Skip to main content

Population Genomics: Advancing Understanding of Nature

  • Chapter
  • First Online:
Population Genomics

Part of the book series: Population Genomics ((POGE))

Abstract

Population genomics is advancing our understanding of evolution, ecology, conservation, agriculture, forestry, and human health by allowing new and long-standing questions to be addressed with unprecedented power and accuracy. These advances result from plummeting costs for DNA sequencing, which makes genotyping feasible for hundreds to millions of individuals and loci, and also allows for the study of variation in gene expression, epigenetic variation, and proteins. The increased power also results from the development of innovative software, statistical approaches, and models to extract information from massive next-generation sequencing datasets. Among the most exciting developments are conceptually novel approaches that are advancing understanding about inbreeding and outbreeding depression, adaptive gene flow, population demographic history, and the genomic basis of local adaptation and speciation. Remaining challenges in applying genomics to natural and managed populations include the limited understanding and availability of validated bioinformatics pipelines for genotyping and analyzing genomic data. We also lack knowledge of best practices and general guidelines for filtering and genotyping genomic data including restriction site-associated DNA sequences (RAD), targeted DNA capture, and pooled sequencing. Finally, we emphasize the need for continued rigorous teaching of population genetics theory, so that the next generation of population genomicists can ask well-informed questions and interpret next-generation sequence datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afgan E, Baker D, van den Beek M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44:W3–W10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahrens CW, Rymer PD, Stow A, et al. The search for loci under selection: trends, biases and progress. Mol Ecol. 2018;27:1342–56.

    PubMed  Google Scholar 

  • Alachiotis N, Pavlidis P. RAiSD detects positive selection based on multiple signatures of a selective sweep and SNP vectors. Commun Biol. 2018;1:79.

    PubMed  PubMed Central  Google Scholar 

  • Ali OA, O’Rourke SM, Amish SJ, et al. RAD capture (rapture): flexible and efficient sequence-based genotyping. BioRxiv. 2015;52:4–7.

    Google Scholar 

  • Allendorf FW. Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol. 2017;26:420–30.

    CAS  PubMed  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11:697–709.

    CAS  PubMed  Google Scholar 

  • Allendorf FW, et al. Conservation and the genetics of populations. Hoboken: Wiley; 2013.

    Google Scholar 

  • Aller EST, Jagd LM, Kliebenstein DJ, Burow M. Comparison of the relative potential for epigenetic and genetic variation to contribute to trait stability. G3. 2018;8:1733–46.

    PubMed  PubMed Central  Google Scholar 

  • Amaral AJ, Megens H-J, Crooijmans RPMA, Heuven HCM, Groenen MAM. Linkage disequilibrium decay and haplotype block structure in the pig. Genetics. 2008;179:569–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ameur A, Kloosterman WP, Hestand MS. Single-molecule sequencing: towards clinical applications. Trends Biotechnol. 2018. In press.

    Google Scholar 

  • Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics. 2011;188:799–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews KR, Luikart G. Recent novel approaches for population genomics data analysis. Mol Ecol. 2014;23:1661–7.

    PubMed  Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armengaud J. Next-generation proteomics faces new challenges in environmental biotechnology. Curr Opin Biotechnol. 2016;38:174–82.

    CAS  PubMed  Google Scholar 

  • Armstrong C, Richardson DS, Hipperson H, et al. Genomic associations with bill length and disease reveal drift and selection across island bird populations. Evol Lett. 2018;2(1):22–36.

    PubMed  PubMed Central  Google Scholar 

  • Axelsson E, Ratnakumar A, Arendt ML, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013;495:360–4.

    CAS  PubMed  Google Scholar 

  • Baetscher DS, Clemento AJ, Ng TC, Anderson EC, Garza JC. Microhaplotypes provide increased power from short-read DNA sequences for relationship inference. Mol Ecol Resour. 2018;18:296–305.

    CAS  PubMed  Google Scholar 

  • Balkenhol N, Dudaniec RY, Krutovsky KV, Johnson JS, Cairns DM, Segelbacher G, et al. Landscape genomics: understanding relationships between environmental heterogeneity and genomic characteristics of populations. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2017. https://doi.org/10.1111/eva.12672.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barson NJ, Aykanat T, Hindar K, et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature. 2015;528:405–8.

    CAS  PubMed  Google Scholar 

  • Beichman AC, Phung TN, Lohmueller KE. Comparison of single genome and allele frequency data reveals discordant demographic histories. G3. 2017;7:3605–20.

    PubMed  PubMed Central  Google Scholar 

  • Beja-Pereira A, Luikart G, England PR, et al. Gene-culture coevolution between cattle milk protein genes and human lactase genes. Nat Genet. 2003;35:311–3.

    CAS  PubMed  Google Scholar 

  • Beja-Pereira A, et al. Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour. 2009;9:1279–301.

    PubMed  Google Scholar 

  • Ben Maamar M, Sadler-Riggleman I, Beck D, Skinner MK. Epigenetic transgenerational inheritance of altered sperm histone retention sites. Sci Rep. 2018;8:5308.

    PubMed  PubMed Central  Google Scholar 

  • Benestan LM, Ferchaud AL, Hohenlohe PA, et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol Ecol. 2016;25:2967–77.

    PubMed  Google Scholar 

  • Bérénos C, Ellis PA, Pilkington JG, et al. Heterogeneity of genetic architecture of body size traits in a free-living population. Mol Ecol. 2015;24:1810–30.

    PubMed  PubMed Central  Google Scholar 

  • Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. Genomic analysis reveals depression due to both individual and maternal inbreeding in a free-living mammal population. Mol Ecol. 2016;25:3152–68.

    PubMed  PubMed Central  Google Scholar 

  • Berg JJ, Coop G. A population genetic signal of polygenic adaptation. PLoS Genet. 2014;10:e1004412.

    PubMed  PubMed Central  Google Scholar 

  • Berthelot C, Brunet F, Chalopin D, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5:3657.

    PubMed  Google Scholar 

  • Betts A, Gray C, Zelek M, MacLean RC, King KC. High parasite diversity accelerates host adaptation and diversification. Science. 2018;360:907–11.

    CAS  PubMed  Google Scholar 

  • Bi K, Vanderpool D, Singhal S, et al. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics. 2012;13:403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biron D, et al. Population proteomics: an emerging discipline to study metapopulation ecology. Proteomics. 2006;6:1712–5.

    CAS  PubMed  Google Scholar 

  • Black WC, Baer CF, Antolin MF, DuTeau NM. Population genomics : genome-wide sampling of insect populations. Annu Rev Entomol. 2001;46:441–69.

    CAS  PubMed  Google Scholar 

  • Blankenberg D, Von KG, Coraor N, et al. Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. 2010;89:1–21.

    Google Scholar 

  • Blanquart F, Kaltz O, Nuismer SL, Gandon S. A practical guide to measuring local adaptation. Ecol Lett. 2013;16:1195–205.

    PubMed  Google Scholar 

  • Boitard S, Rodríguez W, Jay F, Mona S, Austerlitz F. Inferring population size history from large samples of genome-wide molecular data – an approximate Bayesian computation approach. PLoS Genet. 2016;12:e1005877.

    PubMed  PubMed Central  Google Scholar 

  • Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol. 2007;21:697–708.

    PubMed  Google Scholar 

  • Bos K, et al. Parallel detection of ancient pathogens via array-based DNA capture. Philos Trans R Soc Lond B Biol Sci. 2015;370:20130375.

    PubMed  PubMed Central  Google Scholar 

  • Bourret V, Dionne M, Bernatchez L. Detecting genotypic changes associated with selective mortality at sea in Atlantic salmon: polygenic multilocus analysis surpasses genome scan. Mol Ecol. 2014;23:4444–57.

    CAS  PubMed  Google Scholar 

  • Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brauer CJ, Unmack PJ, Smith S, Bernatchez L, Beheregaray LB. On the roles of landscape heterogeneity and environmental variation in determining population genomic structure in a dendritic system. Mol Ecol. 2018;27:3484–97.

    CAS  PubMed  Google Scholar 

  • Brelsford A, Toews DPL, Irwin DE. Admixture mapping in a hybrid zone reveals loci associated with avian feather coloration. Proc Roy Soc B Biol Sci. 2017;284:20171106.

    Google Scholar 

  • Brieuc MSO, Ono K, Drinan DP, Naish KA. Integration of random forest with population-based outlier analyses provides insight on the genomic basis and evolution of run timing in Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol. 2015;24:2729–46.

    PubMed  Google Scholar 

  • Browning SR, Browning BL. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. Am J Hum Genet. 2015;97:404–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bürger R, Akerman A. The effects of linkage and gene flow on local adaptation: a two-locus continent-island model. Theor Popul Biol. 2011;80:272–88.

