):4452–66.

    Article  CAS  PubMed  Google Scholar 

  • Benestan L, Gosselin T, Perrier C, Sainte-Marie B, Rochette R, Bernatchez L. RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Mol Ecol. 2015;24(13):3299–315.

    Article  PubMed  Google Scholar 

  • Benestan LM, Ferchaud AL, Hohenlohe PA, Garner BA, Naylor GJ, Baums IB, et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol Ecol. 2016a;25(13):2967–77.

    Article  PubMed  Google Scholar 

  • Benestan L, Quinn BK, Maaroufi H, Laporte M, Clark FK, Greenwood SJ, et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol Ecol. 2016b;25(20):5073–92.

    Article  PubMed  Google Scholar 

  • Berg PR, Jentoft S, Star B, Ring KH, Knutsen H, Lien S, et al. Adaptation to low salinity promotes genomic divergence in Atlantic cod (Gadus morhua L.). Genome Biol Evol. 2015;7(6):1644–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernatchez L, Wellenreuther M, Araneda C, Ashton DT, Barth JM, Beacham TD, et al. Harnessing the power of genomics to secure the future of seafood. Trends Ecol Evol. 2017;32(9):665–80.

    Article  PubMed  Google Scholar 

  • Bowler DE, Benton TG. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev. 2005;80(2):205–25.

    Article  PubMed  Google Scholar 

  • Bradbury IR, Hubert S, Higgins B, Bowman S, Borza T, Paterson IG, et al. Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish. Evol Appl. 2013;6(3):450–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carreras C, Ordóñez V, Zane L, Kruschel C, Nasto I, Macpherson E, Pascual M. Population genomics of an endemic Mediterranean fish: differentiation by fine scale dispersal and adaptation. Sci Rep. 2017;7:43417.

    Article  PubMed  PubMed Central  Google Scholar 

  • Conover DO, Munch SB. Sustaining fisheries yields over evolutionary time scales. Science. 2002;297(5578):94–6.

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML. Special features of RAD sequencing data: implications for genotyping. Mol Ecol. 2013;22(11):3151–64.

    Article  CAS  PubMed  Google Scholar 

  • Essington TE, Beaudreau AH, Wiedenmann J. Fishing through marine food webs. Proc Natl Acad Sci. 2006;103(9):3171–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT. Fish and fishery products – world apparent consumption statistics based on food balance sheets (1961-). In: FAO yearbook. Fishery and aquaculture statistics (FAO annuaire. Statistiques des pêches et de l’aquaculture/FAO anuario. Estadísticas de pesca y acuicultura). Rome; 2015.

    Google Scholar 

  • François O, Martins H, Caye K, Schoville SD. Controlling false discoveries in genome scans for selection. Mol Ecol. 2016;25(2):454–69.

    Article  PubMed  CAS  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol Evol. 2012;27(9):489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gagnaire PA, Gaggiotti OE. Detecting polygenic selection in marine populations by combining population genomics and quantitative genetics approaches. Curr Zool. 2016;62(6):603–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gagnaire PA, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, et al. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl. 2015;8(8):769–86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garner BA, Hand BK, Amish SJ, Bernatchez L, Foster JT, Miller KM, et al. Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol Evol. 2016;31(2):81–3.

    Article  PubMed  Google Scholar 

  • Hansen MM, Hemmer-Hansen J. Landscape genetics goes to sea. J Biol. 2007;6(3):6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen MM, Olivieri I, Waller DM, Nielsen EE, GeM Working Group. Monitoring adaptive genetic responses to environmental change. Mol Ecol. 2012;21(6):1311–29.

    Article  PubMed  Google Scholar 

  • Hastings A. Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology. 1993;74(5):1362–72.

    Article  Google Scholar 

  • Hauser L, Adcock GJ, Smith PJ, Ramírez JHB, Carvalho GR. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci. 2002;99(18):11742–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heino M, Pauli BD, Dieckmann U. Fisheries-induced evolution. Annu Rev Ecol Evol Syst. 2015;46:461–80.

    Article  Google Scholar 

  • Hemmer-Hansen J, Therkildsen NO, Pujolar JM. Population genomics of marine fishes: next-generation prospects and challenges. Biol Bull. 2014;227(2):117–32.

    Article  PubMed  Google Scholar 

  • Hoey JA, Pinsky ML. Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evol Appl. 2018;11(9):1732–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson WF, van Oosterhout C, Rogers SI, Carvalho GR. Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proc R Soc Lond B Biol Sci. 2003;270(1529):2125–32.

