Advertisement

pp 1-36 | Cite as

Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions

  • S. D. Bourne
  • J. Hudson
  • L. E. Holman
  • M. Rius
Chapter
Part of the Population Genomics book series

Abstract

Genomic approaches are increasingly being used to study biological invasions. Here, we first analyse how high-throughput sequencing has aided our understanding of the mechanisms associated with biological invasions. These include the transport of propagules to pre-invaded areas, an exploration of the consequences of hybridisation during range expansions, and the pre- and post-invasion adaptation of colonising populations. We then explore how contemporary genomic methods have been used to probe and monitor the spread of non-indigenous species. More specifically, we focus on the detection of species richness from environmental samples, measures of quantitative traits that may promote invasiveness, analysis of rapid adaptation, and the study of phenotypic plasticity. Finally, we look to the future, exploring how genomic approaches will assist future biodiversity conservationists in their efforts to mitigate the spread and effects of biological invasions. Ultimately, although the use of genomic tools to study non-indigenous species has so far been rather limited, studies to date indicate that genomic tools offer unparalleled research opportunities to continually improve our understanding of marine biological invasions.

Keywords

Adaptation eDNA Environmental DNA Hybridisation Nonindigenous species Population genomics Propagule pressure Transcriptomics 

Notes

Acknowledgements

We are grateful to Marjorie Oleksiak and Om Rajora for the invitation to contribute to this book. Data for Fig. 4 was partly supported by the Adventure in Research Grant AAIR15 from the University of Southampton to M.R. and Mark Chapman. SDB and LEH were supported by the Natural Environment Research Council [grant number NE/L002531/1]. JH was funded by the Southampton Marine and Maritime Institute. We are grateful to Xavier Turon for helpful comments during the preparation of this review.

