Skip to main content

Population Epigenomics: Advancing Understanding of Phenotypic Plasticity, Acclimation, Adaptation and Diseases

  • Chapter
  • First Online:
Population Genomics

Abstract

Advances in chromatin state mapping, high-throughput DNA sequencing, and bioinformatics have revolutionized the study and interpretability of epigenomic variation. The increasing feasibility of obtaining and analyzing detailed information on epigenetic mechanisms across many individuals and populations has enabled the study of epigenomic variation at the population level and its contributions to phenotypic variation, acclimation, ecological adaptation, and disease traits. Over the past decade, researchers from disparate life sciences ranging from epidemiology to marine conservation have begun approaching their subjects through the lens of population epigenomics. Epigenetic mechanisms involve molecular alterations in chromatin through DNA methylation and histone modifications, as well as complex non-coding RNAs and enzyme machinery, all leading to altered transcription and post-transcriptional RNA processing resulting in changes in gene expression. Genetic and environmental variation and stochastic epimutations give rise to epigenomic variation. Notably, some forms of epigenomic variation are quite stable and in some instances may be transmitted through one or more rounds of meiosis. Epigenomic variation can contribute significantly to phenotypic plasticity, stress responses, disease conditions, and acclimation and adaptation to habitat conditions across a wide variety of organisms during their lifetime but also across multiple generations. The purpose of this chapter is to provide an overview of population epigenomics concepts, approaches, challenges, and applications. We discuss the molecular basis of epigenetic mechanisms and their variation and heritability across diverse tissues and taxa. We then discuss the sources of epigenomic variation, within – and among – population epigenomic variation in plants and animals, and the evolutionary context of epigenomic variation before reviewing current molecular and bioinformatics methods for screening epigenomic variation. We then explore the contribution and association of epigenomic variation with phenotypic and ecological adaptation traits in plants and common disease conditions in humans and pharmacoepigenomics, as well as the main challenges and future research directions in population epigenomics.

We emphasize challenges and potential solutions unique to the study of epigenomes and how those challenges are amplified by the diversity of pathways by which genes and environments can affect gene expression. With proper application and interpretation, the field of population epigenomics will continue to yield profound insights toward a better understanding of phenotypic plasticity, acclimation, ecological adaptation, heritability, human diseases, and pharmacogenomics.

All authors have contributed significantly to the writing of this chapter and approve its final version. All authors except for the first and last are listed alphabetically by their last names.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abakir A, Wheldon L, Johnson AD, Laurent P, Ruzov A. Detection of modified forms of cytosine using sensitive immunohistochemistry. J Vis Exp. 2016;16(114).

    Google Scholar 

  • Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114(1):144–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adams RL, Burdon RH. DNA methylation in the cell. In: Molecular biology of DNA methylation. New York: Springer; 1985. p. 9–18.

    Google Scholar 

  • Adli M, Parlak M, Li Y, Eldahr S. Epigenetic states of nephron progenitors and epithelial differentiation. J Cell Biochem. 2015;116(6):893–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal AA. Phenotypic plasticity in the interactions and evolution of species. Science. 2001;294(5541):321–6.

    CAS  PubMed  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl. 2008;1(1):95–111.

    PubMed  PubMed Central  Google Scholar 

  • Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methyl Kit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13(10):R87.

    PubMed  PubMed Central  Google Scholar 

  • Akkerman KC, Sattarin A, Kelly JK, Scoville AG. Transgenerational plasticity is sex-dependent and persistent in yellow monkeyflower (Mimulus guttatus). Environ Epigenet. 2016;2(2):dvw003.

    PubMed  PubMed Central  Google Scholar 

  • Aller EST, Jagd LM, Kliebenstein DJ, Burow M. Comparison of the relative potential for epigenetic and genetic variation to contribute to trait stability. G3. 2018. http://www.g3journal.org/content/early/2018/03/21/g3.118.200127.abstract.

  • Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A. 1964;51:786–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.

    CAS  PubMed  Google Scholar 

  • Almeida RD, Loose M, Sottile V, Matsa E, Denning C, Young L, et al. 5-Hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development. Epigenetics. 2012;7(4):383–9.

    CAS  PubMed  Google Scholar 

  • Alonso C, Pérez R, Bazaga P, Herrera CM. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms. Front Genet. 2015;6(4):1–9.

    Google Scholar 

  • Alonso C, Medrano M, Pérez R, Bazaga P, Herrera C, Alonso C, et al. Tissue-specific response to experimental demethylation at seed germination in the non-model herb Erodium cicutarium. Epigenomes. 2017;1(3):16.

    Google Scholar 

  • Alvarez-Venegas R. Bacterial SET domain proteins and their role in eukaryotic chromatin modification. Front Genet. 2014;5:65.

    PubMed  PubMed Central  Google Scholar 

  • Amato R. Inhibition of DNA methylation by antisense oligonucleotide MG98 as cancer therapy. Clin Genitourin Cancer. 2007;5(7):422–6.

    CAS  PubMed  Google Scholar 

  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, et al. The small RNA profile during Drosophila melanogaster development. Dev Cell. 2003;5(2):337–50.

    CAS  PubMed  Google Scholar 

  • Armstrong KM, Bermingham EN, Bassett SA, Treloar BP, Roy NC, Barnett MPG. Global DNA methylation measurement by HPLC using low amounts of DNA. Biotechnol J. 2011;6(1):113–7.

    CAS  PubMed  Google Scholar 

  • Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017;18(11):643–58.

    CAS  PubMed  Google Scholar 

  • Avramidou EV, Doulis AG, Aravanopoulos FA. Determination of epigenetic inheritance, genetic inheritance, and estimation of genome DNA methylation in a full-sib family of Cupressus sempervirens L. Gene. 2015;562(2):180–7.

    CAS  PubMed  Google Scholar 

  • Bailey T, Pawel K, Istvan L, Celine L, Qunhua L, Tao L, et al. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol. 2013;9(11):e1003326.

    PubMed  PubMed Central  Google Scholar 

  • Baker B. Context-dependent transgenerational plasticity in an annual plant: effects of parental shade versus sun on fitness and competitive performance. Masters thesis. 2018. https://wesscholar.wesleyan.edu/etd_mas_theses/189.

  • Balao F, Tannhäuser M, Lorenzo MT, Hedrén M, Paun O. Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex. Heredity. 2016;116(4):351–61.

    CAS  PubMed  Google Scholar 

  • Balkenhol N, Dudaniec RY, Krutovsky KV, Johnson JS, Cairns DM, Segelbacher G, et al. Landscape genomics: understanding relationships between environmental heterogeneity and genomic characteristics of populations. In: Rajora OP, editor. Population genomics concepts, strategies and approaches. Cham: Springer International Publishing AG; 2017. https://doi.org/10.1007/13836_2017_2.

    Chapter  Google Scholar 

  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banta JA, Richards CL. Quantitative epigenetics and evolution. Heredity. 2018;121:210–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baron U, Turbachova I, Hellwag A, Eckhardt F, Berlin K, Hoffmüller U, et al. DNA methylation analysis as a tool for cell typing. Epigenetics. 2006;1(1):56–61.

    Google Scholar 

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    CAS  PubMed  Google Scholar 

  • Baythavong BS. Linking the spatial scale of environmental variation and the evolution of phenotypic plasticity: selection favors adaptive plasticity in fine-grained environments. Am Nat. 2011;178(1):75–87.

    PubMed  Google Scholar 

  • Becker C, Weigel D. Epigenetic variation: origin and transgenerational inheritance. Curr Opin Plant Biol. 2012;15(5):562–7.

    CAS  PubMed  Google Scholar 

  • Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature. 2011;480(7376):245–9.

    CAS  PubMed  Google Scholar 

  • Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics. 2010;3(1):33.

    PubMed  PubMed Central  Google Scholar 

  • Bennett RL, Licht JD. Targeting epigenetics in cancer. Annu Rev Pharmacol Toxicol. 2018;58(1):187–207.

    CAS  PubMed  Google Scholar 

  • Bernstein E, Allis CD. RNA meets chromatin. Genes Dev. 2005;19(14):1635–55.

    CAS  PubMed  Google Scholar 

  • Bewick AJ, Ji L, Niederhuth CE, Willing E-M, Hofmeister BT, Shi X, et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc Natl Acad Sci U S A. 2016;113(32):9111–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bewick AJ, Niederhuth CE, Ji L, Rohr NA, Griffin PT, Leebens-Mack J, et al. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants. Genome Biol. 2017;18(1):65.

    PubMed  PubMed Central  Google Scholar 

  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    CAS  PubMed  Google Scholar 

  • Birney E, Smith GD, Greally JM. Epigenome-wide association studies and the interpretation of disease -omics. PLoS Genet. 2016;12(6):e1006105.

    PubMed  PubMed Central  Google Scholar 

  • Biswas S, Rao CM. Epigenetics in cancer: fundamentals and beyond. Pharmacol Therapeut. 2017;173:118–34.

    CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonchev G, Parisod C. Transposable elements and microevolutionary changes in natural populations. Mol Ecol Resour. 2013;13(5):765–75.

    CAS  PubMed  Google Scholar 

  • Bonduriansky R, Head M. Maternal and paternal condition effects on offspring phenotype in Telostylinus angusticollis (Diptera: Neriidae). J Evol Biol. 2007;20(6):2379–88.

    CAS  PubMed  Google Scholar 

  • Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012;336(6083):934–7.

    CAS  PubMed  Google Scholar 

  • Booth MJ, Ost TWB, Beraldi D, Bell NM, Branco MR, Reik W, et al. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc. 2013;8(10):1841–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bostick M, Kim JK, Estève P-O, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007;317(5845):1760–4.

    CAS  PubMed  Google Scholar 

  • Bousios A, Gaut BS. Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts. Curr Opin Plant Biol. 2016;30:123–33.

    CAS  PubMed  Google Scholar 

  • Bowers E, Yan G, Mukherjee C, Orry A, Wang L. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol. 2010;17(5):471–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun KVE, Dhana K, de Vries PS, Voortman T, van Meurs JBJ, Uitterlinden AG, et al. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin Epigenetics. 2017;9(1):15.