    PubMed  PubMed Central  Google Scholar 

  • Burri R, Nater A, Kawakami T, et al. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 2015;25:1656–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burri R, Antoniazza S, Gaigher A, et al. The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean. Evolution. 2016;70:140–53.

    PubMed  Google Scholar 

  • Cabrera AA, Palsbøll PJ. Inferring past demographic changes from contemporary genetic data: a simulation-based evaluation of the ABC methods implemented in diyabc. Mol Ecol Resour. 2017;17:e94–e110.

    CAS  PubMed  Google Scholar 

  • Cammen KM, Schultz TF, Don Bowen W, et al. Genomic signatures of population bottleneck and recovery in Northwest Atlantic pinnipeds. Ecol Evol. 2018;8:6599–614.

    PubMed  PubMed Central  Google Scholar 

  • Campana MG, Hawkins MTR, Henson LH, et al. Simultaneous identification of host, ectoparasite and pathogen DNA via in-solution capture. Mol Ecol Resour. 2016;16:1224–39.

    CAS  PubMed  Google Scholar 

  • Campbell LJ, Hammond SA, Price SJ, et al. A novel approach to wildlife transcriptomics provides evidence of disease-mediated differential expression and changes to the microbiome of amphibian populations. Mol Ecol. 2018;27:1413–27.

    CAS  PubMed  Google Scholar 

  • Campos JL, Halligan DL, Haddrill PR, Charlesworth B. The relation between recombination rate and patterns of molecular evolution and variation in drosophila melanogaster. Mol Biol Evol. 2014;31:1010–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Candy JR, Campbell NR, Grinnell MH, et al. Population differentiation determined from putative neutral and divergent adaptive genetic markers in Eulachon (Thaleichthys pacificus, Osmeridae), an anadromous Pacific smelt. Mol Ecol Resour. 2015;15:1421–34.

    PubMed  Google Scholar 

  • Carneiro M, Albert FW, Afonso S, et al. The genomic architecture of population divergence between subspecies of the European rabbit. PLoS Genet. 2014;10:e1003519.

    PubMed  PubMed Central  Google Scholar 

  • Castellano S, Parra G, Sanchez-Quinto FA, et al. Patterns of coding variation in the complete exomes of three Neanderthals. Proc Natl Acad Sci. 2014;111:6666–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–40.

    PubMed  PubMed Central  Google Scholar 

  • Catchen JM, Hohenlohe PA, Bernatchez L, et al. Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol Ecol Resour. 2017;17:362–5.

    CAS  PubMed  Google Scholar 

  • Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet. 2018;19:220–34.

    CAS  PubMed  Google Scholar 

  • Charlesworth B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet. 2009;10:195–205.

    CAS  PubMed  Google Scholar 

  • Charlesworth B. Molecular population genomics: a short history. Genet Res. 2010;92:397–411.

    Google Scholar 

  • Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet. 2009;10:783–96.

    CAS  PubMed  Google Scholar 

  • Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993;134:1289–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth B, Charlesworth D, Coyne JA, Langley CH. Hubby and Lewontin on protein variation in natural populations: when molecular genetics came to the rescue of population genetics. Genetics. 2016;203:1497–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charlesworth D, Barton NH, Charlesworth B. The sources of adaptive variation. Proc Roy Soc B Biol Sci. 2017;284:20162864.

    Google Scholar 

  • Chen Z, Farrell AP, Matala A, Hoffman N, Narum SR. Physiological and genomic signatures of evolutionary thermal adaptation in redband trout from extreme climates. Evol Appl. 2018. https://doi.org/10.1111/eva.12672.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier F, Martin O, Rofidal V, et al. Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics. 2004;4:1372–81.

    CAS  PubMed  Google Scholar 

  • Chiou KL, Bergey CM. Methylation-based enrichment facilitates low-cost, noninvasive genomic scale sequencing of populations from feces. Sci Rep. 2018;8:1975.

    PubMed  PubMed Central  Google Scholar 

  • Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christie MR, Marine ML, Fox SE, French RA, Blouin MS. A single generation of domestication heritably alters the expression of hundreds of genes. Nat Commun. 2016;7:10676.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu AY, Tin A, Schlosser P, et al. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat Commun. 2017;8:1286.

    PubMed  PubMed Central  Google Scholar 

  • Colinet H, Pineau C, Com E. Large scale phosphoprotein profiling to explore Drosophila cold acclimation regulatory mechanisms. Sci Rep. 2017;7:1713.

    PubMed  PubMed Central  Google Scholar 

  • Conte GL, Hodgins KA, Yeaman S, et al. Bioinformatically predicted deleterious mutations reveal complementation in the interior spruce hybrid complex. BMC Genomics. 2017;18:970.

    PubMed  PubMed Central  Google Scholar 

  • Cooke NP, Nakagome S. Fine-tuning of approximate Bayesian computation for human population genomics. Curr Opin Genet Dev. 2018;53:60–9.

    CAS  PubMed  Google Scholar 

  • Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations to identify loci underlying local adaptation. Genetics. 2010;185:1411–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corbett-Detig RB, Hartl DL, Sackton TB. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol. 2015;13:e1002112.

    PubMed  PubMed Central  Google Scholar 

  • Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996;144:2001–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosart T, Beja-Pereira A, Chen S, et al. Exome-wide DNA capture and next generation sequencing in domestic and wild species. BMC Genomics. 2011;12:347–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol. 2014;23:3133–57.

    PubMed  Google Scholar 

  • Cutter AD, Payseur BA. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet. 2013;14:262–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S. Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics. 2018;19:217.

    PubMed  PubMed Central  Google Scholar 

  • De Kort H, Baguette M, Prunier JG, et al. Genetic costructure in a meta-community under threat of habitat fragmentation. Mol Ecol. 2018;27:2193–203.

    PubMed  Google Scholar 

  • De La Torre AR, Birol I, Bousquet J, et al. Insights into conifer giga-genomes. Plant Physiol. 2014;166:1724–32.

    PubMed  PubMed Central  Google Scholar 

  • De Mita S, Thuillet AC, Gay L, et al. Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol Ecol. 2013;22:1383–99.

    PubMed  Google Scholar 

  • Degiorgio M, Huber CD, Hubisz MJ, Hellmann I, Nielsen R. SweepFinder2: increased sensitivity, robustness and flexibility. Bioinformatics. 2016;32:1895–7.

    CAS  PubMed  Google Scholar 

  • DeLong EF. The microbial ocean from genomes to biomes. Nature. 2009;459:200–6.

    CAS  PubMed  Google Scholar 

  • Denef VJ. Peering into the genetic makeup of natural microbial populations using metagenomics. In: Polz MF, Om PR, editors. Population genomics: microorganisms. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_14.

    Chapter  Google Scholar 

  • Di G, Miao X, Ke C, et al. Protein changes in abalone foot muscle from three geographical populations of Haliotis diversicolor based on proteomic approach. Ecol Evol. 2016;6:3645–57.

    PubMed  PubMed Central  Google Scholar 

  • Dinsdale EA, Edwards RA, Hall D, et al. Functional metagenomic profiling of nine biomes. Nature. 2008;452:629–32.

    CAS  PubMed  Google Scholar 

  • Do C, Waples RS, Peel D, et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour. 2014;14:209–14.

    CAS  PubMed  Google Scholar 

  • Dobrynin P, Liu S, Tamazian G, et al. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol. 2015;16:277.

    PubMed  PubMed Central  Google Scholar 

  • Dowle EJ, Pochon X, C Banks J, Shearer K, Wood SA. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates. Mol Ecol Resour. 2016;16:1240–54.

    CAS  PubMed  Google Scholar 

  • Dupuis JR, Oliver JC, Brunet BMT, et al. Genomic data indicate ubiquitous evolutionary distinctiveness among populations of California metalmark butterflies. Conserv Genet. 2018. In press.

    Google Scholar 

  • Duranton M, Allal F, Fraïsse C, et al. The origin and remolding of genomic islands of differentiation in the European sea bass. Nat Commun. 2018;9:2518.

    PubMed  PubMed Central  Google Scholar 

  • Eaton DAR. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics. 2014;30:1844–9.

    CAS  PubMed  Google Scholar 

  • Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. Reticulation, divergence, and the phylogeography–phylogenetics continuum. Proc Natl Acad Sci. 2016;113:8025–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichten SR, Briskine R, Song J, et al. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell. 2013;25:2783–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elbasyoni IS, Lorenz AJ, Guttieri M, et al. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Sci. 2018;270:123–30.

    CAS  PubMed  Google Scholar 

  • Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol. 2014;29:51–63.

    PubMed  Google Scholar 

  • Ellegren H, Smeds L, Burri R, et al. The genomic landscape of species divergence in Ficedula flycatchers. Nature. 2012;491:756–60.