References

  1. Adrian-Kalchhauser I, Burkhardt-Holm P. An eDNA assay to monitor a globally invasive fish species from flowing freshwater. PLoS One. 2016;11:e0147558.Google Scholar
  2. Albins MA, Hixon MA. Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser. 2008;367:233–8.Google Scholar
  3. Allendorf FW, Lundquist LL. Introduction: population biology, evolution, and control of invasive species. Conserv Biol. 2003;17:24–30.Google Scholar
  4. Amberg JJ, Grace McCalla S, Monroe E, Lance R, Baerwaldt K, Gaikowski MP. Improving efficiency and reliability of environmental DNA analysis for silver carp. J Great Lakes Res. 2015;41:367–73.Google Scholar
  5. Andruszkiewicz EA, Sassoubre LM, Boehm AB. Persistence of marine fish environmental DNA and the influence of sunlight. PLoS One. 2017;12:e0185043.Google Scholar
  6. Arcella TE, Perry WL, Lodge DM, Feder JL. The role of hybridization in a species invasion and extirpation of resident Fauna: hybrid vigor and breakdown in the rusty crayfish, Orconectes rusticus. J Crustac Biol. 2014;34:157–64.Google Scholar
  7. Ardura A, Zaiko A, Martinez JL, Samulioviene A, Semenova A, Garcia-Vazquez E. eDNA and specific primers for early detection of invasive species – a case study on the bivalve Rangia cuneata, currently spreading in Europe. Mar Environ Res. 2015a;112(Part B):48–55.Google Scholar
  8. Ardura A, Zaiko A, Martinez JL, Samuiloviene A, Borrell Y, Garcia-Vazquez E. Environmental DNA evidence of transfer of North Sea molluscs across tropical waters through ballast water. J Moll Stud. 2015b;81:495–501.Google Scholar
  9. Ardura A, Zaiko A, Moran P, Planes S, Garcia-Vazquez E. Epigenetic signatures of invasive status in populations of marine invertebrates. Sci Rep. 2017;7:42193.Google Scholar
  10. Aubin-Horth N, Renn SCP. Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol. 2009;18:3763–80.Google Scholar
  11. Azzurro E, Stancanelli B, Di Martino V, Bariche M. Range expansion of the common lionfish Pterois miles (Bennett, 1828) in the Mediterranean Sea: an unwanted new guest for Italian waters. Bioinvasions Rec. 2017;6:95–8.Google Scholar
  12. Baker H, Stebbins G. The genetics of colonizing species. New York: Academic Press; 1965.Google Scholar
  13. Ballew NG, Bacheler NM, Kellison GT, Schueller AM. Invasive lionfish reduce native fish abundance on a regional scale. Sci Rep. 2016;6:32169.Google Scholar
  14. Bariche M, Kleitou P, Kalogirou S, Bernardi G. Genetics reveal the identity and origin of the lionfish invasion in the Mediterranean Sea. Sci Rep. 2017;7:6782.Google Scholar
  15. Barnes MA, Turner CR. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet. 2016;17:1–17.Google Scholar
  16. Barrett SCH. Foundations of invasion genetics: the Baker and Stebbins legacy. Mol Ecol. 2015;24:1927–41.Google Scholar
  17. Barrett SCH, Colautti RI, Dlugosch KM, Rieseberg LH. Invasion genetics: the Baker and Stebbins Legacy. Hoboken, NJ: Wiley; 2016.Google Scholar
  18. Bax NJ, Hayes K, Marshall A, Parry D, Thresher R. Man-made marinas as sheltered islands for alien marine organisms: establishment and eradication of an alien invasive marine species. In: Veitch CR, Clout MN, editors. Turning the tide: the eradication of invasive species. Gland, Switzerland: IUCN SSC Invasive Species Specialist Group; 2002. p. 26–39.Google Scholar
  19. Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162:2025–35.Google Scholar
  20. Bell MA, Travis MP. Hybridization, transgressive segregation, genetic covariation, and adaptive radiation. Trends Ecol Evol. 2005;20:358–61.Google Scholar
  21. Bergman PS, Schumer G, Blankenship S, Campbell E. Detection of adult green sturgeon using environmental DNA analysis. PLoS One. 2016;11:e0153500.Google Scholar
  22. Bernardi G, Azzurro E, Golani D, Miller MR. Genomic signatures of rapid adaptive evolution in the bluespotted cornetfish, a Mediterranean Lessepsian invader. Mol Ecol. 2016;25:3384–96.Google Scholar
  23. Betancur RR, Hines A, Acero PA, Ortí G, Wilbur AE, Freshwater DW. Reconstructing the lionfish invasion: insights into greater Caribbean biogeography. J Biogeogr. 2011;38:1281–93.Google Scholar
  24. Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP, Jarosik V, Wilson JR, Richardson DM. A proposed unified framework for biological invasions. Trends Ecol Evol. 2011;26:333–9.Google Scholar
