Advertisement

Paleogenomics pp 163-187 | Cite as

Reconstructing Past Vegetation Communities Using Ancient DNA from Lake Sediments

  • Laura ParducciEmail author
  • Kevin Nota
  • Jamie Wood
Part of the Population Genomics book series (POGE)

Abstract

The field of ancient DNA has received much attention since the mid-1980s, when the first sequences of extinct species were obtained from museum and archaeological specimens. Early analyses focused on organellar DNA (mitochondrial in animals and chloroplast in plants) as these are present in multiple copies in the cells making isolation and analyses easier. Within the last decade, however, with considerable advances in high-throughput DNA sequencing technology and bioinformatics, it has become possible to analyse the more informative nuclear genome of a larger number of ancient samples and from a larger variety of substrates and environments. Here, we present recent progress made to reconstruct ancient vegetation communities from lake sediments and review recent key findings in the field. We synthesize and discuss the sources of plant DNA in sediment, the issues relating to DNA preservation after deposition, the criteria required for authentication and the technical advances recently made in the field for the analyses and the taxonomic identification of plant ancient DNA sequences obtained from these complex substrates. Together, these advances mean that we are on the way to an explosion of new information for the investigation of ancient plant environments.

Keywords

Ancient DNA High-throughput DNA sequencing Lake sediments Metabarcoding Metagenomics Pollen Shotgun sequencing Vegetation 

References

  1. Ahmed E, Parducci L, Unneberg P, Ågren R, Schenk F, Rattray JE, Han L, Muschitiello F, Pedersen MW, Smittenberg RH, et al. Archaeal community changes in Lateglacial lake sediments: evidence from ancient DNA. Quat Sci Rev. 2018;181:19–29.Google Scholar
  2. Alawi M, Schneider B, Kallmeyer J. A procedure for separate recovery of extra- and intracellular DNA from a single marine sediment sample. J Microbiol Methods. 2014;104:36–42.PubMedGoogle Scholar
  3. Allentoft EA, Collins M, Harker D, Haile J, Oskam C, Hale M, et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc R Soc B. 2012;279:4724–33.PubMedGoogle Scholar
  4. Alsos IG, Sjögren P, Edwards ME, Landvik JY, Gielly L, Forwick M, Coissac E, Brown AG, Jakobsen LV, Føreid MK, et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. The Holocene. 2016;26:1–16.Google Scholar
  5. Alsos IG, Lammers Y, Yoccoz NG, Jørgensen T, Sjögren P, Gielly L, Edwards ME. Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation. PLoS One. 2018;13:e0195403.PubMedPubMedCentralGoogle Scholar
  6. Anderson-Carpenter LL, McLachlan JS, Jackson ST, Kuch M, Lumibao CY, Poinar HN. Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC Evol Biol. 2011;11:30–15.PubMedPubMedCentralGoogle Scholar
  7. Baamrane MAA, Shehzad W, Ouhammou A, Abbad A, Naimi M, Coissac E, Taberlet P, Znari M. Assessment of the food habits of the Moroccan dorcas gazelle in M’Sabih Talaa, west Central Morocco, using the trnL approach. PLoS One. 2012;7:e35643.Google Scholar
  8. Barnes MA, Turner CR. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet. 2016;17:1–17.Google Scholar
  9. Bennett KD. Comment on ‘sedimentary DNA from a submerged site reveals wheat in the British Isles 8,000 years ago’. Science. 2015;349:247.Google Scholar
  10. Birks HJB, Birks HH. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras? New Phytol. 2016;209:499–506.Google Scholar
  11. Bissett A, Gibson JAE, Jarman SN, Swadling KM, Cromer L. Isolation, amplification, and identification of ancient copepod DNA from lake sediments. Limnol Oceanogr Methods. 2005;3:533–42.Google Scholar
  12. Blum SAE, Lorenz MG, Wackernagel W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst Appl Microbiol. 1997;20:513–21.Google Scholar