    CAS  PubMed  Google Scholar 

  • Elleouet JS, Aitken SN. Exploring approximate Bayesian computation for inferring recent demographic history with genomic markers in nonmodel species. Mol Ecol Resour. 2018;18:525–40.

    CAS  PubMed  Google Scholar 

  • Epstein B, et al. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Microbiome. 2016;6(1):168.

    Google Scholar 

  • Farek J, Hughes D, Mansfield A, et al. xAtlas: scalable small variant calling across heterogeneous next-generation sequencing experiments. BioRxiv. 2018:295071.

    Google Scholar 

  • Faria NR, Kraemer MUG, Hill S, et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. BioRxiv. 2018:299842.

    Google Scholar 

  • Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics. 2000;155:1405–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feau N, Beauseigle S, Bergeron M-J, et al. Genome-enhanced detection and identification (GEDI) of plant pathogens. PeerJ. 2018;6:e4392.

    PubMed  PubMed Central  Google Scholar 

  • Feder JL, Egan SP, Nosil P. The genomics of speciation-with-gene-flow. Trends Genet. 2012;28:342–50.

    CAS  PubMed  Google Scholar 

  • Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. On detecting incomplete soft or hard selective sweeps using haplotype structure. Mol Biol Evol. 2014;31:1275–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher R. The theory of inbreeding. 2nd ed. Edinburgh: Oliver & Boyd; 1965.

    Google Scholar 

  • Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl. 2018;11:1035–52.

    PubMed  Google Scholar 

  • Foll M, Fischer MC, Heckel G, Excoffier L. Estimating population structure from AFLP amplification intensity. Mol Ecol. 2010;19:4638–47.

    CAS  PubMed  Google Scholar 

  • Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol. 2016;25:104–20.

    CAS  PubMed  Google Scholar 

  • Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol Ecol. 2018;27:2215–33.

    CAS  PubMed  Google Scholar 

  • Forstmeier W, Schielzeth H, Mueller JC, Ellegren H, Kempenaers B. Heterozygosity-fitness correlations in zebra finches: microsatellite markers can be better than their reputation. Mol Ecol. 2012;21:3237–49.

    PubMed  Google Scholar 

  • Foust CM, Preite V, Schrey AW, et al. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Mol Ecol. 2016;25:1639–52.

    CAS  PubMed  Google Scholar 

  • Fraïsse C, Roux C, Gagnaire P-A, et al. The divergence history of European blue mussel species reconstructed from approximate Bayesian computation: the effects of sequencing techniques and sampling strategies. PeerJ. 2018;6:e5198.

    PubMed  PubMed Central  Google Scholar 

  • Franklin IR. The distribution of the proportion of the genome which is homozygous by descent in inbred individuals. Theor Popul Biol. 1977;11:60–80.

    CAS  PubMed  Google Scholar 

  • Frantz LAF, Mullin VE, Pionnier-Capitan M, et al. Genomic and archaeological evidence suggests a dual origin of domestic dogs. Science. 2016;352:1228–31.

    CAS  PubMed  Google Scholar 

  • Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol Evol. 2012;27:489–96.

    PubMed  PubMed Central  Google Scholar 

  • Funk WC, Forester BR, Converse SJ, Darst C, Morey S. Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. Conserv Genet. 2018. In press.

    Google Scholar 

  • Gamboa M, Tsuchiya MC, Matsumoto S, Iwata H, Watanabe K. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan. Arch Insect Biochem Physiol. 2017;96:e21422.

    Google Scholar 

  • Gapp K, Bohacek J. Epigenetic germline inheritance in mammals: looking to the past to understand the future. Genes Brain Behav. 2018;17:e12407.

    CAS  PubMed  Google Scholar 

  • Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17:667–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia SL, Stevens SLR, Crary B, Martinez-Garcia M, Stepanauskas R, et al. Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations. ISME J. 2018;12:742–55. https://doi.org/10.1038/s41396-017-0001-0.

    Article  CAS  PubMed  Google Scholar 

  • Garner BA, Hand BK, Amish SJ, et al. Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol Evol. 2016;31:81–2.

    PubMed  Google Scholar 

  • Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res. 2016;44:4504–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier J, Mouden C, Suchan T, et al. DiscoSnp-RAD: de novo detection of small variants for population genomics. BioRxiv. 2017:216747.

    Google Scholar 

  • Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ. 2017;5:e4147.

    PubMed  PubMed Central  Google Scholar 

  • Geigl E-M, Grange T. Of cats and men: ancient dNA reveals how the cat conquered the ancient world. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_26.

    Chapter  Google Scholar 

  • Ghalambor CK, Hoke KL, Ruell EW, et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature. 2015;525:372–5.

    CAS  PubMed  Google Scholar 

  • Giardine B, Riemer C, Hardison RC, et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005;15:1451–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson G. Population genetics and GWAS: a primer. PLoS Biol. 2018;16:e2005485.

    PubMed  PubMed Central  Google Scholar 

  • Gilbert KJ, Whitlock MC. Evaluating methods for estimating local effective population size with and without migration. Evolution. 2015;69:2154–66.

    PubMed  Google Scholar 

  • Gompert Z. A continuous correlated beta process model for genetic ancestry in admixed populations. PLoS One. 2016;11:e0151047.

    PubMed  PubMed Central  Google Scholar 

  • Goudet J, Kay T, Weir BS. How to estimate kinship. Mol Ecol. 2018. In press.

    Google Scholar 

  • Gray MM, Granka JM, Bustamante CD, et al. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics. 2009;181:1493–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossen C, Biebach I, Angelone-Alasaad S, Keller LF, Croll D. Population genomics analyses of European ibex species show lower diversity and higher inbreeding in reintroduced populations. Evol Appl. 2018;11:123–39.

    CAS  PubMed  Google Scholar 

  • Gruber B, Unmack PJ, Berry OF, Georges A. dartr: an r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour. 2018;18:691–9.

    PubMed  Google Scholar 

  • Guan Y. Detecting structure of haplotypes and local ancestry. Genetics. 2014;196:625–42.

    PubMed  PubMed Central  Google Scholar 

  • Gugger PF, Fitz-Gibbon S, Pellegrini M, Sork VL. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol Ecol. 2016;25:1665–80.

    CAS  PubMed  Google Scholar 

  • Gunther T, Coop G. Robust identification of local adaptation from allele frequencies. Genetics. 2013;195:205–20.

    PubMed  PubMed Central  Google Scholar 

  • Gur A, Tzuri G, Meir A, et al. Genome-wide linkage-disequilibrium mapping to the candidate gene level in melon (Cucumis melo). Sci Rep. 2017;7:9770.

    PubMed  PubMed Central  Google Scholar 

  • Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009;5:e1000695.

    PubMed  PubMed Central  Google Scholar 

  • Hackinger S, Kraaijenbrink T, Xue Y, et al. Wide distribution and altitude correlation of an archaic high-altitude-adaptive EPAS1 haplotype in the Himalayas. Hum Genet. 2016;135:393–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock AM, et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 2011;334:83–6.

    CAS  PubMed  Google Scholar 

  • Hand BK, Hether TD, Kovach RP, et al. Genomics and introgression: discovery and mapping of thousands of species-diagnostic SNPs using RAD sequencing. Curr Zool. 2015a;61:146–54.

    Google Scholar 

  • Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G. Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol. 2015b;30:161–8.

    PubMed  Google Scholar 

  • Hanghøj K, Orlando L, Hanghøj K, Orlando ÁL. Ancient epigenomics. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_18.

    Chapter  Google Scholar 

  • Hansen MM. Expression of interest: transcriptomics and the designation of conservation units. Mol Ecol. 2010;19:1757–9.

    PubMed  Google Scholar 

  • Hare MP, Nunney L, Schwartz MK, et al. Understanding and estimating effective population size for practical application in marine species management. Conserv Biol. 2011;25:438–49.

    PubMed  Google Scholar 

  • Harr B. Genomic islands of differentiation between house mouse subspecies. Genome Res. 2006;16:730–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris K, Nielsen R. Inferring demographic history from a spectrum of shared haplotype lengths. PLoS Genet. 2013;9:e1003521.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris C, Rousset F, Morlais I, Fontenille D, Cohuet A. Low linkage disequilibrium in wild Anopheles gambiae s.l. populations. BMC Genet. 2010;11:81.

    PubMed  PubMed Central  Google Scholar 

  • Harrisson KA, Amish SJ, Pavlova A, et al. Signatures of polygenic adaptation associated with climate across the range of a threatened fish species with high genetic connectivity. Mol Ecol. 2017;26:6253–69.

    PubMed  Google Scholar 

  • Haussler D, O’Brien SJ, Ryder OA, et al. Genome 10K: a proposal to obtain whole-genome sequence for 10000 vertebrate species. J Hered. 2009;100:659–74.

    Google Scholar 

  • Hedrick PW, Garcia-Dorado A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol Evol. 2016;31:940–52.