    PubMed  PubMed Central  Google Scholar 

  • Bräutigam K, Vining KJ, Lafon-Placette C, Fossdal CG, Mirouze M, Marcos JG, et al. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol. 2013;3(2):399–415.

    PubMed  PubMed Central  Google Scholar 

  • Bräutigam K, Soolanayakanahally R, Champigny M, Mansfield S, Douglas C, Campbell MM, et al. Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera. Sci Rep. 2017;7:45388.

    PubMed  PubMed Central  Google Scholar 

  • Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 2015;8:24.

    PubMed  PubMed Central  Google Scholar 

  • Brown CJ, Lafreniere RG, Powers VE, Sebastio G, Ballabio A, Pettigrew AL, et al. Localization of the X inactivation centre on the human X chromosome in Xq13. Nature. 1991;349(6304):82–4.

    CAS  PubMed  Google Scholar 

  • Buck MJ, Lieb JD. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics. 2004;83(3):349–60.

    CAS  PubMed  Google Scholar 

  • Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, Lopes T, et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell. 2012;151(1):194–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carja O, MacIsaac JL, Mah SM, Henn BM, Kobor MS, Feldman MW, Fraser HB. Worldwide patterns of human epigenetic variation. Nat Ecol Evol. 2017;1(10):1577.

    PubMed  PubMed Central  Google Scholar 

  • Carneros E, Yakovlev I, Viejo M, Olsen JE, Fossdal CG. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes. Planta. 2017;246(3):553–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casadesús J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev. 2006;70(3):830–56.

    PubMed  PubMed Central  Google Scholar 

  • Castillo-Aguilera O, Depreux P, Halby L, Arimondo P, Goossens L, Castillo-Aguilera O, et al. DNA methylation targeting: the DNMT/HMT crosstalk challenge. Biomolecules. 2017;7(1):3.

    PubMed Central  Google Scholar 

  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304.

    CAS  PubMed  Google Scholar 

  • Chadha S, Sharma M. Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae. PLoS One. 2014;9(4):e94415.

    PubMed  PubMed Central  Google Scholar 

  • Chatterjee A, Lagisz M, Rodger EJ, Zhen L, Stockwell PA, Duncan EJ, Horsfield JA, Jeyakani J, Mathavan S, Ozaki Y, Nakagawa S. Sex differences in DNA methylation and expression in zebrafish brain: a test of an extended ‘male sex drive’ hypothesis. Gene. 2016;590(2):307–16.

    CAS  PubMed  Google Scholar 

  • Chen L-L. Linking long noncoding RNA localization and function. Trends Biochem Sci. 2016;41(9):761–72.

    CAS  PubMed  Google Scholar 

  • Chen PY, Cokus SJ, Pellegrini M. BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics. 2010;11(1):203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Riggs A. DNA methylation and demethylation in mammals. J Biol Chem. 2011;286(21):18347–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Ge B, Casale FP, Vasquez L, Kwan T, Garrido-Martín D, et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell. 2016;167(5):1398–1414.e24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Li S, Subramaniam S, Shyy JY-J, Chien S. Epigenetic regulation: a new frontier for biomedical engineers. Annu Rev Biomed Eng. 2017;19:195–219.

    CAS  PubMed  Google Scholar 

  • Chowdhury B, Cho I-H, Irudayaraj J. Technical advances in global DNA methylation analysis in human cancers. J Biol Eng. 2017;11(1):10.

    PubMed  PubMed Central  Google Scholar 

  • Chu AY, Tin A, Schlosser P, Ko YA, Qiu C, Yao C, Joehanes R, Grams ME, Liang L, Gluck CA, Liu C. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat Commun. 2017;8(1):1286.

    PubMed  PubMed Central  Google Scholar 

  • Ci D, Song Y, Du Q, Tian M, Han S, Zhang D. Variation in genomic methylation in natural populations of Populus simonii is associated with leaf shape and photosynthetic traits. J Exp Bot. 2016;67:723–37.

    CAS  PubMed  Google Scholar 

  • Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M. DNA methylation: bisulphite modification and analysis. Nat Protoc. 2006;1(5):2353.

    CAS  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452(7184):215–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, et al. Mapping the epigenetic basis of complex traits. Science. 2014;343(6175):1145–8.

    CAS  PubMed  Google Scholar 

  • Creighton CJ, Reid JG, Gunaratne PH. Expression profiling of microRNAs by deep sequencing. Brief Bioinform. 2009;10(5):490–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Csankovszki G, Nagy A, Jaenisch R. Synergism of Xist Rna, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol. 2001;153(4):773–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cubas P, Vincent C. An epigenetic mutation responsible for natural variation in floral symmetry. Nature. 1999;401(6749):157.

    CAS  PubMed  Google Scholar 

  • Cushman SA. Grand challenges in evolutionary and population genetics: the importance of integrating epigenetics, genomics, modeling, and experimentation. Front Genet. 2014;5:197.

    PubMed  PubMed Central  Google Scholar 

  • D’addario C, Francesco AD, Pucci M, Agrò AF, Maccarrone M. Epigenetic mechanisms and endocannabinoid signalling. FEBS J. 2013;280(9):1905–17. https://doi.org/10.1111/febs.12125.

    Article  CAS  PubMed  Google Scholar 

  • Darwin C. On the origins of species by means of natural selection. London: Murray; 1859. p. 247.

    Google Scholar 

  • Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer. 2009;124(1):81–7.

    CAS  PubMed  Google Scholar 

  • Deans C, Maggert KA. What do you mean, “epigenetic”? Genetics. 2015;199(4):887–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denker A, de Laat W. A long-distance chromatin affair. Cell. 2015;162(5):942–3.

    CAS  PubMed  Google Scholar 

  • Derissen EJ, Beijnen JH, Schellens JH. Concise drug review: azacitidine and decitabine. Oncologist. 2013;18(5):619–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dewan S, Vander Mijnsbrugge K, De Frenne P, Steenackers M, Michiels B, Verheyen K. Maternal temperature during seed maturation affects seed germination and timing of bud set in seedlings of European black poplar. Forest Ecol Manag. 2018;410:126–35.

    Google Scholar 

  • Dobzhansky T. Genetics and the origin of species. New York: Columbia University Press; 1937.

    Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, et al. Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A. 2012;109(32):E2183.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16(9):519–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubin MJ, Zhang P, Meng D, Remigereau MS, Osborne EJ, Casale FP, et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife. 2015;4:1–23.

    Google Scholar 

  • Duygu B, Poels EM, da Costa Martins PA. Genetics and epigenetics of arrhythmia and heart failure. Front Genet. 2013;4:219.

    PubMed  PubMed Central  Google Scholar 

  • Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38(12):1378–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7).

    PubMed Central  Google Scholar 

  • Edwards DN, Ngwa VM, Wang S, Shiuan E, Brantley-Sieders DM, Kim LC, et al. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci Signal. 2017;10(508).

    Google Scholar 

  • Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982;10(8):2709–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichten SR, Briskine R, Song J, Li Q, Swanson-Wagner R, Hermanson PJ, et al. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell. 2013;25(8):2783–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichten SR, Schmitz RJ, Springer NM. Epigenetics: beyond chromatin modifications and complex genetic regulation. Plant Physiol. 2014;165(3):933.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eleftheriou M, Pascual A, Wheldon L, Perry C, Abakir A. 5-Carboxylcytosine levels are elevated in human breast cancers and gliomas. Clin Epigenetics. 2015;7:88. https://doi.org/10.1186/s13148-015-0117-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eminaga S, Christodoulou DC, Vigneault F, Church GM, Seidman JG. Quantification of microRNA expression with next-generation sequencing. Curr Protoc Mol Biol. 2013;103(1):4.17.1–4.17.14. https://doi.org/10.1002/0471142727.mb0417s103.

    Article  Google Scholar 

  • Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene. 1998;17(18):2413–7.

    CAS  PubMed  Google Scholar 

  • Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):1350–4.

    CAS  PubMed  Google Scholar 

  • Ettre LS. Milestones in chromatography: the birth of partition chromatography. LCGC. 2001;19(5):506–12.

    CAS  Google Scholar 

  • Fagny M, Patin E, Macisaac JL, Rotival M, Flutre T, Jones MJ, et al. The epigenomic landscape of African rainforest hunter-gatherers and farmers. Nat Commun. 2015;6:10047.

    CAS  PubMed  Google Scholar 

  • Fatemi M, Hermann A, Gowher H, Jeltsch A. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem. 2002;269(20):4981–4.

    CAS  PubMed  Google Scholar 

  • Fedoroff NV. Presidential address. Transposable elements, epigenetics, and genome evolution. Science. 2012;338(6108):758–67.

    CAS  PubMed  Google Scholar 

  • Feinberg A, Irizarry R. Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci U S A. 2010;107(Suppl 1):1757–64. https://doi.org/10.1073/pnas.0906183107.

    Article  PubMed  Google Scholar 

  • Feinberg A, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.

    CAS  PubMed  Google Scholar 

  • Feng H, Conneely K, Wu H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 2014;42(8):e69. https://doi.org/10.1093/nar/gku154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12(8):565–75.

    CAS  PubMed  Google Scholar 

  • Fernández-Sanlés A, Sayols-Baixeras S, Curcio S, Subirana I, Marrugat J, Elosua R. DNA methylation and age-independent cardiovascular risk, an epigenome-wide approach: the REGICOR study (REgistre GIroni del COR). Arterioscler Thromb Vasc Biol. 2018;38(3):645–52.

    PubMed  PubMed Central  Google Scholar 

  • Ficz G, Gribben J. Loss of 5-hydroxymethylcytosine in cancer: cause or consequence? Genomics. 2014;104(5):352–7.

    CAS  PubMed  Google Scholar 

  • Field LM, Lyko F, Mandrioli M, Prantera G. DNA methylation in insects. Insect Mol Biol. 2004;13(2):109–15.

    CAS  PubMed  Google Scholar 

  • Foust CM, Preite V, Schrey AW, Alvarez M, Robertson MH, Verhoeven KJF, et al. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Mol Ecol. 2016;25(8):1639–52.

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005a;102(30):10604–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005b;37(4):391–400.