  13. Boessenkool S, MCGlynn G, Epp LS, Taylor D, Pimentel M, Gizaw A, Memomissa S, Brochmann C, Popp M. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. Conserv Biol. 2013;28:446–55.PubMedGoogle Scholar
  14. Bremond L, Favier C, Ficetola GF, Tossou MG, Akouégninou A, Gielly L, Giguet-Covex C, Oslisly R, Salzmann U. Five thousand years of tropical lake sediment DNA records from Benin. Quat Sci Rev. 2017;170:203–11.Google Scholar
  15. Briggs AW, Stenzel U, Johnson PLF, Green RE, Kelso J, Prufer K, Meyer M, Krause J, Ronan MT, Lachmann M, et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci U S A. 2007;104:14616–21.PubMedPubMedCentralGoogle Scholar
  16. Brown TA, Cappellini E, Kistler L, Lister DL, Oliveira HR, Wales N, Schlumbaum A. Recent advances in ancient DNA research and their implications for archaeobotany. Veg Hist Archaeobotany. 2014;24:207–14.Google Scholar
  17. Capo E, Debroas D, Arnaud F, Guillemot T, Bichet V, Millet L, Gauthier E, Massa C, Develle AL, Pignol C, Lejzerowicz F, Domaizon I. Long-term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA. Mol Ecol. 2016;25:5925–43.PubMedGoogle Scholar
  18. Coissac E, Hollingsworth PM, Lavergne S, Taberlet P. From barcodes to genomes: extending the concept of DNA barcoding. Mol Ecol. 2016;25:1423–8.PubMedGoogle Scholar
  19. Coolen M, Gibson J. Ancient DNA in lake sediment records. PAGES News. 2009;17:104–6.Google Scholar
  20. da Fonseca RR, Smith BD, Wales NA, Cappellini E, Skoglund P, Fumagalli M, Samaniego JA, Carøe C, Ávila-Arcos MAC, Hufnagel DE, et al. The origin and evolution of maize in the Southwestern United States. Nat Plants. 2015;1:1–5.Google Scholar
  21. Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, Valdiosera CE, García N, Pääbo S, Arsuaga JL, et al. Complete mitochondrial genome sequence of a middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A. 2013;110:15758–63.PubMedPubMedCentralGoogle Scholar
  22. Domaizon I, Savichtcheva O, Debroas D, Arnaud F, Villar C, Pignol C, Alric B, Perga ME. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosciences. 2013;10:2515–64.Google Scholar
  23. Epp LS, Boessenkool S, Bellemain EP, Haile J, Esposito A, Riaz T, Erseus C, Erséus C, Gusarov VI, Edwards ME, et al. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol. 2012;21:1821–33.PubMedGoogle Scholar
  24. Epp LS, Gussarova G, Boessenkool S, Olsen J, Haile J, Schrøder-Nielsen A, Ludikova A, Hassel K, Stenøien HK, Funder S, et al. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes. Quat Sci Rev. 2015;117:152–63.Google Scholar
  25. Ficetola GF, Coissac E, Zundel S, Riaz T, Shehzad W, Bessière J, Taberlet P, Pompanon F. An in silico approach for the evaluation of DNA barcodes. BMC Genomics. 2010;11:434–1572.PubMedPubMedCentralGoogle Scholar
  26. Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, De Barba M, Gielly L, Lopes CM, Boyer F, Pompanon F, et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol Ecol Resour. 2015;15:543–56.PubMedGoogle Scholar
  27. Ficetola GF, Poulenard J, Sabatier P, Messager E, Gielly L, Leloup A, Etienne D, Bakke J, Malet E, Fanget B, et al. DNA from lake sediments reveals long-term ecosystem changes after a biological invasion. Sci Adv. 2018;4:eaar4292.PubMedPubMedCentralGoogle Scholar
  28. Gates KS. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol. 2009;22(11):1747–60.  https://doi.org/10.1021/tx900242k.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Giguet-Covex C, Pansu J, Arnaud F, Rey P-J, Griggo C, Gielly L, Domaizon I, Coissac E, David F, Choler P, et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat Commun. 2014;5:3211.PubMedGoogle Scholar
  30. Ginolhac A, Rasmussen M, Gilbert MTP, Willerslev E, Orlando L. mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics. 2011;27:2153–5.PubMedGoogle Scholar
  31. Gómez-Zeledón J, Grasse W, Runge F, Land A. TaqMan qPCR pushes boundaries for the analysis of millennial wood. J Archeol Sci. 2017;79:53–61.Google Scholar