  25. Blossey B, Notzold R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol. 1995;83:887–9.Google Scholar
  26. Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH. What we still don’t know about invasion genetics. Mol Ecol. 2015;24:2277–97.Google Scholar
  27. Boissin E, Hurley B, Wingfield MJ, Vasaitis R, Stenlid J, Davis C, de Groot P, Ahumada R, Carnegie A, Goldarazena A, Klasmer P, Wermelinger B, Slippers B. Retracing the routes of introduction of invasive species: the case of the Sirex noctilio woodwasp. Mol Ecol. 2012;21:5728–44.Google Scholar
  28. Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G, Erlandson JM, Denham T, Petraglia MD. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc Natl Acad Sci. 2016;113:6388–96.Google Scholar
  29. Bossdorf O, Richards CL, Pigliucci M. Epigenetics for ecologists. Ecol Lett. 2008;11:106–15.Google Scholar
  30. Bouchemousse S, Liautard-Haag C, Bierne N, Viard F. Distinguishing contemporary hybridization from past introgression with postgenomic ancestry-informative SNPs in strongly differentiated Ciona species. Mol Ecol. 2016a;25:5527–42.Google Scholar
  31. Bouchemousse S, Bishop JDD, Viard F. Contrasting global genetic patterns in two biologically similar, widespread and invasive Ciona species (Tunicata, Ascidiacea). Sci Rep. 2016b;6:24875.Google Scholar
  32. Bragg JG, Supple MA, Andrew RL, Borevitz JO. Genomic variation across landscapes: insights and applications. New Phytol. 2015;207:953–67.Google Scholar
  33. Breiman L. Random forests. Mach Learn. 2001;45:5–32.Google Scholar
  34. Brown PMJ, Thomas CE, Lombaert E, Jeffries DL, Estoup A, Lawson Handley L-J. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. BioControl. 2011;56:623.Google Scholar
  35. Butterfield JSS, Díaz-Ferguson E, Silliman BR, Saunders JW, Buddo D, Mignucci-Giannoni AA, Searle L, Allen AC, Hunter ME. Wide-ranging phylogeographic structure of invasive red lionfish in the western Atlantic and greater Caribbean. Mar Biol. 2015;162:773–81.Google Scholar
  36. Carlson SM, Cunningham CJ, Westley PAH. Evolutionary rescue in a changing world. Trends Ecol Evol. 2014;29:521–30.Google Scholar
  37. Carlton JT. The scale and ecological consequences of biological invasions in the world’s oceans. In: Sandlund O, Schei P, Viken Å, editors. Invasive species and biodiversity management. Dordrecht: Kluwer; 1999. p. 195–212.Google Scholar
  38. Carroll SP. Natives adapting to invasive species: ecology, genes, and the sustainability of conservation. Ecol Res. 2007;22:892–901.Google Scholar
  39. Casacuberta E, González J. The impact of transposable elements in environmental adaptation. Mol Ecol. 2013;22:1503–17.Google Scholar
  40. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–40.Google Scholar
  41. Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib. 2009;15:22–40.Google Scholar
  42. Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA. Biological invasions, climate change and genomics. Evol Appl. 2015;8:23–46.Google Scholar
  43. Clark GF, Johnston EL. Propagule pressure and disturbance interact to overcome biotic resistance of marine invertebrate communities. Oikos. 2009;118:1679–86.Google Scholar
  44. Colautti RI, Barrett SCH. Rapid adaptation to climate facilitates range expansion of an introduced plant. Science. 2013;342:364–6.Google Scholar
  45. Colautti RI, MacIsaac HJ. A neutral terminology to define “invasive” species. Divers Distrib. 2004;10:135–41.Google Scholar
  46. Colautti RI, Manca M, Viljanen M, Ketelaars HAM, Bürgi H, Macisaac HJ, Heath DD. Invasion genetics of the Eurasian spiny waterflea: evidence for bottlenecks and gene flow using microsatellites. Mol Ecol. 2005;14:1869–79.Google Scholar
  47. Collins RA, Armstrong KF, Holyoake AJ, Keeling S. Something in the water: biosecurity monitoring of ornamental fish imports using environmental DNA. Biol Invasions. 2013;15:1209–15.Google Scholar
  48. Corbett JJ, Winebrake J. The impacts of globalisation on international maritime transport activity. Global forum on transport and environment in a globalising world. Guadalajara, Mexico: OECD; 2008.Google Scholar
  49. Cordero D, Delgado M, Liu B, Ruesink J, Saavedra C. Population genetics of the Manila clam (Ruditapes philippinarum) introduced in North America and Europe. Sci Rep. 2017;7:39745.Google Scholar