    CAS  PubMed  Google Scholar 

  • Fraser H, Lam L, Neumann S, Kobor M. Population-specificity of human DNA methylation. Genome Biol. 2012;13(2):R8. https://doi.org/10.1186/gb-2012-13-2-r8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friso S, Choi S-W, Dolnikowski GG, Selhub J. A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal Chem. 2002;74(17):4526–31.

    CAS  PubMed  Google Scholar 

  • Friso S, Pizzolo F, Choi S-W, Guarini P, Castagna A, Ravagnani V, et al. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis. 2008;199(2):323–7.

    CAS  PubMed  Google Scholar 

  • Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992;89(5):1827–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Luo G-Z, Chen K, Deng X, Yu M, Han D, et al. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell. 2015;161(4):879–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furrow RE. Epigenetic inheritance, epimutation, and the response to selection. PLoS One. 2014;9(7):e101559.

    PubMed  PubMed Central  Google Scholar 

  • Gadaleta MC, Iwasaki O, Noguchi C, Noma K-I, Noguchi E. Chromatin immunoprecipitation to detect DNA replication and repair factors. Methods Mol Biol. 2015;1300:169–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gajer J, Furdas S, Gründer A, Gothwal M, Heinicke U. Histone acetyltransferase inhibitors block neuroblastoma cell growth in vivo. Oncogenesis. 2015;4:e137. https://doi.org/10.1038/oncsis.2014.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway LF, Etterson JR. Transgenerational plasticity is adaptive in the wild. Science. 2007;318(5853):1134–6.

    CAS  PubMed  Google Scholar 

  • Gifford CA, Ziller MJ, Gu H, Trapnell C, Donaghey J, Tsankov A, et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell. 2013;153(5):1149–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One. 2010;5(12):e15367.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.

    CAS  PubMed  Google Scholar 

  • Grant GR, Manduchi E, Stoeckert CJ. Analysis and management of microarray gene expression data. Curr Protoc Mol Biol. 2007;77(1):19.6.1–19.6.30.

    Google Scholar 

  • Grativol C, Hemerly AS, Ferreira PCG. Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta. 2012;1819(2):176–85.

    CAS  PubMed  Google Scholar 

  • Greally JM. Population epigenetics. Curr Opin Syst Biol. 2017;1:84–9.

    PubMed  PubMed Central  Google Scholar 

  • Greenblatt SM, Nimer SD. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia. 2014;28(7):1396–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, et al. DNA methylation on N6-adenine in C. elegans. Cell. 2015;161(4):868–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groot MP, Wagemaker N, Ouborg NJ, Verhoeven KJF, Vergeer P. Epigenetic population differentiation in field- and common garden-grown Scabiosa columbaria plants. Ecol Evol. 2018;8(6):3505–17.

    PubMed  PubMed Central  Google Scholar 

  • Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001;29(13):e65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc. 2011;6(4):468.

    CAS  PubMed  Google Scholar 

  • Gugger PF, Fitz-Gibbon S, PellEgrini M, Sork VL. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol Ecol. 2016;25(8):1665–80.

    CAS  PubMed  Google Scholar 

  • Guo W, Fiziev P, Yan W, Cokus S, Sun X. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics. 2013;14:774. https://doi.org/10.1186/1471-2164-14-774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods. 2008;44(1):3–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagmann J, Becker C, Müller J, Stegle O, Meyer RC, Wang G, et al. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet. 2015;11(1):e1004920.

    PubMed  PubMed Central  Google Scholar 

  • Halfmann R, Lindquist S. Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science. 2010;330(6004):629–32.

    CAS  PubMed  Google Scholar 

  • Hansen JC. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct. 2002;31:361–92.

    CAS  PubMed  Google Scholar 

  • Hansen KD, Langmead B, Irizarry RA. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. 2012;13(10):R83.

    PubMed  PubMed Central  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.

    CAS  PubMed  Google Scholar 

  • Hardcastle TJ, Müller SY, Baulcombe DC. Towards annotating the plant epigenome: the Arabidopsis thaliana small RNA locus map. Sci Rep. 2018;8(1):6338.

    PubMed  PubMed Central  Google Scholar 

  • He Y, Michaels SD, Amasino RM. Regulation of flowering time by histone acetylation in Arabidopsis. Science. 2003;302(5651):1751–4.

    CAS  PubMed  Google Scholar 

  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    CAS  PubMed  Google Scholar 

  • He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell. 2010;22(1):17–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157(1):95–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 2007;39(3):311–8.

    CAS  PubMed  Google Scholar 

  • Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009;459(7243):108–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendry A, Kinnison M. An introduction to microevolution: rate, pattern, process. Genetica. 2001;112–113(1):1–8.

    PubMed  Google Scholar 

  • Herrera CM, Bazaga P. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 2010;187(3):867–76.

    CAS  PubMed  Google Scholar 

  • Herrera CM, Bazaga P. Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees. Bot J Linn Soc. 2013;171(3):441–52.

    Google Scholar 

  • Herrera CM, Bazaga P. Genetic and epigenetic divergence between disturbed and undisturbed subpopulations of a Mediterranean shrub: a 20-year field experiment. Ecol Evol. 2016;6(11):3832–47.

    PubMed  PubMed Central  Google Scholar 

  • Herrera CM, Medrano M, Bazaga P. Epigenetic differentiation persists after male gametogenesis in natural populations of the perennial herb Helleborus foetidus (Ranunculaceae). PLoS One. 2013;8(7):e70730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera CM, Medrano M, Bazaga P. Comparative spatial genetics and epigenetics of plant populations: heuristic value and a proof of concept. Mol Ecol. 2016;25(8):1653–64.

    CAS  PubMed  Google Scholar 

  • Herzing LB, Romer JT, Horn JM, Ashworth A. Xist has properties of the X-chromosome inactivation centre. Nature. 1997;386(6622):272–5.

    CAS  PubMed  Google Scholar 

  • Hewitt AW, Januar V, Sexton-Oates A, Joo JE, Franchina M, Wang JJ, et al. DNA methylation landscape of ocular tissue relative to matched peripheral blood. Sci Rep. 2017;7:46330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development. 2009;136(4):509–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R. Epigenetics: an overview. Dev Genet. 1994;15(6):453–7.

    CAS  PubMed  Google Scholar 

  • Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187(4173):226–32.

    CAS  PubMed  Google Scholar 

  • Horsthemke B. A critical view on transgenerational epigenetic inheritance in humans. Nat Commun. 2018;9(1):2973.

    PubMed  PubMed Central  Google Scholar 

  • Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 1948;175(1):315–32.

    CAS  PubMed  Google Scholar 

  • Hu J, Barrett RD. Epigenetics in natural animal populations. J Evol Biol. 2017;30(9):1612–32.

    CAS  PubMed  Google Scholar 

  • Huanca-Mamani W, Arias-Carrasco R, Cárdenas-Ninasivincha S, Rojas-Herrera M, Sepúlveda-Hermosilla G, Caris-Maldonado JC, Bastías E, Maracaja-Coutinho V. Long non-coding RNAs responsive to salt and boron stress in the hyper-arid lluteño maize from atacama desert. Genes. 2018;9(3):170.

    PubMed Central  Google Scholar 

  • Iglesias FM, Cerdán PD. Maintaining epigenetic inheritance during DNA replication in plants. Front Plant Sci. 2016;7:38. https://doi.org/10.3389/fpls.2016.00038.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingvarsson PK, Street NR. Association genetics of complex traits in plants. New Phytol. 2011;189(4):909–22.

    PubMed  Google Scholar 

  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iurlaro M, von Meyenn F, Reik W. DNA methylation homeostasis in human and mouse development. Curr Opin Genet Dev. 2017;43:101–9.

    CAS  PubMed  Google Scholar 

  • Iwasaki YW, Siomi MC, Siomi H. PIWI-interacting RNA: its biogenesis and functions. Annu Rev Biochem. 2015;84:405–33.

    CAS  PubMed  Google Scholar 

  • Jablonka E, Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol. 2009;84(2):131–76.

    PubMed  Google Scholar 

  • Jackson SA. Epigenomics: dissecting hybridization and polyploidization. Genome Biol. 2017;18(1):17–9.

    Google Scholar 

  • Jackson V, Chalkley R. A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DNA. Cell. 1981;23(1):121–34.

    CAS  PubMed  Google Scholar 

  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    CAS  PubMed  Google Scholar 

  • Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15(2):R31.

    PubMed  PubMed Central  Google Scholar 

  • Jamniczky HA, Boughner JC, Rolian C, Gonzalez PN, Powell CD, Schmidt EJ, et al. Rediscovering Waddington in the post-genomic age: operationalising Waddington’s epigenetics reveals new ways to investigate the generation and modulation of phenotypic variation. Bioessays. 2010;32(7):553–8.

    PubMed  Google Scholar 

  • Janoušek B, Široký J, Vyskot B. Epigenetic control of sexual phenotype in a dioecious plant, Melandrium album. Mol Gen Genet. 1996;250(4):483–90.

    PubMed  Google Scholar 

  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    CAS  PubMed  Google Scholar 

  • Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J, Zhang J. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell. 2013;153(4):773–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009;5(6):e1000530.

    PubMed  PubMed Central  Google Scholar 

  • Johnsen Ø, Kvaalen H, Yakovlev IA, Dæhlen OG, Fossdal CG, Skrøppa T. An epigenetic memory from time of embryo development affects climatic adaptation in Norway spruce. Plant cold hardiness. From the laboratory to the field. Wallingford: CABI; 2009. p. 99–107.

    Google Scholar 

  • Johnson LJ, Tricker PJ. Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity. 2010;105(1):113–21.

    CAS  PubMed  Google Scholar 

  • Jones P, Taylor S. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20(1):85–93.

    CAS  PubMed  Google Scholar 

  • Jost D, Carrivain P, Cavalli G, Vaillant C. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res. 2014;42(15):9553–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kacmarczyk TJ, Fall MP, Zhang X, Xin Y, Li Y, Alonso A, et al. “Same difference”: comprehensive evaluation of four DNA methylation measurement platforms. Epigenetics Chromatin. 2018;11(1):21.

    PubMed  PubMed Central  Google Scholar 

  • Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, Benes V, et al. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun. 2012;3:886.

    PubMed  Google Scholar 

  • Kaidery N, Tarannum S, Thomas B. Epigenetic landscape of Parkinson’s disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics. 2013;10(4):698–708.