    Article  Google Scholar 

  • Jackson AM, Semmens BX, De Mitcheson YS, Nemeth RS, Heppell SA, Bush PG, et al. Population structure and phylogeography in Nassau grouper (Epinephelus striatus), a mass-aggregating marine fish. PLoS One. 2014;9(5):e97508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelley JL, Brown AP, Therkildsen NO, Foote AD. The life aquatic: advances in marine vertebrate genomics. Nat Rev Genet. 2016;17(9):523.

    Article  CAS  PubMed  Google Scholar 

  • Kirubakaran TG, Grove H, Kent MP, Sandve SR, Baranski M, Nome T, et al. Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod. Mol Ecol. 2016;25(10):2130–43.

    Article  CAS  PubMed  Google Scholar 

  • Knutsen H, Olsen EM, Jorde PE, Espeland SH, André C, Stenseth NC. Are low but statistically significant levels of genetic differentiation in marine fishes ‘biologically meaningful’? A case study of coastal Atlantic cod. Mol Ecol. 2011;20(4):768–83.

    Article  CAS  PubMed  Google Scholar 

  • Kreitzman M, Ashander J, Driscoll J, Bateman AW, Chan KM, Lewis MA, Krkosek M. Wild salmon sustain the effectiveness of parasite control on salmon farms: conservation implications from an evolutionary ecosystem service. Conserv Lett. 2018;11(2):e12395.

    Article  Google Scholar 

  • Kuparinen A, Hutchings JA. Genetic architecture of age at maturity can generate divergent and disruptive harvest-induced evolution. Phil Trans R Soc B. 2017;372(1712):20160035.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laikre L, Allendorf FW, Aroner LC, Baker CS, Gregovich DP, Hansen MM, et al. Neglect of genetic diversity in implementation of the convention on biological diversity. Conserv Biol. 2010;24(1):86–8.

    Article  PubMed  Google Scholar 

  • Lal MM, Southgate PC, Jerry DR, Zenger KR. Fishing for divergence in a sea of connectivity: the utility of ddRADseq genotyping in a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera. Mar Genomics. 2016;25:57–68.

    Article  PubMed  Google Scholar 

  • Lal MM, Southgate PC, Jerry DR, Bosserelle C, Zenger KR. Swept away: ocean currents and seascape features influence genetic structure across the 18,000 km Indo-Pacific distribution of a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera. BMC Genomics. 2017;18(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamichhaney S, Barrio AM, Rafati N, Sundström G, Rubin CJ, Gilbert ER, et al. Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proc Natl Acad Sci. 2012;109(47):19345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson WA, Seeb LW, Everett MV, Waples RK, Templin WD, Seeb JE. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol Appl. 2014;7(3):355–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Moan A, Gagnaire PA, Bonhomme F. Parallel genetic divergence among coastal–marine ecotype pairs of European anchovy explained by differential introgression after secondary contact. Mol Ecol. 2016;25(13):3187–202.

    Article  PubMed  CAS  Google Scholar 

  • Limborg MT, Helyar SJ, De Bruyn M, Taylor MI, Nielsen EE, Ogden ROB, et al. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol. 2012;21(15):3686–703.

    Article  CAS  PubMed  Google Scholar 

  • Lowe WH, Allendorf FW. What can genetics tell us about population connectivity? Mol Ecol. 2010;19(15):3038–51.

    Article  PubMed  Google Scholar 

  • Martinsohn JT, Ogden R, FishPopTrace Consortium. FishPopTrace – developing SNP-based population genetic assignment methods to investigate illegal fishing. Forensic Sci Int Genet. 2009;2(1):294–6. Supplement Series.

    Article  Google Scholar 

  • McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR. Marine defaunation: animal loss in the global ocean. Science. 2015;347(6219):1255641.

    Article  PubMed  CAS  Google Scholar 

  • Meek MH, Baerwald MR, Stephens MR, Goodbla A, Miller MR, Tomalty KM, May B. Sequencing improves our ability to study threatened migratory species: genetic population assignment in California’s Central Valley Chinook salmon. Ecol Evol. 2016;6(21):7706–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller AD, van Rooyen A, Rašić G, Ierodiaconou DA, Gorfine HK, Day R, et al. Contrasting patterns of population connectivity between regions in a commercially important mollusc Haliotis rubra: integrating population genetics, genomics and marine LiDAR data. Mol Ecol. 2016;25(16):3845–64.

    Article  CAS  PubMed  Google Scholar 

  • Moore JS, Bourret V, Dionne M, Bradbury I, O’Reilly P, Kent M, et al. Conservation genomics of anadromous Atlantic salmon across its North American range: outlier loci identify the same patterns of population structure as neutral loci. Mol Ecol. 2014;23(23):5680–97.