    PubMed  Google Scholar 

  • Heintzman PD, Soares AER, Chang D, Shapiro B. Paleogenomics. Rev Cell Biol Mol Med. 2015;1:243–67.

    Google Scholar 

  • Hendricks S, Anderson EC, Antao T, et al. Recent advances in conservation and population genomics data analysis. Evol Appl. 2018;11:1197–211.

    PubMed Central  Google Scholar 

  • Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005;169:2335–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hermisson J, Pennings PS. Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods Ecol Evol. 2017;8:700–16.

    Google Scholar 

  • Hidalgo-Galiana A, Monge M, Biron DG, et al. Protein expression parallels thermal tolerance and ecologic changes in the diversification of a diving beetle species complex. Heredity. 2016;116:114–23.

    CAS  PubMed  Google Scholar 

  • Hoban S. Integrative conservation genetics: prioritizing populations using climate predictions, adaptive potential and habitat connectivity. Mol Ecol Resour. 2018;18:14–7.

    PubMed  Google Scholar 

  • Hoban SM, Gaggiotti OE, Bertorelle G. The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: a simulation-based study. Mol Ecol. 2013;22:3444–50.

    PubMed  Google Scholar 

  • Hoban S, Kelley JL, Lotterhos KE, et al. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat. 2016;188:379–97.

    PubMed  PubMed Central  Google Scholar 

  • Hodel RG, Chandler LM, Fahrenkrog AM, et al. Linking genome signatures of selection and adaptation in non-model plants: exploring potential and limitations in the angiosperm Amborella. Curr Opin Plant Biol. 2018;42:81–9.

    PubMed  Google Scholar 

  • Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet. 2007;39:1522–7.

    CAS  PubMed  Google Scholar 

  • Hoffberg SL, Kieran TJ, Catchen JM, et al. RADcap: sequence capture of dual-digest RADseq libraries with identifiable duplicates and reduced missing data. Mol Ecol Resour. 2016;16:1264–78.

    CAS  PubMed  Google Scholar 

  • Hoffman JI, Simpson F, David P, et al. High-throughput sequencing reveals inbreeding depression in a natural population. Proc Natl Acad Sci. 2014;111:3775–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogg JT. Mating in bighorn sheep: multiple creative male strategies. Science. 1984;225:526–9.

    CAS  PubMed  Google Scholar 

  • Hohenlohe PA, Bassham S, Etter PD, et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 2010a;6:e1000862.

    PubMed  PubMed Central  Google Scholar 

  • Hohenlohe PA, Phillips PC, Cresko WA. Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci. 2010b;171:1059–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hohenlohe PA, Hand BK, Andrews KR, Luikart G. Population genomics provides key insights in ecology and evolution. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_20.

    Chapter  Google Scholar 

  • Holliday JA, Ritland K, Aitken SN. Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol. 2010;188:501–14.

    PubMed  Google Scholar 

  • Holliday JA, Wang T, Aitken S. Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using random forest. G3. 2012;2:1085–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday JA, Hallerman EM, Haak DC. Genotyping and sequencing technologies in population genetics and genomics. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2017_5.

    Chapter  Google Scholar 

  • Horsthemke B. A critical view on transgenerational epigenetic inheritance in humans. Nat Commun. 2018;9:2973.

    PubMed  PubMed Central  Google Scholar 

  • Howard JT, Haile-Mariam M, Pryce JE, Maltecca C. Investigation of regions impacting inbreeding depression and their association with the additive genetic effect for United States and Australia Jersey dairy cattle. BMC Genomics. 2015;16:813.

    PubMed  PubMed Central  Google Scholar 

  • Hu J, Barrett RDH. Epigenetics in natural animal populations. J Evol Biol. 2017;30:1612–32.

    CAS  PubMed  Google Scholar 

  • Huber B, Whibley A, Poul YL, et al. Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies. Heredity. 2015;114:515–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta-Sánchez E, Jin X, Asan, et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature. 2014;512:194–7.

    PubMed  PubMed Central  Google Scholar 

  • Huisman J, Kruuk LEB, Ellis PA, Clutton-Brock T, Pemberton JM. Inbreeding depression across the lifespan in a wild mammal population. Proc Natl Acad Sci U S A. 2016;113:3585–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humble E, Dasmahapatra KK, Martinez-Barrio A, et al. RAD sequencing and a hybrid antarctic fur seal genome assembly reveal rapidly decaying linkage disequilibrium, global population structure and evidence for inbreeding. G3. 2018;8:2709–22.

    PubMed  PubMed Central  Google Scholar 

  • Hunter ME, Hoban SM, Bruford MW, Segelbacher G, Bernatchez L. Next-generation conservation genetics and biodiversity monitoring. Evol Appl. 2018;11:1029–34.

    PubMed  PubMed Central  Google Scholar 

  • Husby A, Kawakami T, Rönnegård L, et al. Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. Proc Biol Sci. 2015;282:20150156.

    PubMed  PubMed Central  Google Scholar 

  • Jensen JD, Foll M, Bernatchez L. The past, present and future of genomic scans for selection. Mol Ecol. 2016;25:1–4.

    PubMed  Google Scholar 

  • Johnson EC, Evans LM, Keller MC. Relationships between estimated autozygosity and complex traits in the UK Biobank. PLoS Genet. 2018a;14:e1007556.

    PubMed  PubMed Central  Google Scholar 

  • Johnson JS, Krutovsky KV, Rajora OP, Gaddis KD, Cairns DM. Advancing biogeography through population genomics. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018b. https://doi.org/10.1007/13836_2018_39.

    Chapter  Google Scholar 

  • Johnston SE, McEwan JC, Pickering NK, et al. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol Ecol. 2011;20:2555–66.

    PubMed  Google Scholar 

  • Johnston SE, Gratten J, Berenos C, et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature. 2013;502:93–5.

    CAS  PubMed  Google Scholar 

  • Jones MR, Good JM. Targeted capture in evolutionary and ecological genomics. Mol Ecol. 2016;25:185–202.

    PubMed  Google Scholar 

  • Jones MR, Scott Mills L, Alves PC, et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science. 2018;360:1355–8.

    CAS  PubMed  Google Scholar 

  • Joost S, Bonin A, Bruford MW, et al. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol. 2007;16:3955–69.

    CAS  PubMed  Google Scholar 

  • Kabekkodu SP, Chakrabarty S, Ghosh S, Brand A, Satyamoorthy K. Epigenomics, pharmacoepigenomics, and personalized medicine in cervical cancer. Public Health Genomics. 2017;20:100–15.

    PubMed  Google Scholar 

  • Kardos M, Shafer ABA. The peril of gene-targeted conservation. Trends Ecol Evol. 2018. https://doi.org/10.1016/j.tree.2018.08.011.

    Google Scholar 

  • Kardos M, Luikart G, Allendorf FW. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity. 2015a;115:63–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kardos M, Luikart G, Bunch R, et al. Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol Ecol. 2015b;24:5616–32.

    CAS  PubMed  Google Scholar 

  • Kardos M, Husby A, Mcfarlane SE, Qvarnstrom A, Ellegren H. Whole-genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations. Mol Ecol Resour. 2016a;16:727–41.

    CAS  PubMed  Google Scholar 

  • Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW. Genomics advances the study of inbreeding depression in the wild. Evol Appl. 2016b;9:1205–18.

    PubMed  PubMed Central  Google Scholar 

  • Kardos M, Qvarnström A, Ellegren H. Inferring individual inbreeding and demographic history from segments of identity by descent in Ficedula flycatcher genome sequences. Genetics. 2017;205:1319–34.

    PubMed  PubMed Central  Google Scholar 

  • Kardos M, Åkesson M, Fountain T, et al. Genomic consequences of intensive inbreeding in an isolated wolf population article. Nat Ecol Evol. 2018;2:124–31.

    PubMed  Google Scholar 

  • Karr TL. Application of proteomics to ecology and population biology. Heredity. 2008;100:200–6.

    CAS  PubMed  Google Scholar 

  • Kawakami T, Smeds L, Backström N, et al. A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol Ecol. 2014;23:4035–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller LF, Waller DM. Inbreeding effects in wild populations. Trends Ecol Evol. 2002;17:230–41.

    Google Scholar 

  • Keller MC, Simonson MA, Ripke S, et al. Runs of homozygosity implicate autozygosity as a schizophrenia risk factor. PLoS Genet. 2012;8:e1002656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelso J, Prüfer K. Ancient humans and the origin of modern humans. Curr Opin Genet Dev. 2014;29:133–8.

    CAS  PubMed  Google Scholar 

  • Kijas JW. Detecting regions of homozygosity to map the cause of recessively inherited disease. Methods Mol Biol. 2013;1019:331–45.