    Google Scholar 

  • Kaikkonen MU, Lam MTY, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 2011;90(3):430–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karius T, Schnekenburger M, Dicato M, Diederich M. MicroRNAs in cancer management and their modulation by dietary agents. Biochem Pharmacol. 2012;83(12):1591–601.

    CAS  PubMed  Google Scholar 

  • Karsy M, Arslan E, Moy F. Current progress on understanding microRNAs in glioblastoma multiforme. Genes Cancer. 2012;3(1):3–15.

    PubMed  PubMed Central  Google Scholar 

  • Kawakatsu T, Huang S-SC, Jupe F, Sasaki E, Schmitz RJ, Urich MA, et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell. 2016a;166(2):492–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakatsu T, Stuart T, Valdes M, Breakfield N, Schmitz RJ, Nery JR, et al. Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat Plants. 2016b;2(5):16058.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazazian HH. Mobile elements and disease. Curr Opin Genet Dev. 1998;8(3):343–50.

    CAS  PubMed  Google Scholar 

  • Keller M, Hopp L, Liu X, Wohland T, Rohde K, Cancello R, et al. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metabolism. 2017;6(1):86–100.

    CAS  Google Scholar 

  • Kelly DE, Hansen MEB, Tishkoff SA. Global variation in gene expression and the value of diverse sampling. Curr Opin Syst Biol. 2017;1:102–8.

    PubMed  PubMed Central  Google Scholar 

  • Kermicle JL. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics. 1970;66(1):69–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keverne EB. Significance of epigenetics for understanding brain development, brain evolution and behaviour. Neuroscience. 2014;264:207–17.

    CAS  PubMed  Google Scholar 

  • Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefer JC. Epigenetics in development. Dev Dyn. 2007;236(4):1144–56.

    CAS  PubMed  Google Scholar 

  • Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39.

    CAS  PubMed  Google Scholar 

  • Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465(7295):182–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • King GJ, Amoah S, Kurup S. Exploring and exploiting epigenetic variation in crops. Genome. 2010;53(11):856–68.

    CAS  PubMed  Google Scholar 

  • Klironomos FD, Berg J, Collins S. How epigenetic mutations can affect genetic evolution: model and mechanism: problems & paradigms. Bioessays. 2013;35(6):571–8.

    PubMed  Google Scholar 

  • Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468(7325):839–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko Y, Mohtat D, Suzuki M, Park A, Izquierdo M. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 2013;14:R108. https://doi.org/10.1186/gb-2013-14-10-r108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9(1):29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kou HP, Li Y, Song XX, Ou XF, Xing SC, Ma J, Von Wettstein D, Liu B. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J Plant Physiol. 2011;168(14):1685–93.

    CAS  PubMed  Google Scholar 

  • Kraus TFJ, Greiner A, Steinmaurer M, Dietinger V, Guibourt V, Kretzschmar HA. Genetic characterization of ten-eleven-translocation methylcytosine dioxygenase alterations in human glioma. J Cancer. 2015;6(9):832–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer D, Metzger S, Kolb-Bachofen V. Quantitative measurement of genome-wide DNA methylation by a reliable and cost-efficient enzyme-linked immunosorbent assay technique. Anal Biochem. 2012;422(2):74–8.

    CAS  PubMed  Google Scholar 

  • Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324(5929):929–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kronfol MM, Dozmorov MG, Huang R, Slattum PW, McClay JL. The role of epigenomics in personalized medicine. Expert Rev Precis Med Drug Dev. 2017;2(1):33–45.

    PubMed  PubMed Central  Google Scholar 

  • Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchino Y, Hanyu N, Nishimura S. Analysis of modified nucleosides and nucleotide sequence of tRNA. Methods Enzymol. 1987;155:379–96.

    CAS  PubMed  Google Scholar 

  • Kunej T, Godnic I, Ferdin J, Horvat S, Dovc P, Calin GA. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res. 2011;717(1–2):77–84.

    CAS  PubMed  Google Scholar 

  • Kuo KC, McCune RA, Gehrke CW, Midgett R, Ehrlich M. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 1980;8(20):4763–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurdyukov S, Bullock M. DNA methylation analysis: choosing the right method. Biology. 2016;5(1):3. https://doi.org/10.3390/biology5010003.

    Article  CAS  PubMed Central  Google Scholar 

  • Kvaalen H, Johnsen Ø. Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol. 2008;177(1):49–59.

    PubMed  Google Scholar 

  • Lahtz C, Pfeifer G. Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol. 2011;3(1):51–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR. Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene. 2010;29(4):576–88.

    CAS  PubMed  Google Scholar 

  • Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci. 2015;9:58.

    PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.

    PubMed  PubMed Central  Google Scholar 

  • Latzel V, Allan E, Bortolini Silveira A, Colot V, Fischer M, Bossdorf O. Epigenetic diversity increases the productivity and stability of plant populations. Nat Commun. 2013;4:2875.

    PubMed  Google Scholar 

  • Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11(3):204–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le T, Kim K-P, Fan G, Faull KF. A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples. Anal Biochem. 2011;412(2):203–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MK, Hong Y, Kim SY, Kim WJ, London SJ. Epigenome-wide association study of chronic obstructive pulmonary disease and lung function in Koreans. Epigenomics. 2017;9(7):971–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lele L, Ning D, Cuiping P, Xiao G, Weihua G. Genetic and epigenetic variations associated with adaptation to heterogeneous habitat conditions in a deciduous shrub. Ecol Evol. 2018;8(5):2594–606.

    PubMed  PubMed Central  Google Scholar 

  • Lentini A, Lagerwall C, Vikingsson S, Mjoseng HK, Douvlataniotis K, Vogt H, et al. A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat Methods. 2018;15(7):499–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leto K, Arancillo M, Becker E, Buffo A, Chiang C. Consensus paper: cerebellar development. Cerebellum. 2016;15(6):789–828.

    PubMed  Google Scholar 

  • Lewis LC, Lo PCK, Foster JM, Dai N, Corrêa IR, Durczak PM, et al. Dynamics of 5-carboxylcytosine during hepatic differentiation: potential general role for active demethylation by DNA repair in lineage specification. Epigenetics. 2017;12(4):277–86.

    PubMed  PubMed Central  Google Scholar 

  • Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013. https://arxiv.org/pdf/1303.3997.pdf.

  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95.

    PubMed  PubMed Central  Google Scholar 

  • Li J, Poi MJ, Tsai M-D. The regulatory mechanisms of tumor suppressor p16INK4 and relevance to cancer. Biochemistry. 2012;50(25):5566–82. https://doi.org/10.1021/bi200642e.

    Article  CAS  Google Scholar 

  • Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell. 2009a;137(3):509–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009b;25(1 Pt 2):1653–4.

    Google Scholar 

  • Li Y, Kong D, Wang Z, Sarkar FH. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res. 2010;27(6):1027–41.

    PubMed  PubMed Central  Google Scholar 

  • Li H, Liu F, Ren C, Bo X, Shu W. Genome-wide identification and characterisation of HOT regions in the human genome. BMC Genomics. 2016;17(1):733.

    PubMed  PubMed Central  Google Scholar 

  • Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye CY, et al. Single-base-resolution methylomes of populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet. 2014;15(Suppl 1):1–11.

    Google Scholar 

  • Lindsay S, Bird AP. Use of restriction enzymes to detect potential gene sequences in mammalian DNA. Nature. 1987;327(6120):336–8.

    CAS  PubMed  Google Scholar 

  • Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 2009;58(12):2718–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PC. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One. 2010;5(4):e10326.

    PubMed  PubMed Central  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008;133(3):523–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhu Y, Luo G-Z, Wang X, Yue Y, Wang X, et al. Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat Commun. 2016;7:13052.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    PubMed  PubMed Central  Google Scholar 

  • Low DA, Weyand NJ, Mahan MJ. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun. 2001;69(12):7197–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ. Elucidation of the small RNA component of the transcriptome. Science. 2005;309(5740):1567–9.

    CAS  PubMed  Google Scholar 

  • Lu H, Liu X, Deng Y, Hong Q. DNA methylation, a hand behind neurodegenerative diseases. Front Aging Neurosci. 2013;5:85. https://doi.org/10.3389/fnagi.2013.00085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–60.

    CAS  PubMed  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.

    CAS  PubMed  Google Scholar 

  • Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population genomics: advancing understanding of nature. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG, part of Springer Nature; 2018.

    Google Scholar 

  • Lujambio A, Calin G, Villanueva A, Ropero S, Sánchez-Céspedes M. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008;105(36):13556–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunyak VV, Rosenfeld MG. Epigenetic regulation of stem cell fate. Hum Mol Genet. 2008;17(R1):R28–36.

    CAS  PubMed  Google Scholar 

  • Luo G-Z, He C. DNA N6-methyladenine in metazoans: functional epigenetic mark or bystander? Nat Struct Mol Biol. 2017;24(6):503–6.

    CAS  PubMed  Google Scholar 

  • Luo G-Z, Blanco MA, Greer EL, He C, Shi Y. DNA N(6)-methyladenine: a new epigenetic mark in eukaryotes? Nat Rev Mol Cell Biol. 2015;16(12):705–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maamar MB, Sadler-Riggleman I, Beck D, Skinner MK. Epigenetic transgenerational inheritance of altered sperm histone retention sites. Sci Rep. 2018;8(1):5308.

    PubMed  PubMed Central  Google Scholar 

  • Maes T, Tirapu I, Estiarte A, Ciceri F, Lunardi S, Wiseman D. ORY-1001, a potent and selective covalent KDM1A inhibitor, for the treatment of acute leukemia. Cancer Cell. 2018;33(3):495–511.

    CAS  PubMed  Google Scholar 

  • Magaña AA, Wrobel K, Caudillo YA, Zaina S, Lund G, Wrobel K. High-performance liquid chromatography determination of 5-methyl-2′-deoxycytidine, 2′-deoxycytidine, and other deoxynucleosides and nucleosides in DNA digests. Anal Biochem. 2008;374(2):378–85.

    PubMed  Google Scholar 

  • Maiques-Diaz A, Somervaille TC. LSD1: biologic roles and therapeutic targeting. Epigenomics. 2016;8(8):1103–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011;286(41):35334–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malone CD, Hannon GJ. Small RNAs as guardians of the genome. Cell. 2009;136(4):656–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell. 2009;137(3):522–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2.