  32. Greaves MP, Wilson MJ. The adsorption of nucleic acids by montmorillonite. Soil Biol Biochem. 1969;1:317–23.Google Scholar
  33. Haile J, Froese DG, MacPhee RDE, Roberts RG, Arnold LJ, Reyes AV, Rasmussen M, Nielsen R, Brook BW, Robinson S, et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc Natl Acad Sci U S A. 2009;106:22352–7.PubMedPubMedCentralGoogle Scholar
  34. Hasegawa Y, Suyama Y, Seiwa K. Pollen donor composition during the early phases of reproduction revealed by DNA genotyping of pollen grains and seeds of Castanea crenata. New Phytol. 2009;182:994–1002.PubMedGoogle Scholar
  35. Hasegawa Y, Suyama Y, Seiwa K. Variation in pollen-donor composition among pollinators in an entomophilous tree species, Castanea crenata, revealed by single-pollen genotyping. PLoS One. 2015;10:e0120393.PubMedPubMedCentralGoogle Scholar
  36. Heinecke L, Epp LS, Reschke M, Stoof-Leichsenring KR, Mischke S, Plessen B, Herzschuh U. Macrophyte dynamics in Lake Karakul (Eastern Pamir) over the last 29 cal kyr BP. J Paleolimnol. 2017;58(3):403–17.  https://doi.org/10.1007/s10933-017-9986-7.CrossRefGoogle Scholar
  37. Hirota SK, Nitta K, Suyama Y, Kawakubo N, Yasumoto AA, Yahara T. Pollinator-mediated selection on flower color, flower scent and flower morphology of Hemerocallis: evidence from genotyping individual pollen grains on the stigma. PLoS One. 2013;8:e85601.PubMedPubMedCentralGoogle Scholar
  38. Hofreiter M, Serre D, Poinar H, Kuch M, Pääbo S. Ancient DNA. Nat Rev Genet. 2001;2:353–9.Google Scholar
  39. Hofreiter M, Betancourt JL, Sbriller AP, Markgraf V, McDonald HG. Phylogeny, diet, and habitat of an extinct ground sloth from Cuchillo Curá, Neuquén Province, Southwest Argentina. Quat Res. 2003;59:364–78.Google Scholar
  40. Hu FS, Hampe A, Petit RJ. Paleoecology meets genetics: deciphering past vegetational dynamics. Front Ecol Environ. 2009;7:371–9.Google Scholar
  41. Huang Y, Lowe DJ, Heng Z, Cursons R, Young JM, Churchman J, Schipper LA, Rawlence NJ, Wood JR, Cooper A. A new method to extract and purify DNA from allophanic soils and paleosols, and potential for paleoenvironmental reconstruction and other applications. Geoderma. 2016;274:114–25.Google Scholar
  42. Hutchinson GE. A treatise on limnology. In: Geography, physics and chemistry, vol. 1. New York: Wiley; 1957.Google Scholar
  43. Isagi Y, Suyama Y. In: Isagi Y, Suyama Y, editors. Single-pollen genotyping. Tokyo: Springer; 2010.Google Scholar
  44. Jackson ST. Representation of flora and vegetation in Quaternary fossil assemblages: known and unknown knowns and unknowns. Quat Sci Rev. 2012;49:1–15.Google Scholar
  45. Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–4.PubMedPubMedCentralGoogle Scholar
  46. Jørgensen T, Haile J, Moller P, Andreev A, Boessenkool S, Rasmussen M, Kienast F, Coissac E, Taberlet P, Brochmann C, et al. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability. Mol Ecol. 2012;21:1989–2003.PubMedGoogle Scholar
  47. Key FM, Posth C, Krause J, Herbig A, Bos KI. Mining metagenomic data sets for ancient DNA: recommended protocols for authentication. Trends Genet. 2017;33:508–20.PubMedGoogle Scholar
  48. Kuch M, Rohland N, Betancourt J, Latorre C, Steppan S, Poinar H. Molecular analysis of a 11 700-year-old rodent midden from the Atacama Desert, Chile. Mol Ecol. 2002;11:913–24.PubMedGoogle Scholar
  49. Lendvay B, Hartmann M, Brodbeck S, Nievergelt D, Reinig F, Zoller S, Parducci L, Gugerli F, Büntgen U, Sperisen C. Improved recovery of ancient DNA from subfossil wood – application to the world’s oldest Late Glacial pine forest. New Phytol. 2018;217:1737–48.PubMedGoogle Scholar
  50. Lindhal T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–15.Google Scholar
  51. Mascher M, Schuenemann VJ, Davidovich U, Marom N, Himmelbach A, Hübner S, Korol A, David M, Reiter E, Riehl S, et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet. 2016;48:1089–93.Google Scholar