    PubMed  Google Scholar 

  • Kim Y, Stephan W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics. 2002;160:765–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirin M, McQuillan R, Franklin CS, et al. Genomic runs of homozygosity record population history and consanguinity. PLoS One. 2010;5:e13996.

    PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick M. How and why chromosome inversions evolve. PLoS Biol. 2010;8:e1000501.

    PubMed  PubMed Central  Google Scholar 

  • Knaus BJ, Grünwald NJ. vcfr: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour. 2017;17:44–53.

    CAS  PubMed  Google Scholar 

  • Knief U, Kempenaers B, Forstmeier W. Meiotic recombination shapes precision of pedigree- and marker-based estimates of inbreeding. Heredity. 2017;118:239–48.

    CAS  PubMed  Google Scholar 

  • Kovach RP, Hand BK, Hohenlohe PA, et al. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc Roy Soc B Biol Sci. 2016;283:20161380.

    Google Scholar 

  • Kozakiewicz CP, Burridge CP, Funk WC, et al. Pathogens in space: advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol Appl. 2018. In press.

    Google Scholar 

  • Kreiner JM, Stinchcombe JR, Wright SI. Population genomics of herbicide resistance: adaptation via evolutionary rescue. Annu Rev Plant Biol. 2018;69:611–35.

    CAS  PubMed  Google Scholar 

  • Küpper C, Stocks M, Risse JE, et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat Genet. 2015;48:79–83.

    PubMed  PubMed Central  Google Scholar 

  • Laforest-Lapointe I, Paquette A, Messier C, Kembel SW. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature. 2017;546(7656):145. https://doi.org/10.1038/nature22399.

    CAS  PubMed  Google Scholar 

  • Lamichhaney S, Fan G, Widemo F, et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet. 2015;48:84–8.

    PubMed  Google Scholar 

  • Lan T, Lindqvist C. Paleogenomics: genome-scale analysis of ancient DNA and population and evolutionary genomic inferences. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2017_7.

    Chapter  Google Scholar 

  • Lander ES, Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science. 1987;236:1567–70.

    CAS  PubMed  Google Scholar 

  • Landry PA, Koskinen MT, Primmed CR. Deriving evolutionary relationships among populations using microsatellites and (δμ)2: all loci are equal, but some are more equal than others. Genetics. 2002;161:1339–47.

    PubMed  PubMed Central  Google Scholar 

  • Laporte M, Pavey SA, Rougeux C, et al. RAD sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic Eels. Mol Ecol. 2016;25:219–37.

    CAS  PubMed  Google Scholar 

  • Larson WA, Seeb LW, Everett MV, et al. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol Appl. 2014;7:355–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson WA, Limborg MT, McKinney GJ, et al. Genomic islands of divergence linked to ecotypic variation in sockeye salmon. Mol Ecol. 2017;26:554–70.

    PubMed  Google Scholar 

  • Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet. 2012;8:e1002453.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Luyer J, Laporte M, Beacham TD, et al. Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proc Natl Acad Sci. 2017;114:12964–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MK, Hong Y, Kim S-Y, Kim WJ, London SJ. Epigenome-wide association study of chronic obstructive pulmonary disease and lung function in Koreans. Epigenomics. 2017;9:971–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Georgiadou A, Otto TD, et al. Transcriptomic studies of malaria: a paradigm for investigation of systemic host-pathogen interactions. Microbiol Mol Biol Rev. 2018;82:e00071–17.

    PubMed  PubMed Central  Google Scholar 

  • Leite DCA, Salles JF, Calderon EN, et al. Coral bacterial-core abundance and network complexity as proxies for anthropogenic pollution. Front Microbiol. 2018;9:833.

    PubMed  PubMed Central  Google Scholar 

  • Leitwein M, Gagnaire P-A, Desmarais E, Berrebi P, Guinand B. Genomic consequences of a recent three-way admixture in supplemented wild brown trout populations revealed by local ancestry tracts. Mol Ecol. 2018;27:3466–83.

    CAS  PubMed  Google Scholar 

  • Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973;74:175–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lind MI, Spagopoulou F. Evolutionary consequences of epigenetic inheritance. Heredity. 2018;121:205–9.

    PubMed  PubMed Central  Google Scholar 

  • Lorenzo FR, Huff C, Myllymäki M, et al. A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet. 2014;46:951–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lotterhos KE, Whitlock MC. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol. 2014;23(9):2178–92.

    PubMed  PubMed Central  Google Scholar 

  • Lowry DB, Hoban S, Kelley JL, et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. 2017;17:142–52.

    CAS  PubMed  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.

    CAS  PubMed  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet. 2010;11:355–73.

    CAS  Google Scholar 

  • Ma L, Sun X, Kong X, et al. Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. J Proteomics. 2015;112:63–82.

    CAS  PubMed  Google Scholar 

  • Malécot G. The mathematics of heredity. San Francisco: W.H. Freeman; 1970.

    Google Scholar 

  • Manthey JD, Campillo LC, Burns KJ, Moyle RG. Comparison of target-capture and restriction-site associated DNA sequencing for phylogenomics: a test in cardinalid tanagers (Aves, Genus: Piranga). Syst Biol. 2016;65:640–50.

    PubMed  PubMed Central  Google Scholar 

  • Marciniak S, Poinar H. Ancient pathogens through human history: a paleogenomic perspective. In: Lindqvist C, Rajora OP, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018.

    Chapter  Google Scholar 

  • Marques DA, Lucek K, Meier JI, et al. Genomics of rapid incipient speciation in sympatric threespine stickleback. PLoS Genet. 2016;12:e1005887.

    PubMed  PubMed Central  Google Scholar 

  • Marques DA, Jones FC, Di Palma F, Kingsley DM, Reimchen TE. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat Ecol Evol. 2018;2:1128–38.

    PubMed  PubMed Central  Google Scholar 

  • Marsden CD, Lee Y, Kreppel K, et al. Diversity, differentiation, and linkage disequilibrium: prospects for association mapping in the malaria vector Anopheles arabiensis. G3. 2014;4:121–31.

    PubMed  Google Scholar 

  • Martin EM, Fry RC. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu Rev Public Health. 2018;39:309–33.

    PubMed  Google Scholar 

  • Martin SH, Dasmahapatra KK, Nadeau NJ, et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 2013;23:1817–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews B, Best RJ, Feulner PGD, Narwani A, Limberger R. Evolution as an ecosystem process: insights from genomics. Genome. 2018;61:298–309.

    PubMed  Google Scholar 

  • Maynard Smith J, Haigh J. The hitch-hiking effect of a favorable gene. Genet Res. 1974;23:23–35.

    Google Scholar 

  • McCartney-Melstad E, Mount GG, Shaffer HB. Exon capture optimization in amphibians with large genomes. Mol Ecol Resour. 2016;16:1084–94.

    CAS  PubMed  Google Scholar 

  • McCoy RC, Akey JM. Selection plays the hand it was dealt: evidence that human adaptation commonly targets standing genetic variation. Genome Biol. 2017;18:139.

    PubMed  PubMed Central  Google Scholar 

  • McKain MR, Johnson MG, Uribe-Convers S, Eaton D, Yang Y. Practical considerations for plant phylogenomics. Appl Plant Sci. 2018;6:e1038.

    PubMed  PubMed Central  Google Scholar 

  • Mckinney GJ, Seeb LW, Larson WA, et al. An integrated linkage map reveals candidate genes underlying adaptive variation in Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol Resour. 2016;16:769–83.

    CAS  PubMed  Google Scholar 

  • McKinney GJ, Larson WA, Seeb LW, Seeb JE. RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol Ecol Resour. 2017a;17:356–61.

    CAS  PubMed  Google Scholar 

  • McKinney GJ, Waples RK, Seeb LW, Seeb JE. Paralogs are revealed by proportion of heterozygotes and deviations in read ratios in genotyping-by-sequencing data from natural populations. Mol Ecol Resour. 2017b;17:656–69.

    CAS  PubMed  Google Scholar 

  • Mckown AD, Klápště J, Guy RD, et al. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol. 2014;203:535–53.

    CAS  PubMed  Google Scholar 

  • McMahon BJ, Teeling EC, Höglund J. How and why should we implement genomics into conservation? Evol Appl. 2014;7:999–1007.

    PubMed  PubMed Central  Google Scholar 

  • Meeks KAC, Henneman P, Venema A, et al. An epigenome-wide association study in whole blood of measures of adiposity among Ghanaians: the RODAM study. Clin Epigenetics. 2017;9:103.

    PubMed  PubMed Central  Google Scholar 

  • Meyer M, Kircher M, Gansauge MT, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338:222–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miao B, Wang Z, Li Y. Genomic analysis reveals hypoxia adaptation in the tibetan mastiff by introgression of the gray wolf from the Tibetan plateau. Mol Biol Evol. 2017;34:734–43.