    Google Scholar 

  • Martin EM, Fry RC. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu Rev Public Health. 2018;39:309–33.

    PubMed  Google Scholar 

  • Martinez SR, Gay MS, Zhang L. Epigenetic mechanisms in heart development and disease. Drug Discov Today. 2015;20(7):799–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One. 2009;4(8):e6617.

    PubMed  PubMed Central  Google Scholar 

  • Matkovich SJ, Hu Y, Eschenbacher WH, Dorn LE, Dorn GW. Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy. Circ Res. 2012;111(5):521–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattiroli F, Bhattacharyya S, Dyer PN, White AE, Sandman K, Burkhart BW, et al. Structure of histone-based chromatin in Archaea. Science. 2017;357(6351):609–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 2014;15(6):394–408.

    CAS  PubMed  Google Scholar 

  • McClay JL, Shabalin AA, Dozmorov MG, Adkins DE, Kumar G, Nerella S, Clark SL, Bergen SE, Hultman CM, Magnusson PK, Sullivan PF. High density methylation QTL analysis in human blood via next-generation sequencing of the methylated genomic DNA fraction. Genome Biol. 2015;16(1):291.

    PubMed  PubMed Central  Google Scholar 

  • McClintock B. Chromosome organization and genic expression. In: Cold Spring Harbor symposia on quantitative biology, vol. 16. New York: Cold Spring Harbor Laboratory Press; 1951. p. 13–47.

    Google Scholar 

  • Medrano M, Herrera CM, Bazaga P. Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb. Mol Ecol. 2014;23(20):4926–38.

    CAS  PubMed  Google Scholar 

  • Meeks KA, Henneman P, Venema A, Burr T, Galbete C, Danquah I, Schulze MB, Mockenhaupt FP, Owusu-Dabo E, Rotimi CN, Addo J. An epigenome-wide association study in whole blood of measures of adiposity among Ghanaians: the RODAM study. Clin Epigenetics. 2017;9(1):103.

    PubMed  PubMed Central  Google Scholar 

  • Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005;33(18):5868–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng D, Dubin M, Zhang P, Osborne EJ, Stegle O, Clark RM, et al. Limited contribution of DNA methylation variation to expression regulation in Arabidopsis thaliana. PLoS Genet. 2016;12(7):e1006141.

    PubMed  PubMed Central  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448(7153):553–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011;20(15):3067–78.

    PubMed  Google Scholar 

  • Miranda-Morales E, Meier K, Sandoval-Carrillo A, Salas-Pacheco J, Vázquez-Cárdenas P, Arias-Carrión O. Implications of DNA methylation in Parkinson’s disease. Front Mol Neurosci. 2017;10:225. https://doi.org/10.3389/fnmol.2017.00225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirbahai L, Chipman JK. Epigenetic memory of environmental organisms: a reflection of lifetime stressor exposures. Mutat Res. 2014;764–765:10–7.

    Google Scholar 

  • Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell. 2002;110(6):689–99.

    CAS  PubMed  Google Scholar 

  • Moison C, Assemat F, Daunay A, Arimondo PB, Tost J. DNA methylation analysis of ChIP products at single nucleotide resolution by Pyrosequencing®. In: Lehmann U, Tost J, editors. Pyrosequencing: methods and protocols. New York: Springer; 2015. p. 315–33. https://doi.org/10.1007/978-1-4939-2715-9_22.

    Chapter  Google Scholar 

  • Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987;99(3):371–82.

    CAS  PubMed  Google Scholar 

  • Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics. 2016;8:57. https://doi.org/10.1186/s13148-016-0223-4

    PubMed  PubMed Central  Google Scholar 

  • Morris T, Beck S. Analysis pipelines and packages for Infinium HumanMethylation450 BeadChip (450k) data. Methods. 2015;72(11):3–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Movassagh M, Choy M, Knowles D, Cordeddu L, Haider S. Distinct epigenomic features in end-stage failing human hearts. Circulation. 2011;124(22):2411–22.

    PubMed  PubMed Central  Google Scholar 

  • Murrell A, Hurd PJ, Wood IC. Epigenetic mechanisms in development and disease. Biochem Soc Trans. 2013;41(3):697–9.

    CAS  PubMed  Google Scholar 

  • Nakatochi M, Ichihara S, Yamamoto K, Naruse K, Yokota S, Asano H, Matsubara T, Yokota M. Epigenome-wide association of myocardial infarction with DNA methylation sites at loci related to cardiovascular disease. Clin Epigenetics. 2017;9(1):54.

    PubMed  PubMed Central  Google Scholar 

  • Nano J, Ghanbari M, Wang W, de Vries P, Dhana K. Epigenome-wide association study identifies methylation sites associated with liver enzymes and hepatic steatosis. Gastroenterology. 2017;153(4):1096–106. https://doi.org/10.1053/j.gastro.2017.06.003.

    Article  CAS  PubMed  Google Scholar 

  • Neri F, Incarnato D, Krepelova A, Parlato C, Oliviero S. Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis. Nat Protoc. 2016;11(7):1191–205.

    CAS  PubMed  Google Scholar 

  • Nestor C, Ruzov A, Meehan R, Dunican D. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques. 2010;48(4):317–9.

    CAS  PubMed  Google Scholar 

  • Newman EM, Morgan RJ, Kummar S, Beumer JH, Blanchard MS, Ruel C, El-Khoueiry AB, Carroll MI, Hou JM, Li C, Lenz HJ. A phase I, pharmacokinetic, and pharmacodynamic evaluation of the DNA methyltransferase inhibitor 5-fluoro-2′-deoxycytidine, administered with tetrahydrouridine. Cancer Chemother Pharmacol. 2015;75(3):537–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng RK, Gurdon JB. Epigenetic inheritance of cell differentiation status. Cell Cycle. 2008;7(9):1173–7.

    CAS  PubMed  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010;15(12):684–92.

    CAS  PubMed  Google Scholar 

  • Niederhuth CE, Bewick AJ, Ji L, Alabady MS, Kim KD, Li Q, et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 2016;17(1):1–19.

    Google Scholar 

  • Nightingale KP, O’Neill LP, Turner BM. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev. 2006;16(2):125–36.

    CAS  PubMed  Google Scholar 

  • Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One. 2012;7(5):e36129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novak P, Jensen T, Oshiro MM, Wozniak RJ, Nouzova M, Watts GS, et al. Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res. 2006;66(22):10664–70.

    CAS  PubMed  Google Scholar 

  • O’Brown ZK, Greer EL. N6-methyladenine: a conserved and dynamic DNA mark. In: Jeltsch A, Jurkowska RZ, editors. DNA methyltransferases – role and function. Cham: Springer International Publishing; 2016. p. 213–46. https://doi.org/10.1007/978-3-319-43624-1_10.

    Chapter  Google Scholar 

  • Oakeley EJ. DNA methylation analysis: a review of current methodologies. Pharmacol Ther. 1999;84(3):389–400. https://doi.org/10.1016/S0163-7258(99)00043-1.

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    CAS  PubMed  Google Scholar 

  • Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 2006;22(1):1–5.

    CAS  PubMed  Google Scholar 

  • Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A. 2013;110(50):20164–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SR, Dressler GR. The genetics and epigenetics of kidney development. Semin Nephrol. 2013;33(4):314–26. https://doi.org/10.1016/j.semnephrol.2013.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paun O, Bateman RM, Fay MF, Hedrén M, Civeyrel L, Chase MW. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol Biol Evol. 2010;27(11):2465–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pecinka A, Scheid OM. Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol. 2012;53(5):801–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pei J-H, Luo S-Q, Zhong Y, Chen J-H, Xiao H-W, Hu W-X. The association between non-Hodgkin lymphoma and methylation of p73. Tumor Biol. 2011;32(6):1133.

    CAS  Google Scholar 

  • Petersen AK, Zeilinger S, Kastenmüller G, Römisch-Margl W, Brugger M, Peters A, et al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet. 2014;23(2):534–45.

    CAS  PubMed  Google Scholar 

  • Peterson CL, Laniel M-A. Histones and histone modifications. Curr Biol. 2004;14(14):R546–51.

    CAS  PubMed  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7(5):e37135.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piferrer F. Epigenetics of sex determination and gonadogenesis. Dev Dyn. 2013;242(4):360–70.

    CAS  PubMed  Google Scholar 

  • Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B. Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet. 2002;36:233–78.

    CAS  PubMed  Google Scholar 

  • Platt A, Gugger PF, Pellegrini M, Sork VL. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations. Mol Ecol. 2015;24(15):3823–30.

    CAS  PubMed  Google Scholar 

  • Pollard KS, Salama SR, Lambert N, Lambot M-A, Coppens S, Pedersen JS, et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature. 2006;443(7108):167–72.

    CAS  PubMed  Google Scholar 

  • Pomraning KR, Smith KM, Freitag M. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods. 2009;47(3):142–50.

    CAS  PubMed  Google Scholar 

  • Postberg J, Forcob S, Chang W-J, Lipps HJ. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms. BMC Evol Biol. 2010;10:259.

    PubMed  PubMed Central  Google Scholar 

  • Price TD, Qvarnström A, Irwin DE. The role of phenotypic plasticity in driving genetic evolution. Proc R Soc Lond B Biol Sci. 2003;270(1523):1433–40.

    Google Scholar 

  • Przybilski R, Gräf S, Lescoute A, Nellen W, Westhof E. Functional hammerhead ribozymes naturally encoded in the genome of Arabidopsis thaliana. Plant Cell. 2005;17(7):1877–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao W, Guo B, Zhou H, Xu W, Chen Y, Liang Y, et al. miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA. Biochem Biophys Res Commun. 2017;486(1):43–8.

    CAS  PubMed  Google Scholar 

  • Quinkler M, Stewart PM. Hypertension and the cortisol-cortisone shuttle. J Clin Endocrinol Metab. 2003;88(6):2384–92.