    Article  CAS  PubMed  Google Scholar 

  • Moore JS, Harris LN, Le Luyer J, Sutherland BJ, Rougemont Q, Tallman RF, et al. Genomics and telemetry suggest a role for migration harshness in determining overwintering habitat choice, but not gene flow, in anadromous Arctic Char. Mol Ecol. 2017;26(24):6784–800.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen EE, Hemmer-Hansen J, Larsen PF, Bekkevold D. Population genomics of marine fishes: identifying adaptive variation in space and time. Mol Ecol. 2009;18(15):3128–50.

    Article  PubMed  Google Scholar 

  • Nielsen EE, Cariani A, Mac Aoidh E, Maes GE, Milano I, Ogden R, et al. Gene-associated markers provide tools for tackling illegal fishing and false eco-certification. Nat Commun. 2012;3:851.

    Article  PubMed  CAS  Google Scholar 

  • Ovenden JR, Berry O, Welch DJ, Buckworth RC, Dichmont CM. Ocean’s eleven: a critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish. 2015;16(1):125–59.

    Article  Google Scholar 

  • Palsbøll PJ, Berube M, Allendorf FW. Identification of management units using population genetic data. Trends Ecol Evol. 2007;22(1):11–6.

    Article  PubMed  Google Scholar 

  • Pardo-Diaz C, Salazar C, Jiggins CD. Towards the identification of the loci of adaptive evolution. Methods Ecol Evol. 2015;6(4):445–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pauly D, Zeller D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat Commun. 2016;7:ncomms10244.

    Article  CAS  Google Scholar 

  • Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F. Fishing down marine food webs. Science. 1998;279(5352):860–3.

    Article  CAS  PubMed  Google Scholar 

  • Pavey SA, Gaudin J, Normandeau E, Dionne M, Castonguay M, Audet C, Bernatchez L. RAD sequencing highlights polygenic discrimination of habitat ecotypes in the panmictic American eel. Curr Biol. 2015;25(12):1666–71.

    Article  CAS  PubMed  Google Scholar 

  • Pecoraro C, Babbucci M, Villamor A, Franch R, Papetti C, Leroy B, et al. Methodological assessment of 2b-RAD genotyping technique for population structure inferences in yellowfin tuna (Thunnus albacares). Mar Genomics. 2016;25:43–8.

    Article  PubMed  Google Scholar 

  • Pineda J, Hare JA, Sponaugle SU. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography. 2007;20(3):22–39.

    Article  Google Scholar 

  • Pinsky ML, Palumbi SR. Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol. 2014;23(1):29–39.

    Article  PubMed  Google Scholar 

  • Poćwierz-Kotus A, Kijewska A, Petereit C, Bernaś R, Więcaszek B, Arnyasi M, et al. Genetic differentiation of brackish water populations of cod Gadus morhua in the southern Baltic, inferred from genotyping using SNP-arrays. Mar Genomics. 2015;19:17–22.

    Article  PubMed  Google Scholar 

  • Pujolar JM, Jacobsen MW, Als TD, Frydenberg J, Munch K, Jónsson B, et al. Genome-wide single-generation signatures of local selection in the panmictic European eel. Mol Ecol. 2014;23(10):2514–28.

    Article  CAS  PubMed  Google Scholar 

  • Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish. 2009;10(4):361–95.

    Article  Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24(17):4348–70.

    Article  PubMed  Google Scholar 

  • Riginos C, Liggins L. Seascape genetics: populations, individuals, and genes marooned and adrift. Geogr Compass. 2013;7(3):197–216.

    Article  Google Scholar 

  • Rochette R, Sainte-Marie B, Allain M, Baker J, Bernatchez L, Boudreau V, et al. The Lobster Node of the CFRN: co-constructed and collaborative research on productivity, stock structure, and connectivity in the American lobster (Homarus americanus). Can J Fish Aquat Sci. 2018;75:813–24.

    Article  Google Scholar 

  • Rodríguez-Ezpeleta N, Bradbury IR, Mendibil I, Álvarez P, Cotano U, Irigoien X. Population structure of Atlantic mackerel inferred from RAD-seq-derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection. Mol Ecol Resour. 2016;16(4):991–1001.

    Article  PubMed  CAS  Google Scholar 

  • Ropert-Coudert Y, Bost CA, Handrich Y, Bevan RM, Butler PJ, Woakes AJ, Le Maho Y. Impact of externally attached loggers on the diving behaviour of the king penguin. Physiol Biochem Zool. 2000;73(4):438–44.

    Article  CAS  PubMed  Google Scholar 

  • Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation. Nat Rev Genet. 2013;14(11):807.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter S, de Young B. Cascading effects of overfishing marine systems. Trends Ecol Evol. 2005;20(11):579–81.

    Article  PubMed  Google Scholar 

  • Schwabl P, Llewellyn MS, Landguth EL, Andersson B, Kitron U, Costales JA, et al. Prediction and prevention of parasitic diseases using a landscape genomics framework. Trends Parasitol. 2017;33(4):264–75.