  52. Matsuki Y, Isagi Y, Suyama Y. The determination of multiple microsatellite genotypes and DNA sequences from a single pollen grain. Mol Ecol Notes. 2007;7:194–8.Google Scholar
  53. Matsuki Y, Tateno R, Shibata M, Isagi Y. Pollination efficiencies of flower-visiting insects as determined by direct genetic analysis of pollen origin. Am J Bot. 2008;95:925–30.PubMedGoogle Scholar
  54. Murray DC, Pearson SG, Fullagar R, Chase BM, Houston J, Atchison J, White NE, Bellgard MI, Clarke E, Macphail M, et al. High-throughput sequencing of ancient plant and mammal DNA preserved in herbivore middens. Quat Sci Rev. 2012;58:135–45.Google Scholar
  55. Nagler M, Insam H, Pietramellara G, Ascher-Jenull J. Extracellular DNA in natural environments: features, relevance and applications. Appl Microbiol Biotechnol. 2018;116:67–14.Google Scholar
  56. Nakazawa F, Uetake J, Suyama Y, Kaneko R, Takeuchi N, Fujita K, Motoyama H, Imura S, Kanda H. DNA analysis for section identification of individual Pinus pollen grains from Belukha glacier, Altai Mountains, Russia. Environ Res Lett. 2013;8:014032.Google Scholar
  57. Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D. Release and persistence of extracellular DNA in the environment. Environ Biosaf Res. 2007;6:37–53.Google Scholar
  58. Niemeyer B, Epp LS, Stoof-Leichsenring KR, Pestryakova LA, Herzschuh U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol Ecol Resour. 2017;26:41.Google Scholar
  59. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E, Petersen B, Moltke I, et al. Recalibrating Equus evolution using the genome sequence of an early middle Pleistocene horse. Nature. 2014;498:74–8.Google Scholar
  60. Orlando L, Gilbert MTP, Willerslev E. Reconstructing ancient genomes and epigenomes. Nat Rev Genet. 2015;16:395–408.Google Scholar
  61. Overballe-Petersen S, Willerslev E. Horizontal transfer of short and degraded DNA has evolutionary implications for microbes and eukaryotic sexual reproduction. BioEssays. 2014;36:1005–10.PubMedPubMedCentralGoogle Scholar
  62. Paffetti D, Vettori C, Caramelli D, Vernesi C, Lari M, Paganelli A, Paule L, Giannini R. Unexpected presence of Fagus orientalis complex in Italy as inferred from 45,000-year-old DNA pollen samples from Venice lagoon. BMC Evol Biol. 2007;7:S6.PubMedPubMedCentralGoogle Scholar
  63. Pansu J, Giguet-Covex C, Ficetola GF, Gielly L, Boyer F, Zinger L, Arnaud F, Poulenard J, Taberlet P, Choler P. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol Ecol. 2015;24:1485–98.PubMedGoogle Scholar
  64. Parducci L, Suyama Y, Lascoux M, Bennett KD. Ancient DNA from pollen: a genetic record of population history in Scots pine. Mol Ecol. 2005;14:2873–82.PubMedGoogle Scholar
  65. Parducci L, Jørgensen T, Tollefsrud MM, Elverland E, Alm T, Fontana SL, Bennett KD, Haile J, Matetovici I, Suyama Y, et al. Glacial survival of boreal trees in northern Scandinavia. Science. 2012;335:1083–6.Google Scholar
  66. Parducci L, Matetovici I, Fontana SL, Bennett KD, Suyama Y, Haile J, Kjær KH, Larsen NK, Drouzas AD, Willerslev E. Molecular- and pollen-based vegetation analysis in lake sediments from Central Scandinavia. Mol Ecol. 2013;22:3511–24.PubMedGoogle Scholar
  67. Parducci L, Väliranta M, Salonen JS, Ronkainen T, Matetovici I, Fontana SL, Eskola T, Sarala P, Suyama Y. Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA. Philos Trans R Soc B. 2015;370:20130382.Google Scholar
  68. Parducci L, Bennett KD, Ficetola GF, Alsos IG, Suyama Y, Wood JR, Pedersen MW. Ancient plant DNA in lake sediments. New Phytol. 2017;214:924–42.PubMedGoogle Scholar
  69. Parducci L, Unneberg P, Pedersen MW, Han L, Lammers Y, Alsos Greve I, Salonen SJ, Väliranta M, Slotte T, Wohlfarth B. Shotgun sequencing Lateglacial-early Holocene lake sediment from Sweden to assess past plant diversity. 2018. Submitted.Google Scholar