    CAS  PubMed  Google Scholar 

  • Miles A, Harding NJ, Bottà G, et al. Genetic diversity of the African malaria vector anopheles gambiae. Nature. 2017;552:96–100.

    Google Scholar 

  • Miller JM, Malenfant RM, David P, et al. Estimating genome-wide heterozygosity: effects of demographic history and marker type. Heredity. 2014;112:240–7.

    CAS  PubMed  Google Scholar 

  • Moler ERV, Abakir A, Eleftheriou M, Johnson JS, Krutovsky KV, Lewis LC, Ruzov A, Whipple AV, Rajora OP. Population epigenomics. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018.

    Google Scholar 

  • Moran MA. Metatranscriptomics: eavesdropping on complex microbial communities. Microbe Mag. 2009;4:329–35.

    Google Scholar 

  • Muhlfeld CC, Kalinowski ST, McMahon TE, et al. Hybridization rapidly reduces fitness of a native trout in the wild. Biol Lett. 2009;5:328–31.

    PubMed  PubMed Central  Google Scholar 

  • Nadeau NJ, Kawakami T. Population genomics of speciation and admixture. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_24.

    Chapter  Google Scholar 

  • Nadeau NJ, Ruiz M, Salazar P, et al. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Res. 2014;24:1316–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatochi M, Ichihara S, Yamamoto K, et al. Epigenome-wide association of myocardial infarction with DNA methylation sites at loci related to cardiovascular disease. Clin Epigenetics. 2017;9:54.

    PubMed  PubMed Central  Google Scholar 

  • Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol. 2013;22:2841–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narum SR, Di Genova A, Micheletti SJ, Maass A. Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon. Proc Roy Soc B Biol Sci. 2018;285:20180935.

    Google Scholar 

  • Nash DR, Als TD, Maile R, Jones GR, Boomsma JJ. A mosaic of chemical coevolution in a large blue butterfly. Science. 2008;319:88–90.

    CAS  PubMed  Google Scholar 

  • Nazareno AG, Bemmels JB, Dick CW, Lohmann LG. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour. 2017;17:1136–47.

    CAS  PubMed  Google Scholar 

  • Nedelkov D. Population proteomics: investigation of protein diversity in human populations. Proteomics. 2008;8:779–86.

    CAS  PubMed  Google Scholar 

  • Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW. Investigating diversity in human plasma proteins. Proc Natl Acad Sci. 2005;102:10852–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nedelkov D, U A K, Niederkofler EE, Tubbs KA, Nelson RW. Population proteomics: the concept, attributes, and potential for cancer biomarker research. Mol Cell Proteomics. 2006;5:1811–8.

    CAS  PubMed  Google Scholar 

  • Niederhuth CE, Bewick AJ, Ji L, et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 2016;17:174.

    Google Scholar 

  • Nielsen R, Williamson S, Kim Y, et al. Genomic scans for selective sweeps using SNP data. Genome Res. 2005;15:1566–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson E, et al. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufiency. Epigenetics. 2018;13:875–95.

    PubMed  PubMed Central  Google Scholar 

  • Noble TJ, Tao Y, Mace ES, et al. Characterization of linkage disequilibrium and population structure in a mungbean diversity panel. Front Plant Sci. 2018;8:2102.

    PubMed  PubMed Central  Google Scholar 

  • Norris LC, Main BJ, Lee Y, et al. Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proc Natl Acad Sci. 2015;112:815–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nosil P, Egan SP, Funk DJ. Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution. 2008;62:316–36.

    PubMed  Google Scholar 

  • Nunziata SO, Weisrock DW. Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity. 2018;120:196–207.

    CAS  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84.

    CAS  PubMed  Google Scholar 

  • O’Quin KE, Yoshizawa M, Doshi P, Jeffery WR. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus. PLoS One. 2013;8:e57281.

    PubMed  PubMed Central  Google Scholar 

  • Oomen RA, Hutchings JA. Transcriptomic responses to environmental change in fishes: insights from RNA sequencing. FACETS. 2017;2:610–41.

    Google Scholar 

  • Orlando L. An ancient DNA perspective on horse evolution. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_23.

    Chapter  Google Scholar 

  • Orlando L, Ginolhac A, Zhang G, et al. Recalibrating equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499:74–8.

    CAS  PubMed  Google Scholar 

  • Ozerov MY, Gross R, Bruneaux M, et al. Genomewide introgressive hybridization patterns in wild Atlantic salmon influenced by inadvertent gene flow from hatchery releases. Mol Ecol. 2016;25:1275–93.

    CAS  PubMed  Google Scholar 

  • Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87–98.

    CAS  PubMed  Google Scholar 

  • Palkopoulou E, Mallick S, Skoglund P, et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr Biol. 2015;25:1395–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paradis E, Gosselin T, Goudet J, Jombart T, Schliep K. Linking genomics and population genetics with R. Mol Ecol Resour. 2017;17:54–66.

    CAS  PubMed  Google Scholar 

  • Pardo-Diaz C, Salazar C, Baxter SW, et al. Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genet. 2012;8:e1002752.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parducci L, Nota K, Wood J. Reconstructing past vegetation communities using ancient DNA from lake sediments. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_38.

    Chapter  Google Scholar 

  • Paris JR, Stevens JR, Catchen JM. Lost in parameter space: a road map for stacks. Meth Ecol Evol. 2017;8:1360–73.

    Google Scholar 

  • Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. Mol Ecol. 2016;25:2337–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peek RA, O’Rourke SM, Miller MR. Flow regulation associated with decreased genetic health of a river-breeding frog species. BioRxiv. 2018;316604.

    Google Scholar 

  • Pemberton TJ, Absher D, Feldman MW, et al. Genomic patterns of homozygosity in worldwide human populations. Am J Hum Genet. 2012;91:275–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pemberton JM, Ellis PE, Pilkington JG, Bérénos C. Inbreeding depression by environment interactions in a free-living mammal population. Heredity. 2017;118:64–77.

    CAS  PubMed  Google Scholar 

  • Pennings PS, Hermisson J. Soft sweeps II – molecular population genetics of adaptation from recurrent mutation or migration. Mol Biol Evol. 2006;23:1076–84.

    CAS  PubMed  Google Scholar 

  • Pérez O’Brien AM, Utsunomiya YT, Mészáros G, et al. Assessing signatures of selection through variation in linkage disequilibrium between taurine and indicine cattle. Genet Sel Evol. 2014;46:19.

    PubMed  PubMed Central  Google Scholar 

  • Perry GH, Marioni JC, Melsted P, Gilad Y. Genomic-scale capture and sequencing of endogenous DNA from feces. Mol Ecol. 2010;19:5332–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petkova D, Novembre J, Stephens M. Visualizing spatial population structure with estimated effective migration surfaces. Nat Genet. 2016;48:94–100.

    CAS  PubMed  Google Scholar 

  • Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8:e1002967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pino Del Carpio D, Lozano R, Wolfe MD, Jannink J-L. Genome-wide associationstudies and heritability estimation in the functional genomics era. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_12.

    Chapter  Google Scholar 

  • Poelstra JW, Vijay N, Bossu CM, et al. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science. 2014;344:1410–4.

    CAS  PubMed  Google Scholar 

  • Pogorelcnik R, Vaury C, Pouchin P, Jensen S, Brasset E. SRNAPipe: a Galaxy-based pipeline for bioinformatic in-depth exploration of small RNAseq data. Mob DNA. 2018;9:25.

    PubMed  PubMed Central  Google Scholar 

  • Portik DM, Smith LL, Bi K. An evaluation of transcriptome-based exon capture for frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura). Mol Ecol Resour. 2016;16:1069–83.

    CAS  PubMed  Google Scholar 

  • Prince DJ, O’Rourke SM, Thompson TQ, et al. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci Adv. 2017;3:e1603198.

    PubMed  PubMed Central  Google Scholar 

  • Prüfer K, Racimo F, Patterson N, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014;505:43–9.

    PubMed  Google Scholar 

  • Pruisscher P, Nylin S, Gotthard K, Wheat CW. Genetic variation underlying local adaptation of diapause induction along a cline in a butterfly. Mol Ecol. 2018. In press.

    Google Scholar 

  • Pryce JE, Haile-Mariam M, Goddard ME, Hayes BJ. Identification of genomic regions associated with inbreeding depression in Holstein and Jersey dairy cattle. Genet Sel Evol. 2014;46:71.

    PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E. Evidence for archaic adaptive introgression in humans. Nat Rev Genet. 2015;16:359–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajora OP, Eckert AJ, Zinck JWR. Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS One. 2016;11:e0158691.

    PubMed  PubMed Central  Google Scholar 

  • Rasmussen M, Li Y, Lindgreen S, et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature. 2010;463:757–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rastas P, Calboli FCF, Guo B, Shikano T, Merilä J. Construction of ultradense linkage maps with Lep-MAP2: stickleback F2 recombinant crosses as an example. Genome Biol Evol. 2016;8:78–93.