  50. Coyne JA, Orr HA. Speciation. Sunderland, MA: Sinauer Associates; 2004.Google Scholar
  51. Cristescu ME. Genetic reconstructions of invasion history. Mol Ecol. 2015;24:2212–25.Google Scholar
  52. Crooks JA, Soulé ME, Sandlund O. Lag times in population explosions of invasive species: causes and implications. In: Sandlund O, Schei P, Viken A, editors. Invasive species and biodiversity management. Population and Community Biology Series. 1st ed. vol 24. Netherlands: Kluwer Academic Publishers; 1999. pp. 103–25.Google Scholar
  53. Curnutt JL. Host-area specific climatic-matching. Biol Conserv. 2000;94:341–51.Google Scholar
  54. da Fonseca RR, Albrechtsen A, Themudo GE, Ramos-Madrigal J, Sibbesen JA, Maretty L, Zepeda-Mendoza ML, Campos PF, Heller R, Pereira RJ. Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar Genomics. 2016;30:3–13.Google Scholar
  55. Darling JA, Frederick RM. Nucleic acids-based tools for ballast water surveillance, monitoring, and research. J Sea Res. 2017;33:43–52.Google Scholar
  56. Davidson AM, Jennions M, Nicotra AB. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett. 2011;14:419–31.Google Scholar
  57. Davy CM, Kidd AG, Wilson CC. Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PLoS One. 2015;10:e0130965.Google Scholar
  58. Deiner K, Altermatt F. Transport distance of invertebrate environmental DNA in a Natural River. PLoS One. 2014;9:e88786A.Google Scholar
  59. Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J Appl Ecol. 2012;49:953–9.Google Scholar
  60. de Vicente MC, Tanksley SD. QTL analysis of Transgressive segregation in an interspecific tomato cross. Genetics. 1993;134:585–96.Google Scholar
  61. Dlugosch KM, Parker IM. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol. 2008;17:431–49.Google Scholar
  62. Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD. The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol. 2015;24:2095–111.Google Scholar
  63. Dong K, Yao N, Pu Y, He X, Zhao Q, Luan Y, Guan W, Rao S, Ma Y. Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs. PLoS One. 2014;9:e110520.Google Scholar
  64. Dougherty MM, Larson ER, Renshaw MA, Gantz CA, Egan SP, Erickson DM, Lodge DM. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. J Appl Ecol. 2016;53:722–32.Google Scholar
  65. Drake JM. Heterosis, the catapult effect and establishment success of a colonizing bird. Biol Lett. 2006;2:304–7.Google Scholar
  66. Drake JM, Lodge DM. Hull fouling is a risk factor for intercontinental species exchange in aquatic ecosystems. Aquat Invasions. 2007;2:121–31.Google Scholar
  67. Dukes JS. Responses of invasive species to a changing climate and atmosphere. In: Richardson DM, editor. Fifty years of invasion ecology: the legacy of Charles Elton. 1st ed. Oxford: Wiley-Blackwell; 2010.Google Scholar
  68. Edmands S, Northrup SL, Hwang AS. Maladapted gene complexes within populations of the intertidal copepod Tigriops californicus. Evolution. 2009;63:2184–92.Google Scholar
  69. Egan SP, Grey E, Olds B, Feder JL, Ruggiero ST, Tanner CE, Lodge DM. Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission spectroscopy. Environ Sci Technol. 2015;49:4113–21.Google Scholar
  70. Ehrenfeld JG. Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst. 2010;41:59–80.Google Scholar
  71. Ekblom R, Galindo J. Applications of next-generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb). 2011;107:1–15.Google Scholar
  72. Ellstrand NC, Schierenbeck KA. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci. 2000;97:7043–50.Google Scholar
  73. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.Google Scholar
  74. Elst EM, Acharya KP, Dar PA, Reshi ZA, Tufto J, Nijs I, Graae BJ. Pre-adaptation or genetic shift after introduction in the invasive species Impatiens glandulifera? Acta Oecol. 2016;70:60–6.Google Scholar
  75. Estoup A, Guillemaud T. Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol. 2010;19:4113–30.Google Scholar
  76. Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided gene drives for the alteration of wild populations. Elife. 2014;3:e03401.Google Scholar
  77. European Bioinformatics Institute. EMBL-EBI annual scientific report EMBL–EBI, 2013. 2012.Google Scholar