    CAS  PubMed  Google Scholar 

  • Rahavi SMR, Kovalchuk I. Changes in homologous recombination frequency in Arabidopsis thaliana plants exposed to stress depend on time of exposure during development and on duration of stress exposure. Physiol Mol Biol Plants. 2013;19(4):479–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raj S, Bräutigam K, Hamanishi ET, Wilkins O, Thomas BR, Schroeder W, et al. Clone history shapes Populus drought responses. Proc Natl Acad Sci U S A. 2011;108(30):12521–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12(8):529–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsawhook A, Lewis L, Coyle B, Ruzov A. Medulloblastoma and ependymoma cells display increased levels of 5-carboxylcytosine and elevated TET1 expression. Clin Epigenetics. 2017;9:18.

    PubMed  PubMed Central  Google Scholar 

  • Ramsawhook A, Ruzov A, Coyle B. Wilms’ tumor protein 1 and enzymatic oxidation of 5-methylcytosine in brain tumors: potential perspectives. Front Cell Dev Biol. 2018;6:26. https://doi.org/10.3389/fcell.2018.00026.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods. 2017;14(4):411–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rando OJ, Verstrepen KJ. Timescales of genetic and epigenetic inheritance. Cell. 2007;128(4):655–68.

    CAS  PubMed  Google Scholar 

  • Rangasamy S, D’Mello SR, Narayanan V. Epigenetics, autism spectrum, and neurodevelopmental disorders. Neurotherapeutics. 2013;10(4):742–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MA, Natarajan R. Epigenetics in diabetic kidney disease. J Am Soc Nephrol. 2011;22(12):2182–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rehimi R, Nikolic M, Cruz-Molina S, Tebartz C, Frommolt P, Mahabir E, et al. Epigenomics-based identification of major cell identity regulators within heterogeneous cell populations. Cell Rep. 2016;17(11):3062–76.

    CAS  PubMed  Google Scholar 

  • Reich E, Schibli A. High-performance thin-layer chromatography for the analysis of medicinal plants. Stuttgart: Thieme; 2007.

    Google Scholar 

  • Reik W. Genomic imprinting and genetic disorders in man. Trends Genet. 1989;5(10):331–6.

    CAS  PubMed  Google Scholar 

  • Reinders J, Wulff BBH, Mirouze M, Mari-Ordonez A, Dapp M, Rozhon W, et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 2009;23(8):939–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24(17):4348–70.

    PubMed  Google Scholar 

  • Relyea RA. Costs of phenotypic plasticity. Am Nat. 2002;159(3):272–82.

    PubMed  Google Scholar 

  • Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL. Genome-wide location and function of DNA binding proteins. Science. 2000;290(5500):2306–9.

    CAS  PubMed  Google Scholar 

  • Rey T, Laporte P, Bonhomme M, Jardinaud M-F, Huguet S, Balzergue S, et al. MtNF-YA1, a central transcriptional regulator of symbiotic nodule development, is also a determinant of medicago truncatula susceptibility toward a root pathogen. Front Plant Sci. 2016;7:1837.

    PubMed  PubMed Central  Google Scholar 

  • Reyna-Lopez G, Simpson J, Ruiz-Herrera J, Genetics M. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet. 1997;253(6):703–10.

    CAS  PubMed  Google Scholar 

  • Richards EJ. Inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet. 2006;7(5):395–401.

    CAS  PubMed  Google Scholar 

  • Richards EJ. Population epigenetics. Curr Opin Genet Dev. 2008;18(2):221–6.

    CAS  PubMed  Google Scholar 

  • Richards CL, Bossdorf O, Verhoeven KJF. Understanding natural epigenetic variation. New Phytol. 2010;187(3):562–4.

    PubMed  Google Scholar 

  • Richards CL, Schrey AW, Pigliucci M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett. 2012;15(9):1016–25.

    PubMed  Google Scholar 

  • Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colomé-Tatché M, et al. Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecol Lett. 2017;20(12):1576–90.

    PubMed  Google Scholar 

  • Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9–25.

    CAS  PubMed  Google Scholar 

  • Rivera CM, Ren B. Mapping human epigenomes. Cell. 2013;155(1):39–55.

    CAS  PubMed  Google Scholar 

  • Roach DA, Wulff RD. Maternal effects in plants. Annu Rev Ecol Syst. 1987;18(1):209–35.

    Google Scholar 

  • Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.

    PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.

    CAS  PubMed  Google Scholar 

  • Rodriguez J, Frigola J, Vendrell E, Risques R-A, Fraga MF, Morales C, et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 2006;66(17):8462–8.

    CAS  PubMed  Google Scholar 

  • Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17(3):330–9. https://doi.org/10.1038/nm.2305.

    Article  CAS  PubMed  Google Scholar 

  • Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1(1):19–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross JP, Rand KN, Molloy PL. Hypomethylation of repeated DNA sequences in cancer. Epigenomics. 2010;2(2):245–69.

    CAS  PubMed  Google Scholar 

  • Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, et al. Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res. 2011;21(9):1332–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan D, Ehninger D. Bison: bisulfite alignment on nodes of a cluster. BMC Bioinformatics. 2014;15:337. https://doi.org/10.1186/1471-2105-15-337.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sáez-Laguna E, Guevara M-Á, Díaz L-M, Sánchez-Gómez D, Collada C, Aranda I, et al. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS One. 2014;9(8):e103145.

    PubMed  PubMed Central  Google Scholar 

  • Salojärvi J. Computational tools for population genomics. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG, part of Springer Nature; 2018.

    Google Scholar 

  • Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A. 1984;81(22):6993–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos F, Dean W. Using immunofluorescence to observe methylation changes in mammalian preimplantation embryos. In: Nuclear reprogramming. Totowa, NJ: Humana Press; 2006. p. 129–38.

    Google Scholar 

  • Satoh M, et al. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J Card Fail. 2010;16(5):404–10. https://doi.org/10.1016/j.cardfail.2010.01.002.

    Article  CAS  PubMed  Google Scholar 

  • Sawan C, Herceg Z. 3-Histone modifications and cancer. Adv Genet. 2010;70(70):57–85.

    CAS  PubMed  Google Scholar 

  • Schield D, Walsh M, Card D, Andrew A, Adams R, Castoe T. EpiRADseq: scalable analysis of genomewide patterns of methylation using next-generation sequencing. Methods Ecol Evol. 2016;7(1):60–9.

    Google Scholar 

  • Schlichting CD, Wund MA. Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution. 2014;68(3):656–72.

    PubMed  Google Scholar 

  • Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science. 2011;334(6054):369–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, et al. Patterns of population epigenomic diversity. Nature. 2013a;495(7440):193–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz RJ, He Y, Valdes-Lopez O, Khan SM, Joshi T, Urich MA, et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 2013b;23(10):1663–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schönberger B, Chen X, Mager S, Ludewig U. Site-dependent differences in DNA methylation and their impact on plant establishment and phosphorus nutrition in Populus trichocarpa. PLoS One. 2016;11(12):e0168623.

    PubMed  PubMed Central  Google Scholar 

  • Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D, et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature. 2015;523(7559):212–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seehafer C, Kalweit A, Steger G, Gräf S, Hammann C. From alpaca to zebrafish: hammerhead ribozymes wherever you look. RNA. 2011;17(1):21–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shafi A, Mitrea C, Nguyen T, Draghici S. A survey of the approaches for identifying differential methylation using bisulfite sequencing data. Brief Bioinform. 2018;19(5):737–53. https://doi.org/10.1093/bib/bbx013.

    Article  PubMed  Google Scholar 

  • Shao Z, Zhang Y, Yuan G-C, Orkin SH, Waxman DJ. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Genome Biol. 2012;13(3):R16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A. Transgenerational epigenetic inheritance: focus on soma to germline information transfer. Prog Biophys Mol Biol. 2013;113(3):439–46. https://doi.org/10.1016/j.pbiomolbio.2012.12.003.

    Article  CAS  PubMed  Google Scholar 

  • Sharma U, Rando OJ. Metabolic inputs into the epigenome. Cell Metab. 2017;25(3):544–58.

    CAS  PubMed  Google Scholar 

  • Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–45.

    CAS  PubMed  Google Scholar 

  • Shimada-Sugimoto M, Otowa T, Miyagawa T, Umekage T, Kawamura Y, Bundo M, Iwamoto K, Tochigi M, Kasai K, Kaiya H, Tanii H. Epigenome-wide association study of DNA methylation in panic disorder. Clin Epigenetics. 2017;9(1):6.

    PubMed  PubMed Central  Google Scholar 

  • Shiota K, Kogo Y, Ohgane J, Imamura T, Urano A, Nishino K, et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells. 2002;7(9):961–9. https://doi.org/10.1046/j.1365-2443.2002.00574.x.

    Article  CAS  PubMed  Google Scholar 

  • Simpson J, Workman R, Zuzarte P, David M, Dursi L, Detecting D, et al. Cytosine methylation using nanopore sequencing. Nat Methods. 2017;14(4):407–10. https://doi.org/10.1038/nmeth.4184.

    Article  CAS  PubMed  Google Scholar 

  • Singh NN, Luo D, Singh RN. Pre-mRNA splicing modulation by antisense oligonucleotides. In: Exon skipping and inclusion therapies. New York, NY: Humana Press; 2018. p. 415–37.

    Google Scholar 

  • Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457(7228):396–404.

    CAS  PubMed  Google Scholar 

  • Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011;12(4):246–58.

    CAS  PubMed  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, Feijó JA, Martienssen RA. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell. 2009;136(3):461–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.

    CAS  PubMed  Google Scholar 

  • Smith P, Al H, Girard J, Delay C, Hébert S. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem. 2011;116(2):240–7.

    CAS  PubMed  Google Scholar 

  • Smolarek I, Wyszko E, Barciszewska AM, Nowak S, Gawronska I, Jablecka A, et al. Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit. 2010;16(3):CR149–55.

    CAS  PubMed  Google Scholar 

  • Soejima H, Higashimoto K. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. J Hum Genet. 2013;58(7):402–9.

    CAS  PubMed  Google Scholar 

  • Sollars ESA, Buggs RJA. Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease. BMC Genomics. 2018;19(1):502.

    PubMed  PubMed Central  Google Scholar 

  • Song X, Cao X. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Curr Opin Plant Biol. 2017;36:111–8.

    CAS  PubMed  Google Scholar 

  • Song C-X, He C. Potential functional roles of DNA demethylation intermediates. Trends Biochem Sci. 2013;38(10):480–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, James SR, Kazim L, Karpf AR. Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem. 2005;77(2):504–10.