    CAS  Google Scholar 

  • Razgour O, Taggart JB, Manel S, et al. An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour. 2018;18:18–31.

    PubMed  Google Scholar 

  • Rees BB, Andacht T, Skripnikova E, Crawford DL. Population proteomics: quantitative variation within and among populations in cardiac protein expression. Mol Biol Evol. 2011;28:1271–9.

    CAS  PubMed  Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24:4348–70.

    PubMed  Google Scholar 

  • Renaut S, Grassa CJ, Yeaman S, et al. Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nat Commun. 2013;4:1827.

    CAS  PubMed  Google Scholar 

  • Resendez SD, Bradley JR, Xu D, Gokcumen O. Structural variants in ancient genomes. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_34.

    Chapter  Google Scholar 

  • Richards CL, Alonso C, Becker C, et al. Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecol Lett. 2017;20:1576–90.

    PubMed  Google Scholar 

  • Rieseberg L. Adaptive introgression: the seeds of resistance. Curr Biol. 2011;21:R581–3.

    CAS  PubMed  Google Scholar 

  • Rochus CM, Tortereau F, Plisson-Petit F, et al. Revealing the selection history of adaptive loci using genome-wide scans for selection: an example from domestic sheep. BMC Genomics. 2018;19:71.

    PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Ezpeleta N, Bradbury IR, Mendibil I, et al. Population structure of Atlantic mackerel inferred from RAD-seq-derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection. Mol Ecol Resour. 2016;16:991–1001.

    PubMed  Google Scholar 

  • Roffler GH, Amish SJ, Smith S, et al. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate. Mol Ecol Resour. 2016;16:1147–64.

    CAS  PubMed  Google Scholar 

  • Rogers RL, Slatkin M. Excess of genomic defects in a woolly mammoth on Wrangel island. PLoS Genet. 2017;13:e1006601.

    PubMed  PubMed Central  Google Scholar 

  • Roitman S, Joseph Pollock F, Medina M. Coral microbiomes as bioindicators of reef health. In: Population genomics. Cham: Springer; 2018. p. 1–19.

    Google Scholar 

  • Rondeau EB, Minkley DR, Leong JS, et al. The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS One. 2014;e102089:9.

    Google Scholar 

  • Rougeux C, Gagnaire P-A, Praebel K, Seehausen O, Bernatchez L. Convergent transcriptomic landscapes under polygenic selection accompany inter- continental parallel evolution within a Nearctic Coregonus (Salmonidae) sister-species complex. BioRxiv. 2018. https://doi.org/10.1101/311464.

  • Rubin C-J, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464:587.

    CAS  PubMed  Google Scholar 

  • Rubin C-J, Megens H-J, Barrio AM, et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci. 2012;109:19529–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabeti PC, Reich DE, Higgins JM, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419:832–7.

    CAS  PubMed  Google Scholar 

  • Sabeti PC, Varilly P, Fry B, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449:913–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saint-Pé K, Blanchet S, Tissot L, et al. Genetic admixture between captive-bred and wild individuals affects patterns of dispersal in a brown trout (Salmo trutta) population. Conserv Genet. 2018;5:1269–79.

    Google Scholar 

  • Salmona J, Heller R, Lascoux M, Shafer A. Inferring demographic history using genomic data. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2017. https://doi.org/10.1007/13836_2017_1.

    Chapter  Google Scholar 

  • Salojärvi J. Computational tools for population genomics. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_57.

    Chapter  Google Scholar 

  • Santure AW, Garant D. Wild GWAS-association mapping in natural populations. Mol Ecol Resour. 2018;18:729–38.

    PubMed  Google Scholar 

  • Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB. The real cost of sequencing: higher than you think! Genome Biol. 2011;12:125.

    PubMed  PubMed Central  Google Scholar 

  • Schlötterer C. The evolution of molecular markers – just a matter of fashion? Nat Rev Genet. 2004;5:63–9.

    PubMed  Google Scholar 

  • Schlötterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals-mining genome-wide polymorphism data without big funding. Nat Rev Genet. 2014;15:749–63.

    PubMed  Google Scholar 

  • Schmidt TL, Filipovi I, Hoffmann AA, Rašić G. Fine-scale landscape genomics of Aedes aegypti reveals loss of Wolbachia transinfection, dispersal barrier and potential for occasional long distance movement. BioRxiv. 2017. https://doi.org/10.1101/103598.

  • Schmitz RJ, He Y, Valdés-López O, et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 2013a;23:1663–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz RJ, Schultz MD, Urich MA, et al. Patterns of population epigenomic diversity. Nature. 2013b;495:193–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrider DR, Kern AD. Soft sweeps are the dominant mode of adaptation in the human genome. Mol Biol Evol. 2017;34:1863–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer RM, VonHoldt BM, Harrigan R, et al. Genetic subdivision and candidate genes under selection in North American grey wolves. Mol Ecol. 2016;25:380–402.

    CAS  PubMed  Google Scholar 

  • Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet. 2018;19:329–46.

    CAS  PubMed  Google Scholar 

  • Shafer ABA, Wolf JBW, Alves PC, et al. Genomics and the challenging translation into conservation practice. Trends Ecol Evol. 2015;30:78–87.

    PubMed  Google Scholar 

  • Shafer ABA, Peart CR, Tusso S, et al. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol Evol. 2017;8:907–17. https://doi.org/10.1111/2041-210X.12700.

    Google Scholar 

  • Shapiro B, Hofreiter M. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science. 2014;343

    Google Scholar 

  • Shimada-Sugimoto M, Otowa T, Miyagawa T, et al. Epigenome-wide association study of DNA methylation in panic disorder. Clin Epigenetics. 2017;9:6.

    PubMed  PubMed Central  Google Scholar 

  • Shin D, Kim S-H, Park J, Lee H-K, Song K-D. Extent of linkage disequilibrium and effective population size of the Landrace population in Korea. Asian Australas J Anim Sci. 2018;31:1078–87.

    PubMed  PubMed Central  Google Scholar 

  • Simons YB, Bullaughey K, Hudson RR, Sella G. A population genetic interpretation of GWAS findings for human quantitative traits. PLoS Biol. 2018;16:e2002985.

    PubMed  PubMed Central  Google Scholar 

  • Skoglund P, Malmström H, Raghavan M, et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science. 2012;336:466–9.

    CAS  PubMed  Google Scholar 

  • Slatkin M. Linkage disequilibrium – understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008;9:477–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MW, O’Brien SJ. Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat Rev Genet. 2005;6:623–32.

    CAS  PubMed  Google Scholar 

  • Sollars ESA, Buggs RJA. Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease. BMC Genomics. 2018;19:502.

    PubMed  PubMed Central  Google Scholar 

  • Song Y, Endepols S, Klemann N, et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol. 2011;21:1296–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sork VL. Gene flow and natural selection shape spatial patterns of genes in tree populations: implications for evolutionary processes and applications. Evol Appl. 2016;9:291–310.

    PubMed  Google Scholar 

  • Sovic MG, Carstens BC, Gibbs HL. Genetic diversity in migratory bats: results from RADseq data for three tree bat species at an Ohio windfarm. PeerJ. 2016;4:e1647.

    PubMed  PubMed Central  Google Scholar 

  • Speed D, Balding DJ. Relatedness in the post-genomic era: is it still useful? Nat Rev Genet. 2015;16:33–44.

    CAS  PubMed  Google Scholar 

  • Srivathsan A, Ang A, Vogler AP, Meier R. Fecal metagenomics for the simultaneous assessment of diet, parasites, and population genetics of an understudied primate. Front Zool. 2016;13:17.

    PubMed  PubMed Central  Google Scholar 

  • Stam P. The distribution of the fraction of the genome identical by descent in finite random mating populations. Genet Res. 1980;35:131–55.

    Google Scholar 

  • Stat M, Huggett MJ, Bernasconi R, et al. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci Rep. 2017;7:12240.

    PubMed  PubMed Central  Google Scholar 

  • Stetter MG, Thornton K, Ross-Ibarra J. Genetic architecture and selective sweeps after polygenic adaptation to distant trait optima. BioRxiv. 2018:313247.

    Google Scholar 

  • Stölting KN, Paris M, Meier C, et al. Genome-wide patterns of differentiation and spatially varying selection between postglacial recolonization lineages of Populus alba (Salicaceae), a widespread forest tree. New Phytol. 2015;207:723–34.

    PubMed  Google Scholar 

  • Storz JF, Beaumont MA, Alberts SC. Genetic evidence for long-term population decline in a savannah-dwelling primate: inferences from a hierarchical Bayesian model. Mol Biol Evol. 2002;19:1981–90.