    Article  PubMed  Google Scholar 

  • Shafer AB, Wolf JB, Alves PC, Bergström L, Bruford MW, Brännström I, et al. Genomics and the challenging translation into conservation practice. Trends Ecol Evol. 2015;30(2):78–87.

    Article  PubMed  Google Scholar 

  • Shafer AB, Northrup JM, Wikelski M, Wittemyer G, Wolf JB. Forecasting ecological genomics: high-tech animal instrumentation meets high-throughput sequencing. PLoS Biol. 2016;14(1):e1002350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanley RR, DiBacco C, Lowen B, Beiko RG, Jeffery NW, Van Wyngaarden M, et al. A climate-associated multispecies cryptic cline in the northwest Atlantic. Sci Adv. 2018;4(3):eaaq0929.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stockwell BL, Larson WA, Waples RK, Abesamis RA, Seeb LW, Carpenter KE. The application of genomics to inform conservation of a functionally important reef fish (Scarus niger) in the Philippines. Conserv Genet. 2016;17(1):239–49.

    Article  Google Scholar 

  • Stokstad E. To fight illegal fishing, forensic DNA gets local. Science. 2010;330:1468–9.

    Article  CAS  PubMed  Google Scholar 

  • Therkildsen NO, Nielsen EE, Swain DP, Pedersen JS. Large effective population size and temporal genetic stability in Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can J Fish Aquat Sci. 2010;67(10):1585–95.

    Article  Google Scholar 

  • Therkildsen NO, Hemmer-Hansen J, Als TD, Swain DP, Morgan MJ, Trippel EA, et al. Microevolution in time and space: SNP analysis of historical DNA reveals dynamic signatures of selection in Atlantic cod. Mol Ecol. 2013;22(9):2424–40.

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela-Quiñonez F. How fisheries management can benefit from genomics? Brief Funct Genomics. 2016;15(5):352–7.

    Article  PubMed  Google Scholar 

  • Van Wyngaarden M, Snelgrove PV, DiBacco C, Hamilton LC, Rodríguez-Ezpeleta N, Jeffery NW, et al. Identifying patterns of dispersal, connectivity and selection in the sea scallop, Placopecten magellanicus, using RAD seq-derived SNP s. Evol Appl. 2017;10(1):102–17.

    Article  PubMed  CAS  Google Scholar 

  • Vendrami DL, Telesca L, Weigand H, Weiss M, Fawcett K, Lehman K, et al. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: implications for understanding phenotypic plasticity. R Soc Open Sci. 2017;4(2):160548.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waples RS. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered. 1998;89(5):438–50.

    Article  Google Scholar 

  • Waples RS, Gaggiotti O. INVITED REVIEW: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol. 2006;15(6):1419–39.

    Article  CAS  PubMed  Google Scholar 

  • Waples RS, Naish KA. Genetic and evolutionary considerations in fishery management: research needs for the future. In: The future of fisheries science in North America. Dordrecht: Springer; 2009. p. 427–51.

    Chapter  Google Scholar 

  • Waples RS, Pess GR, Beechie T. Evolutionary history of Pacific salmon in dynamic environments. Evol Appl. 2008;1(2):189–206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward RD. Genetics in fisheries management. Hydrobiologia. 2000;420(1):191–201.

    Article  CAS  Google Scholar 

  • Whitlock MC, Mccauley DE. Indirect measures of gene flow and migration: FST≠ 1/(4Nm+ 1). Heredity. 1999;82(2):117–25.

    Article  PubMed  Google Scholar 

  • Willette DA, Allendorf FW, Barber PH, Barshis DJ, Carpenter KE, Crandall ED, et al. So, you want to use next-generation sequencing in marine systems? Insight from the Pan-Pacific Advanced Studies Institute. Bull Mar Sci. 2014;90(1):79–122.

    Article  Google Scholar 

  • Willing EM, Dreyer C, Van Oosterhout C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS One. 2012;7(8):e42649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S. Evolution in Mendelian populations. Genetics. 1931;16(2):97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuereb A, Benestan L, Normandeau E, Daigle RM, Curtis JM, Bernatchez L, Fortin MJ. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RAD seq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol Ecol. 2018;27(10):2347–64.

    Article  PubMed  Google Scholar 

  • Yeaman S, Whitlock MC. The genetic architecture of adaptation under migration–selection balance. Evolution. 2011;65(7):1897–911.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Benestan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benestan, L. (2019). Population Genomics Applied to Fishery Management and Conservation. In: Oleksiak, M., Rajora, O. (eds) Population Genomics: Marine Organisms. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2019_66

Download citation

Publish with us

Policies and ethics