    CAS  PubMed  Google Scholar 

  • Song Y, Ci D, Tian M, Zhang D. Stable methylation of a non-coding RNA gene regulates gene expression in response to abiotic stress in Populus simonii. J Exp Bot. 2016;67(5):1477–92.

    CAS  PubMed  Google Scholar 

  • Soppa J. Protein acetylation in archaea, bacteria, and eukaryotes. Archaea. 2010. pii: 820681. https://doi.org/10.1155/2010/820681.

    Google Scholar 

  • Spencer C, Su Z, Donnelly P, Marchini J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5(5):e1000477. https://doi.org/10.1371/journal.pgen.1000477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer NM, Schmitz RJ. Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet. 2017;18(9):563–75.

    CAS  PubMed  Google Scholar 

  • Srivastava A, Karpievitch Y, Eichten S, Borevitz J, Lister R. HOME: a histogram based machine learning approach for effective identification of differentially methylated regions. BioRxi. 2017. https://doi.org/10.1101/228221.

  • Stark R, Brown G. DiffBind: differential binding analysis of ChIP-Seq peak data. 2011. http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf.

  • Steinhauser S, Kurzawa N, Eils R, Herrmann C. A comprehensive comparison of tools for differential ChIP-seq analysis. Brief Bioinform. 2016;17(6):953–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stöger R, Ruzov A. Beyond CpG methylation: new modifications in eukaryotic DNA. Front Cell Dev Biol. 2018;6:87. https://doi.org/10.3389/fcell.2018.00087.

    Article  PubMed  PubMed Central  Google Scholar 

  • Storz G. An expanding universe of noncoding RNAs. Science. 2002;296(5571):1260–3.

    CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    CAS  PubMed  Google Scholar 

  • Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123(1):8–13.

    CAS  PubMed  Google Scholar 

  • Stroud H, Ding B, Simon SA, Feng S, Bellizzi M, Pellegrini M, et al. Plants regenerated from tissue culture contain stable epigenome changes in rice. Elife. 2013;2:e00354. https://elifesciences.org/articles/00354

    PubMed  PubMed Central  Google Scholar 

  • Studholme DJ. Deep sequencing of small RNAs in plants: applied bioinformatics. Brief Funct Genomics. 2012;11(1):71–85.

    CAS  PubMed  Google Scholar 

  • Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 2000;5(12):537–42.

    CAS  PubMed  Google Scholar 

  • Sultan SE. Phenotypic plasticity in plants: a case study in ecological development. Evol Dev. 2003;5(1):25–33.

    PubMed  Google Scholar 

  • Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R. Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol. 2010;21(12):2069–80. https://doi.org/10.1681/ASN.2010060633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Huang S, Wang X, Zhu Y, Chen Z, Chen D. N6-methyladenine functions as a potential epigenetic mark in eukaryotes. Bioessays. 2015;37(11):1155–62.

    CAS  PubMed  Google Scholar 

  • Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.

    CAS  PubMed  Google Scholar 

  • Szyf M, Pakneshan P, Rabbani SA. DNA methylation and breast cancer. Biochem Pharmacol. 2004;68(6):1187–97.

    CAS  PubMed  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Osabe K, Fukushima N, Takuno S, Miyaji N, Shimizu M, et al. Genome-wide characterization of DNA methylation, small RNA expression, and histone H3 lysine nine di-methylation in Brassica rapa L. DNA Res. 2018; https://doi.org/10.1093/dnares/dsy021.

    PubMed  PubMed Central  Google Scholar 

  • Talbert PB, Ahmad K, Almouzni G, Ausió J, Berger F, Bhalla PL, et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin. 2012;5:7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot B, Chen T-W, Zimmerman S, Joost S, Eckert AJ, Crow TM, et al. Combining genotype, phenotype, and environment to infer potential candidate genes. J Hered. 2017;108(2):207–16.

    PubMed  Google Scholar 

  • Tang Y, Xiong J, Jiang H-P, Zheng S-J, Feng Y-Q, Yuan B-F. Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis. Anal Chem. 2014;86(15):7764–72.

    CAS  PubMed  Google Scholar 

  • Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population epigenomic variation. Nat Rev Genet. 2016;17(6):319–32.

    CAS  PubMed  Google Scholar 

  • Teschendorff AE, Zheng SC. Cell-type deconvolution in epigenome-wide association studies: a review and recommendations. Epigenomics. 2017;9(5):757–68.

    CAS  PubMed  Google Scholar 

  • Thon N, Kreth S, Kreth F. Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. OncoTargets Ther. 2013;6:1363–72.

    CAS  Google Scholar 

  • Thorson JLM, Smithson M, Beck D, Sadler-Riggleman I, Nilsson E, Dybdahl M, et al. Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Sci Rep. 2017;7(1):1–11.

    CAS  Google Scholar 

  • Tsai M, Manor O, Wan Y, Mosammaparast N, Wang J. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116(4):737–50.

    CAS  PubMed  Google Scholar 

  • Udali S, Guarini P, Moruzzi S, Choi S, Friso S. Cardiovascular epigenetics: From DNA methylation to microRNAs. Mol Aspects Med. 2013;34(4):883–901.

    CAS  PubMed  Google Scholar 

  • Underwood CJ, Henderson IR, Martienssen RA. Genetic and epigenetic variation of transposable elements in Arabidopsis. Curr Opin Plant Biol. 2017;36:135–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006;313(5785):320–4.

    CAS  PubMed  Google Scholar 

  • Valente S, Mai A. Small-molecule inhibitors of histone deacetylase for the treatment of cancer and non-cancer diseases: a patent review (2011–2013). Expert Opin Ther Pat. 2014;24(4):401–15.

    CAS  PubMed  Google Scholar 

  • Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods. 2008;5(9):829–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Graaf A, Wardenaar R, Neumann DA, Taudt A, Shaw RG, Jansen RC, et al. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc Natl Acad Sci U S A. 2015;112(21):6676–81.

    PubMed  PubMed Central  Google Scholar 

  • Van Dooren T, Silveira A, Gilbaut E, Jimenez-Gomez JM, Martin A, Bach L, et al. Mild drought induces phenotypic and DNA methylation plasticity but no transgenerational effects in Arabidopsis. BioRxiv. 2018. https://doi.org/10.1101/370320.

  • Van Oppen MJH, Gates RD, Blackall LL, Cantin N, Chakravarti LJ, Chan WY, et al. Shifting paradigms in restoration of the world’s coral reefs. Glob Chang Biol. 2017;23(9):3437–48.

    PubMed  Google Scholar 

  • Van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103(48):18255–60.

    PubMed  PubMed Central  Google Scholar 

  • Vanyushin BF, Belozersky AN, Kokurina NA, Kadirova DX. 5-Methylcytosine and 6-methylamino-purine in bacterial DNA. Nature. 1968;218(5146):1066–7.

    CAS  PubMed  Google Scholar 

  • Vaughn MW, Tanurdžić M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, et al. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 2007;5(7):1617–29.

    CAS  Google Scholar 

  • Vergeer P, Ouborg NJ. Evidence for an epigenetic role in inbreeding depression. Biol Lett. 2012;8(5):798–801. https://doi.org/10.1098/rsbl.2012.0494.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhoeven KJF, Jansen JJ, Van Dijk PJ, Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 2010;185(4):1108–18.

    CAS  PubMed  Google Scholar 

  • Verhoeven KJF, von Holdt BM, Sork VL. Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol. 2016;25(8):1631–8.

    PubMed  Google Scholar 

  • Vogt G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. Environ Epigenet. 2017;3(1):1–17.

    Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002;297(5588):1833–7.

    CAS  PubMed  Google Scholar 

  • Waalwijk C, Flavell RA. MspI, an isoschizomer of hpaII which cleaves both unmethylated and methylated hpaII sites. Nucleic Acids Res. 1978;5(9):3231–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH. The epigenotype. Int J Epidemiol. 2012;41(1):10–3.

    CAS  PubMed  Google Scholar 

  • Wajed SA, Laird PW, DeMeester TR. DNA methylation: an alternative pathway to cancer. Ann Surg. 2001;234(1):10–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Song S, Wu Y-S, Li Y-L, Chen T, Huang Z, et al. Genome-wide mapping of 5-hydroxymethylcytosine in three rice cultivars reveals its preferential localization in transcriptionally silent transposable element genes. J Exp Bot. 2015;66(21):6651–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sheng Y, Liu Y, Pan B, Huang J, Warren A, et al. N6-methyladenine DNA modification in the unicellular eukaryotic organism Tetrahymena thermophila. Eur J Protistol. 2017;58:94–102.

    PubMed  Google Scholar 

  • Watanabe A, Yamada Y, Yamanaka S. Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Philos Trans R Soc Lond B Biol Sci. 2013;368(1609):20120292.

    PubMed  PubMed Central  Google Scholar 

  • Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37(8):853–62.

    CAS  PubMed  Google Scholar 

  • Wedd L, Maleszka R. DNA methylation and gene regulation in honeybees: from genome-wide analyses to obligatory epialleles. Adv Exp Med Biol. 2016;945:193–211. https://doi.org/10.1007/978-3-319-43624-1_9. In: Jeltsch A, Jurkowska R, editors. DNA methyltransferases – role and function

    Article  CAS  PubMed  Google Scholar 

  • Weinmann A, Farnham P. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods. 2002;26(1):37–47.

    CAS  PubMed  Google Scholar 

  • Weksberg R, Smith AC, Squire J, Sadowski P. Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum Mol Genet. 2003;12(Spec No 1):R61–8.

    Google Scholar 

  • Weng MK, Natarajan K, Scholz D, Ivanova VN, Sachinidis A, Hengstler JG, et al. Lineage-specific regulation of epigenetic modifier genes in human liver and brain. PLoS One. 2014;9(7):e102035.

    PubMed  PubMed Central  Google Scholar 

  • West-Eberhard M. Phenotypic accommodation: adaptive innovation due to developmental plasticity. J Exp Zool Mol Dev Evol. 2005;304(6):610–8.

    Google Scholar 

  • Wheldon LL, Abakir A, Ferjentsik Z. Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells. Cell Rep. 2014;7(5):1353–61.