  78. Excoffier L, Ray N. Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol. 2008;23:347–51.Google Scholar
  79. Ferreira CEL, Luiz OJ, Floeter SR, Lucena MB, Barbosa MC, Rocha CR, Rocha LA. First record of invasive lionfish (Pterois volitans) for the Brazilian coast. PLoS One. 2015;10:e0123002.Google Scholar
  80. Ficetola GF, Miaud C, Pompanon F, Taberlet P. Species detection using environmental DNA from water samples. Biol Lett. 2008;4:423–5.Google Scholar
  81. Ficetola GF, Taberlet P, Coissac E. How to limit false positives in environmental DNA and metabarcoding? Mol Ecol Resour. 2016;16:604–7.Google Scholar
  82. Fisher MA, Oleksiak MF. Convergence and divergence in gene expression among natural populations exposed to pollution. BMC Genomics. 2007;8:108.Google Scholar
  83. Florida Fish and Wildlife Conservation Commission (2017) Lionfish – Pterois volitans. http://myfwc.com/wildlifehabitats/nonnatives/marine-species/lionfish/.
  84. Foote AD, Thomsen PF, Sveegaard S, Wahlberg M, Kielgast J, Kyhn LA, Salling AB, Galatius A, Orlando L, Gilbert MT. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS One. 2012;7:e41781.Google Scholar
  85. Forsström T, Vasemägi A. Can environmental DNA (eDNA) be used for detection and monitoring of introduced crab species in the Baltic Sea? Mar Pollut Bull. 2016;109:350–5.Google Scholar
  86. Frey M, Simard N, Robichaud D, Martin J, Therriault T. Fouling around: vessel sea-chests as a vector for the introduction and spread of aquatic invasive species. Manag Biol Invasions. 2014;5:21–30.Google Scholar
  87. Furlan EM, Stoklosa J, Griffiths J, Gust N, Ellis R, Huggins RM, Weeks AR. Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus. Ecol Evol. 2012;2:844–57.Google Scholar
  88. Gaither MR, Toonen RJ, Bowen BW. Coming out of the starting blocks: extended lag time rearranges genetic diversity in introduced marine fishes of Hawai’i. Proc R Soc B Biol Sci. 2012;279:3948–57.Google Scholar
  89. Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T, James P, Warland A, Jordan M, Ciccone J, Serra S, Keenan J, Martin S, McNeill L, Wallace EJ, Jayasinghe L, Wright C, Blasco J, Young S, Brocklebank D, Juul S, Clarke J, Heron AJ, Turner DJ. Highly parallel direct RNA sequencing on an array of nanopores. Nat Meth. 2018;15:201–6.Google Scholar
  90. Gardner JPA, Zbawicka M, Westfall KM, Wenne R. Invasive blue mussels threaten regional scale genetic diversity in mainland and remote offshore locations: the need for baseline data and enhanced protection in the Southern Ocean. Glob Chang Biol. 2016;22:3182–95.Google Scholar
  91. Ghabooli S, Zhan A, Sardiña P, Paolucci E, Sylvester F, Perepelizin PV, Briski E, Cristescu ME, MacIsaac HJ. Genetic diversity in introduced golden mussel populations corresponds to vector activity. PLoS One. 2013;8:e59328.Google Scholar
  92. Gilchrist GW, Lee CE. All stressed out and nowhere to go: does evolvability limit adaptation in invasive species? Genetica. 2007;129:127–32.Google Scholar
  93. Gillis NK, Walters LJ, Fernandes FC, Hoffman EA. Higher genetic diversity in introduced than in native populations of the mussel Mytella charruana: evidence of population admixture at introduction sites. Divers Distrib. 2009;15:784–95.Google Scholar
  94. Gleason LU, Burton RS. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Mol Ecol. 2015;24:610–27.Google Scholar
  95. Gleason LU, Burton RS. Genomic evidence for ecological divergence against a background of population homogeneity in the marine snail Chlorostoma funebralis. Mol Ecol. 2016a;25:3557–73.Google Scholar
  96. Gleason LU, Burton RS. Regional patterns of thermal stress and constitutive gene expression in the marine snail Chlorostoma funebralis in northern and southern California. Mar Ecol Prog Ser. 2016b;556:143–59.Google Scholar
  97. Glotzbecker GJ, Alda F, Broughton RE, Neely DA, Mayden RL, Blum MJ. Geographic independence and phylogenetic diversity of red shiner introductions. Conserv Genet. 2016;17:795–809.Google Scholar
  98. Golani D. The sandy shore of the Red Sea-launching pad for Lessepsian (Suez Canal) migrant fish colonizers of the eastern Mediterranean. J Biogeogr. 1993;20:579–85.Google Scholar