  70. Paus A, Boessenkool S, Brochmann C, Epp LS, Fabel D, Haflidason H, Linge H. Lake store Finnsjøen – a key for understanding Lateglacial/early Holocene vegetation and ice sheet dynamics in the central Scandes Mountains. Quat Sci Rev. 2015;121:36–51.Google Scholar
  71. Pedersen MW, Ginolhac A, Orlando L, Olsen J, Andersen K, Holm J, Funder S, Willerslev E, Kjær KH. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa. Quat Sci Rev. 2013;75:161–8.Google Scholar
  72. Pedersen MW, Overballe-Petersen S, Ermini L, Sarkissian CD, Haile J, Hellstrom M, Spens J, Thomsen PF, Bohmann K, Cappellini E, et al. Ancient and modern environmental DNA. Philos Trans R Soc B. 2015;370:20130383.Google Scholar
  73. Pedersen MW, Ruter A, Schweger C, Friebe H, Staff RA, Kjeldsen KK, Mendoza MLZ, Beaudoin AB, Zutter C, Larsen NK, et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature. 2016;537:45–9.PubMedGoogle Scholar
  74. Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils. 2009;45:219–35.Google Scholar
  75. Poinar H, Kuch M, Sobolik K, Barnes I, Stankiewicz A, Kuder T, Spaulding W, Bryant V, Cooper A, Pääbo S. A molecular analysis of dietary diversity for three archaic native Americans. Proc Natl Acad Sci U S A. 2001;98:4317–22.PubMedPubMedCentralGoogle Scholar
  76. Pollmann B, Jacomet S, Schlumbaum A. Morphological and genetic studies of waterlogged Prunus species from the Roman vicus Tasgetium (Eschenz, Switzerland). J Archaeol Sci. 2005;32:1471–80.Google Scholar
  77. Rawlence NJ, Lowe DJ, Wood JR, Young JM, Churchman GJ, Huang Y-T, Cooper A. Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects. J Quat Sci. 2014;29:610–26.Google Scholar
  78. Rohland N, Hofreiter M. Comparison and optimization of ancient DNA extraction. BioTechniques. 2007;42:343–52.PubMedGoogle Scholar
  79. Sjögren P, Edwards ME, Gielly L, Langdon CT, Croudace IW, Merkel MKF, Fonville T, Alsos IG. Lake sedimentary DNA accurately records twentieth century introductions of exotic conifers in Scotland. New Phytol. 2016;213:929–41.PubMedPubMedCentralGoogle Scholar
  80. Slon V, Hopfe C, Weiß CL, Mafessoni F, la Rasilla de M, Lalueza-Fox C, Rosas A, Soressi M, Knul MV, Miller R, et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science. 2017;53:eaam9695.Google Scholar
  81. Smith O, Momber G, Bates R, Garwood P, Fitch S, Pallen M, Gaffney V, Allaby RG. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8,000 years ago. Science. 2015;347:998–1001.Google Scholar
  82. Sobek S, Durisch-Kaiser E, Zurbrügg R. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr Methods. 2009;54:2243–54.Google Scholar
  83. Sønstebø JH, Gielly L, Brysting AK, Elven R, Edwards M, Haile J, Willerslev E, Coissac E, Rioux D, Sannier J, et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Mol Ecol Resour. 2010;10:1009–18.PubMedGoogle Scholar
  84. Stat M, Huggett MJ, Bernasconi R, DiBattista JD, Berry TE, Newman SJ, Harvey ES, Bunce M. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci Rep. 2017;7:1–11.Google Scholar
  85. Stewart JR, Lister AM, Barnes I, Dalén L. Refugia revisited: individualistic responses of species in space and time. Proc R Soc B Biol Sci. 2010;277:661–71.Google Scholar
  86. Stoof-Leichsenring KR, Epp LS, Trauth MH, Tiedelman R. Hidden diversity in diatoms of Kenyan Lake Naivasha: a genetic approach detects temporal variation. Mol Ecol. 2012;21:1918–30.PubMedGoogle Scholar
  87. Stoof-Leichsenring KR, Herzschuh U, Pestryakova LA, Klemm J, Epp LS, Tiedelman R. Genetic data from algae sedimentary DNA reflect the influence of environment over geography. Sci Rep. 2015;5:12924.PubMedPubMedCentralGoogle Scholar
  88. Suyama Y, Kawamuro K, Kinoshita I, Yoshimura K, Tsumura Y, Takahara H. DNA sequence from a fossil pollen of Abies spp. from Pleistocene peat. Genes Genet Syst. 1996;71:145–9.PubMedGoogle Scholar
  89. Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 2007;35:e14.PubMedGoogle Scholar
  90. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012;21:2045–50.PubMedGoogle Scholar