    CAS  PubMed  Google Scholar 

  • Whipple AV, Holeski LM. Epigenetic inheritance across the landscape. Front Genet. 2016;7:189.

    PubMed  PubMed Central  Google Scholar 

  • Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153(2):307–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, et al. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. Elife. 2016;5 https://elifesciences.org/articles/13546

  • Wijetunga NA, Delahaye F, Zhao YM, Golden A, Mar JC, Einstein FH, et al. The meta-epigenomic structure of purified human stem cell populations is defined at cis-regulatory sequences. Nat Commun. 2014;5:5195.

    CAS  PubMed  Google Scholar 

  • Wilson ME, Sengoku T. Developmental regulation of neuronal genes by DNA methylation: environmental influences. Int J Dev Neurosci. 2013;31(6):448–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wion D, Casadesús J. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol. 2006;4(3):183–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong H-L, Byun H-M, Kwan JM, Campan M, Ingles SA, Laird PW, et al. Rapid and quantitative method of allele-specific DNA methylation analysis. Biotechniques. 2006;41(6):734–9.

    CAS  PubMed  Google Scholar 

  • Woodward C, Hansen L, Beckwith F, Redman R, Rodriguez R. Symbiogenics: an epigenetic approach to mitigating impacts of climate change on plants. HortScience. 2012;47(6):699–703.

    Google Scholar 

  • Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156(1–2):45–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt GR, Cohen SS. A new pyrimidine base from bacteriophage nucleic acids. Nature. 1952;170(4338):1072–3.

    CAS  PubMed  Google Scholar 

  • Xi Y, Li W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics. 2009;10:232. http://link.springer.com/article/10.1186/1471-2105-10-232

    PubMed  PubMed Central  Google Scholar 

  • Xia J, Joyce CE, Bowcock AM, Zhang W. Noncanonical microRNAs and endogenous siRNAs in normal and psoriatic human skin. Hum Mol Genet. 2013;22(4):737–48.

    CAS  PubMed  Google Scholar 

  • Xiao S, Cao X, Zhong S. Comparative epigenomics: defining and utilizing epigenomic variations across species, time-course, and individuals. Wiley interdisciplinary reviews. Syst Biol Med. 2014;6(5):345–52.

    CAS  Google Scholar 

  • Xiao C-L, Zhu S, He M-H, Chen Y, Yu G-L, Chen D, et al. N6-methyladenine DNA modification in human genome. BioRxiv. 2017;176958.

    Google Scholar 

  • Xiao CL, Zhu S, He M, Chen, Zhang Q, Chen Y, Yu G, Liu J, Xie SQ, Luo F, Liang Z, Wang DP, Bo XC, Gu XF, Wang K, Yan GR. N(6)-methyladenine DNA modification in the human genome. Mol Cell. 2018;71:306–18 e7.

    CAS  PubMed  Google Scholar 

  • Xie HJ, Li H, Liu D, Dai WM, He JY, Lin S, et al. ICE1 demethylation drives the range expansion of a plant invader through cold tolerance divergence. Mol Ecol. 2015;24(4):835–50.

    CAS  PubMed  Google Scholar 

  • Xing X, Cai W, Luo L, Liu L, Shi H. The prognostic value of p16 hypermethylation in cancer: a meta-analysis. Plos One. 2013;8(6):e54970. http://pubmedcentralcanada.ca/pmcc/articles/PMC3689792/

    Google Scholar 

  • Xu Z, Bolick SC, DeRoo LA, Weinberg CR, Sandler DP, Taylor JA. Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst. 2013;105(10):694–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Grullon S, Ge K, Peng W. Spatial clustering for identification of ChIP-enriched regions (SICER) to map regions of histone methylation patterns in embryonic stem cells. In: Kidder BL, editor. Stem cell transcriptional networks: methods and protocols. New York: Springer; 2014. p. 97–111. https://doi.org/10.1007/978-1-4939-0512-6_5.

    Chapter  Google Scholar 

  • Xue K, Gu JJ, Zhang Q, Mavis C, Hernandez-Ilizaliturri FJ, Czuczman MS, et al. Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents. J Cancer Res Clin Oncol. 2016;142(2):379–87.

    CAS  PubMed  Google Scholar 

  • Yaish MW, Peng M, Rothstein SJ. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP). Methods Mol Biol. 2014;1062:285–98.

    PubMed  Google Scholar 

  • Yakovlev IA, Fossdal CG. In silico analysis of small RNAs suggest roles for novel and conserved miRNAs in the formation of epigenetic memory in somatic embryos of Norway spruce. Front Plant Physiol. 2017;8:674.

    Google Scholar 

  • Yakovlev I, Fossdal CG, Skrøppa T, Olsen JE, Jahren AH, Johnsen Ø. An adaptive epigenetic memory in conifers with important implications for seed production. Seed Sci Res. 2012;22:63–6.

    CAS  Google Scholar 

  • Yakovlev IA, Carneros E, Lee Y, Olsen JE, Fossdal CG. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta. 2016;243(5):1237–49.

    CAS  PubMed  Google Scholar 

  • Yan H, Simola DF, Bonasio R, Liebig J, Berger SL, Reinberg D. Eusocial insects as emerging models for behavioural epigenetics. Nat Rev Genet. 2014;15(10):677–88.

    CAS  PubMed  Google Scholar 

  • Yan H, Bonasio R, Simola DF, Liebig J, Berger SL, Reinberg D. DNA methylation in social insects: how epigenetics can control behavior and longevity. Annu Rev Entomol. 2015;60:435–52.

    CAS  PubMed  Google Scholar 

  • Yang IV, Richards A, Davidson EJ, Stevens AD, Kolakowski CA, Martin RJ, et al. The nasal methylome: a key to understanding allergic asthma. Am J Respir Crit Care Med. 2017;195(6):829–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5(1):37.

    CAS  PubMed  Google Scholar 

  • Yu M, Hon G, Szulwach K, Song C, Jin P. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc. 2012;7(12):2159–70. https://doi.org/10.1038/nprot.2012.137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yung PYK, Elsässer SJ. Evolution of epigenetic chromatin states. Curr Opin Chem Biol. 2017;41:36–42.

    CAS  PubMed  Google Scholar 

  • Zas R, Cendán C, Sampedro L. Mediation of seed provisioning in the transmission of environmental maternal effects in Maritime pine (Pinus pinaster Aiton). Heredity. 2013;111(3):248–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zemach A, Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr Biol. 2010;20(17):R780–5.

    CAS  PubMed  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9.

    CAS  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell. 2006;126(6):1189–201.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, et al. APP processing in Alzheimer’s disease. Mol Brain. 2011;4(1):3. https://doi.org/10.1186/1756-6606-4-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Stevens MF, Bradshaw TD. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol. 2012a;5(1):102–14.

    CAS  PubMed  Google Scholar 

  • Zhang L, Lu X, Lu J, Liang H, Dai Q, Xu G-L, et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol. 2012b;8(4):328–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang X-O, Chen T, Xiang J-F, Yin Q-F, Xing Y-H, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013a;51(6):792–806.

    CAS  PubMed  Google Scholar 

  • Zhang Y-Y, Fischer M, Colot V, Bossdorf O. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol. 2013b;197(1):314–22.

    CAS  PubMed  Google Scholar 

  • Zhang L, Chen W, Iyer LM, Hu J, Wang G, Fu Y, et al. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. J Am Chem Soc. 2014;136(13):4801–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, et al. N6-methyladenine DNA modification in Drosophila. Cell. 2015a;161(4):893–906.

    CAS  PubMed  Google Scholar 

  • Zhang J, Liu Y, Xia E-H, Yao Q-Y, Liu X-D, Gao L-Z. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc Natl Acad Sci U S A. 2015b;112(50):E7022–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Lang Z, Zhu J-K. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol. 2018;19(8):489–506.

    CAS  PubMed  Google Scholar 

  • Zhao J, Goldberg J, Bremner JD, Vaccarino V. Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes. 2011. https://doi.org/10.2337/db11-1048.

    PubMed  Google Scholar 

  • Zheng X, Chen L, Xia H, Wei H, Lou Q, Li M, et al. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci Rep. 2017;7(1):39843. http://www.nature.com/articles/srep39843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X. Comparative epigenomics: a powerful tool to understand the evolution of DNA methylation. New Phytol. 2016;210(1):76–80.

    CAS  PubMed  Google Scholar 

  • Zhu J-K. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet. 2009;43:143–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Shan L, Wang F, Wang J, Shen G, Liu X, et al. Hypermethylation of BRCA1 gene: implication for prognostic biomarker and therapeutic target in sporadic primary triple-negative breast cancer. Breast Cancer Res Treat. 2015;150(3):479–86.

    CAS  PubMed  Google Scholar 

  • Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development. 2007;134:3959–65. https://doi.org/10.1242/dev.001131.

    Article  CAS  PubMed  Google Scholar 

  • Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT-Y, Kohlbacher O, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500(7463):477–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman KCK, Levitis DA, Pringle A. Beyond animals and plants: dynamic maternal effects in the fungus Neurospora crassa. J Evol Biol. 2016;29(7):1379–93.

    CAS  PubMed  Google Scholar 

  • Zoghbi H, Beaudet A. Epigenetics and human disease. Cold Spring Harb Perspect Biol. 2016;8(2):479–510. https://doi.org/10.1101/cshperspect.a019497.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E.R.V.M. and A.V.W. are supported by NSF Macrosystems grant no. EF-1442597. A.R.’s lab (A.A., M.E., L.C.L., and A.R.) is supported by Biotechnology and Biological Sciences Research Council [grant number BB/N005759/1] to A.R. A.A. is supported by Medical Research Council IMPACT DTP PhD Studentship [grant number MR/N013913/1] to A.A. OPR was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant RGPIN 2017-04589. The authors thank Dr. Chad Niederhuth for helpful comments and contributions to writing the bioinformatics section, and Dr. Jesse Hollister for sharing his thoughts about the preliminary outline of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om P. Rajora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moler, E.R.V. et al. (2018). Population Epigenomics: Advancing Understanding of Phenotypic Plasticity, Acclimation, Adaptation and Diseases. In: Rajora, O. (eds) Population Genomics. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_59

Download citation

Publish with us

Policies and ethics