    CAS  PubMed  Google Scholar 

  • Sugden LA, Atkinson EG, Fischer AP, et al. Localization of adaptive variants in human genomes using averaged one-dependence estimation. Nat Commun. 2018;9:703.

    PubMed  PubMed Central  Google Scholar 

  • Suhre K, Arnold M, Bhagwat AM, et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun. 2017;8:14357.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunnucks P. Efficient genetic markers for population biology. Trends Ecol Evol. 2000;15:199–203.

    CAS  PubMed  Google Scholar 

  • Suren H, Hodgins KA, Yeaman S, et al. Exome capture from the spruce and pine giga-genomes. Mol Ecol Resour. 2016;16:1136–46.

    CAS  PubMed  Google Scholar 

  • Syring JV, Tennessen JA, Jennings TN, et al. Targeted capture sequencing in whitebark pine reveals range-wide demographic and adaptive patterns despite challenges of a large, repetitive genome. Front Plant Sci. 2016;7:484.

    PubMed  PubMed Central  Google Scholar 

  • Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tallmon DA, Luikart G, Waples RS. The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol. 2004;19:489–96.

    PubMed  Google Scholar 

  • Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population epigenomic variation. Nat Rev Genet. 2016;17:319–32.

    CAS  PubMed  Google Scholar 

  • Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet. 2017;49:303–9.

    CAS  PubMed  Google Scholar 

  • Teshima KM, Coop G, Przeworski M. How reliable are empirical genomic scans for selective sweeps? Genome Res. 2006;16:702–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thalmann O, Perri AR. Paleogenomic inferences of dog domestication. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. https://doi.org/10.1007/13836_2018_27.

    Chapter  Google Scholar 

  • Thompson EA. Identity by descent: variation in meiosis, across genomes, and in populations. Genetics. 2013;194:301–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thurber RV, Willner-Hall D, Rodriguez-Mueller B, et al. Metagenomic analysis of stressed coral holobionts. Environ Microbiol. 2009;11:2148–63.

    CAS  Google Scholar 

  • Tishkoff SA, Reed FA, Ranciaro A, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet. 2007;39:31–40.

    CAS  PubMed  Google Scholar 

  • Tranchant-Dubreuil C, Ravel S, Monat C, et al. TOGGLe, a flexible framework for easily building complex workflows and performing robust large-scale NGS analyses. BioRxiv. 2018. https://doi.org/10.1101/245480.

  • Trapp J, Gouveia D, Almunia C, et al. Digging deeper into the pyriproxyfen-response of the amphipod gammarus fossarum with a next-generation ultra-high-field orbitrap analyser: new perspectives for environmental toxicoproteomics. Front Environ Sci. 2018;6:54.

    Google Scholar 

  • Turner TL, Hahn MW, Nuzhdin SV. Genomic islands of speciation in Anopheles gambiae. PLoS Biol. 2005;3:1572–8.

    CAS  Google Scholar 

  • Valdés A, Ehrlén J. Caterpillar seed predators mediate shifts in selection on flowering phenology in their host plant. Ecology. 2017;98:228–38.

    PubMed  Google Scholar 

  • Valdisser PAMR, Pereira WJ, Almeida Filho JE, et al. In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics. 2017;18:423.

    PubMed  PubMed Central  Google Scholar 

  • Vallejo RL, Silva RMO, Evenhuis JP, et al. Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: evidence that long-range LD is a major contributing factor. J Anim Breed Genet. 2018;135:263–74.

    CAS  Google Scholar 

  • van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet. 2018;34:666–81.

    CAS  PubMed  Google Scholar 

  • Vandersteen Tymchuk W, O’Reilly P, Bittman J, MacDonald D, Schulte P. Conservation genomics of Atlantic salmon: variation in gene expression between and within regions of the Bay of Fundy. Mol Ecol. 2010;19:1842–59.

    PubMed  Google Scholar 

  • Vasemagi A, Primmer CR. Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol. 2005;22:1067–76.

    PubMed  Google Scholar 

  • Vattathil S, Akey JM. Small amounts of archaic admixture provide big insights into human history. Cell. 2015;163:281–4.

    CAS  PubMed  Google Scholar 

  • Venter J, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304:66–74.

    CAS  PubMed  Google Scholar 

  • Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4:e154.

    PubMed Central  Google Scholar 

  • VonHoldt BM, Pollinger JP, Earl DA, et al. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res. 2011;21:1294–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waite DW, Dsouza M, Sekiguchi Y, Hugenholtz P, Taylor MW. Network-guided genomic and metagenomic analysis of the faecal microbiota of the critically endangered kakapo. Sci Rep. 2018;8:8228.

    Google Scholar 

  • Wallberg A, Han F, Wellhagen G, et al. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet. 2014;46:1081–8.

    CAS  PubMed  Google Scholar 

  • Wang J. Estimation of effective population sizes from data on genetic markers. Phil Trans Roy Soc B Biol Sci. 2005;360:1395–409.

    CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Street NR, Scofield DG, Ingvarsson PK. Variation in linked selection and recombination drive genomic divergence during allopatric speciation of European and American aspens. Mol Biol Evol. 2016;33:1754–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS, Do C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl. 2010;3:244–62.

    PubMed  Google Scholar 

  • Waples RK, Larson WA, Waples RS. Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. Heredity. 2016;117:233–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse MD, Erb LP, Beever EA, Russello MA. Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal. Mol Ecol. 2018;27:2512–28.

    PubMed  Google Scholar 

  • Wecek K, Hartmann S, Paijmans JLA, et al. Complex admixture preceded and followed the extinction of wisent in the wild. Mol Biol Evol. 2017;34:598–612.

    CAS  PubMed  Google Scholar 

  • Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol. 2018;33:427–40.

    PubMed  Google Scholar 

  • Wellenreuther M, Hansson B. Detecting polygenic evolution: problems, pitfalls, and promises. Trends Genet. 2016;32:155–64.

    CAS  PubMed  Google Scholar 

  • Wessinger CA, Kelly JK, Jiang P, Rausher MD, Hileman LC. SNP-skimming: a fast approach to map loci generating quantitative variation in natural populations. Mol Ecol Resour. 2018. https://doi.org/10.1111/1755-0998.12930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteley AR, Bhat A, Martins EP, et al. Population genomics of wild and laboratory zebrafish (Danio rerio). Mol Ecol. 2011;20:4259–76.

    PubMed  PubMed Central  Google Scholar 

  • Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. Genetic rescue to the rescue. Trends Ecol Evol. 2015;30:42–9.

    PubMed  Google Scholar 

  • Wilson G, Rannala B. Bayesian inference of recent migration rates using multilocus genotyoes. Genetics. 2003;163:1177–91.

    PubMed  PubMed Central  Google Scholar 

  • Wolf JBW, Ellegren H. Making sense of genomic islands of differentiation in light of speciation. Nat Rev Genet. 2017;18:87–100.

    CAS  PubMed  Google Scholar 

  • Wright S. Coefficients of inbreeding and relationship. Am Nat. 1922;56:330–8.

    Google Scholar 

  • Xu Z, Bolick SCE, Deroo LA, et al. Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst. 2013;105:694–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Prado-Martinez J, Sudmant PH, et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science. 2015;348:242–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeaman S, Whitlock MC. The genetic architecture of adaptation under migration-selection balance. Evolution. 2011;65:1897–911.

    PubMed  Google Scholar 

  • Yeaman S, Hodgins KA, Lotterhos KE, et al. Convergent local adaptation to climate in distantly related conifers. Science. 2016;353:1431–3.

    CAS  PubMed  Google Scholar 

  • Yi SV. Insights into epigenome evolution from animal and plant methylomes. Genome Biol Evol. 2017;9:3189–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Fan Z, Han E, et al. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet plateau. PLoS Genet. 2014;10:e1004466.

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhang H, Yang H, et al. Computational resources associating diseases with genotypes, phenotypes and exposures. Brief Bioinform. 2018:bby071.

    Google Scholar 

Download references

Acknowledgments

We thank G. McKinney for helpful comments and information on linkage mapping and Fred Allendorf for discussions and ideas regarding population genomics concepts and definitions. GL, MK, and BKH were supported in part by funding from US National Science Foundation grants DEB-1258203 and DoB-1639014. Montana Fish Wildlife and Parks provided supported GL and MK through contract #199101903. GL and BKH were also supported in part by funding from NASA grant number NNX14AB84G. OPR received support from a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN 2017-04589. PAH received support from National Science Foundation grants DEB-1316549 and DEB-1655809.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Luikart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luikart, G., Kardos, M., Hand, B.K., Rajora, O.P., Aitken, S.N., Hohenlohe, P.A. (2018). Population Genomics: Advancing Understanding of Nature. In: Rajora, O. (eds) Population Genomics. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_60

Download citation

Publish with us

Policies and ethics