  91. Terrat S, Christen R, Dequiedt S, Lelièvre M, Nowak V, Regnier T, Bachar D, Plassart P, Wincker P, Jolivet C, et al. Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. Microb Biotechnol. 2012;5:135–41.PubMedGoogle Scholar
  92. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3:711–21.PubMedGoogle Scholar
  93. Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev. 2013;37:936–54.PubMedGoogle Scholar
  94. Vries J, Wackernagel W. Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil. 2005;266:91–104.Google Scholar
  95. Wagner S, Lagane F, Seguin-Orlando A, Schbert M, Leroy T, Guichox E, Chancerel E, Bech-Hebelstrup I, Bernand V, Billard C, et al. High-Throughput DNA sequencing of ancient wood. Mol Ecol. 2018;27(5):1138–54.PubMedPubMedCentralGoogle Scholar
  96. Wales N, Andersen K, Cappellini E, Ávila-Arcos MC, Gilbert MTP. Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains. PLoS One. 2014;9:e86827–14.PubMedPubMedCentralGoogle Scholar
  97. Weiß CL, Dannemann M, Prufer K, Burbano HA, Pickrell JK. Contesting the presence of wheat in the British Isles 8,000 years ago by assessing ancient DNA authenticity from low-coverage data. elife. 2015;4:e10005.PubMedPubMedCentralGoogle Scholar
  98. Wetzel RG. Limnology. Lake and river ecosystems. 3rd ed. San Diego: Academic Press; 2001.Google Scholar
  99. Willerslev E, Hansen AJ, Christensen B, Steffensen JP, Arctander P. Diversity of Holocene life forms in fossil glacier ice. Proc Natl Acad Sci U S A. 1999;96:8017–21.PubMedPubMedCentralGoogle Scholar
  100. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science. 2003;300:791–5.Google Scholar
  101. Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB, Brand TB, Hofreiter M, Bunce M, Poinar HN, Johnsen S, et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science. 2007;317:111–4.PubMedPubMedCentralGoogle Scholar
  102. Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED, Vestergård M, Gussarova G, Haile J, et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature. 2014;506:47–51.Google Scholar
  103. Wood J, Wilmshurst J. Pollen analysis of coprolites reveals dietary details of heavy-footed moa (Pachyornis elephantopus) and coastal moa (Euryapteryx curtus) from Central Otago. N Z J Ecol. 2013;37:151–5.Google Scholar
  104. Wood JR, Wilmshurst JM. A protocol for subsampling Late Quaternary coprolites for multi-proxy analysis. Quat Sci Rev. 2016;138:1–5.Google Scholar
  105. Wood JR, Wilmshurst JM, Wagstaff SJ, Worthy TH, Rawlence NJ, Cooper A. High-resolution coproecology: using coprolites to reconstruct the habits and habitats of New Zealand’s extinct upland moa (Megalapteryx didinus). PLoS One. 2012;7:e40025.PubMedPubMedCentralGoogle Scholar
  106. Yoccoz NG. The future of environmental DNA in ecology. Mol Ecol. 2012;21:2031–8.PubMedGoogle Scholar
  107. Yoccoz NG, Bråthen KA, Gielly L, Haile J, Edwards ME, Goslar T, Stedingk Von H, Brysting AK, Coissac E, Pompanon F, et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol Ecol. 2012;21:3647–55.PubMedGoogle Scholar
  108. Ziesemer KA, Mann AE, Sankaranarayanan K, Schroeder H, Ozga AT, Brandt BW, Zaura E, Waters-Rist A, Hoogland M, Salazar-García DC, et al. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Sci Rep. 2015;5:16498.PubMedPubMedCentralGoogle Scholar
  109. Zimmermann H, Raschke E, Epp L, Stoof-Leichsenring K, Schirrmeister L, Schwamborn G, Herzschuh U. The history of tree and Shrub Taxa on Bol’shoy Lyakhovsky Island (New Siberian Archipelago) since the last interglacial uncovered by sedimentary ancient DNA and pollen data. Genes. 2017;8:273–28.PubMedCentralGoogle Scholar
  110. Zinger L, Chave J, Coissac E, Iribar A, Louisanna E, Manzi S, Schilling V, Schimann H, Sommeria-Klein G, Taberlet P. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biol Biochem. 2016;96:16–9.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  2. 2.Long-Term Ecology LaboratoryLandcare ResearchLincolnNew Zealand

Personalised recommendations