  99. Golani D, Ben-Tuvia A. Characterisation of Lessepsian (Suez Canal) fish migrants. In: Spanier E, Steinberger Y, Lurie M, editors. Environmental quality and ecosystem stability: 1V-B. Jerusalem, Israel: ISEEQS; 1989. p. 235–43.Google Scholar
  100. Golani D, Sonin O. New records of the Red Sea fishes, Pterois miles (Scorpaenidae) and Pteragogus pelycus (Labridae) from the eastern Mediterranean Sea. Jpn J Ichthyol. 1992;39:167–9.Google Scholar
  101. Goldberg CS, Sepulveda A, Ray A, Baumgardt J, Waits LP. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshwater Sci. 2013;32:792–800.Google Scholar
  102. Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, Spear SF, McKee A, Oyler-McCance SJ, Cornman RS, Laramie MB, Mahon AR, Lance RF, Pilliod DS, Strickler KM, Waits LP, Fremier AK, Takahara T, Herder JE, Taberlet P. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol. 2016;7:1299–307.Google Scholar
  103. Gonzalez A, Ronce O, Ferriere R, Hochberg ME. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos Trans R Soc B Biol Sci. 2013;368:20120404.Google Scholar
  104. Green SJ, Akins JL, Maljković A, Côté IM. Invasive lionfish drive Atlantic coral reef fish declines. PLoS One. 2012;7:e32596.Google Scholar
  105. Guardiola M, Frotscher J, Uriz MJ. High genetic diversity, phenotypic plasticity, and invasive potential of a recently introduced calcareous sponge, fast spreading across the Atlanto-Mediterranean basin. Mar Biol. 2016;163:123.Google Scholar
  106. Guillemaud T, Beaumont MA, Ciosi M, Cornuet JM, Estoup A. Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity (Edinb). 2010;104:88–99.Google Scholar
  107. Guillera-Arroita G, Lahoz-Monfort JJ, van Rooyen AR, Weeks AR, Tingley R. Dealing with false-positive and false-negative errors about species occurrence at multiple levels. Methods Ecol Evol. 2017;8:1081–91.Google Scholar
  108. Guo W-Y, Lambertini C, Nguyen LX, Li X-Z, Brix H. Preadaptation and post-introduction evolution facilitate the invasion of Phragmites australis in North America. Ecol Evol. 2014;4:4567–77.Google Scholar
  109. Guo B, DeFaveri J, Sotelo G, Nair A, Merilä J. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol. 2015;13:19.Google Scholar
  110. Hallatschek O, Nelson DR. Gene surfing in expanding populations. Theor Popul Biol. 2008;73:158–70.Google Scholar
  111. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R. A global map of human impact on marine ecosystems. Science. 2008;319:948–52.Google Scholar
  112. Hamilton JA, Okada M, Korves T, Schmitt J. The role of climate adaptation in colonization success in Arabidopsis thaliana. Mol Ecol. 2015;24:2253–63.Google Scholar
  113. Hamner RM, Freshwater DW, Whitfield PE. Mitochondrial cytochrome b analysis reveals two invasive lionfish species with strong founder effects in the western Atlantic. J Fish Biol. 2007;71:214–22.Google Scholar
  114. Hand BK, Hether TD, Kovach RP, Muhlfeld CC, Amish SJ, Boyer MC, O’Rourke SM, Miller MR, Lowe WH, Hohenlohe PA, Luikart G. Genomics and introgression: discovery and mapping of thousands of species-diagnostic SNPs using RAD sequencing. Curr Zool. 2015;61:146–54.Google Scholar
  115. Hänfling B, Bolton P, Harley M, Carvalho GR. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshw Biol. 2005;50:403–17.Google Scholar
  116. Hare JA, Whitfield PE. An integrated assessment of the introduction of lionfish (Pterois volitans/miles complex) to the western Atlantic Ocean. NOAA Technical Memorandum NOS NCCOS 2. 2003. 21 pp.Google Scholar
  117. Harvey-Samuel T, Ant T, Alphey L. Towards the genetic control of invasive species. Biol Invasions. 2017;19:1683–703.Google Scholar
  118. Hedge LH, O’Connor WA, Johnston EL. Manipulating the intrinsic parameters of propagule pressure: implications for bio-invasion. Ecosphere. 2012;3:1–13.Google Scholar
  119. Hegarty MJ. Invasion of the hybrids. Mol Ecol. 2012;21:4669–71.Google Scholar
  120. Hemmer-Hansen J, Therkildsen NO, Pujolar JM. Population genomics of marine fishes: next-generation prospects and challenges. Biol Bull. 2014;227:117–32.Google Scholar
  121. Henery ML, Bowman G, Mráz P, Treier UA, Gex-Fabry E, Schaffner U, Müller-Schärer H. Evidence for a combination of pre-adapted traits and rapid adaptive change in the invasive plant Centaurea stoebe. J Ecol. 2010;98:800–13.Google Scholar
  122. Hoban S, Kelley D, Lotterhos K, Antolin M, Bradburd G, Lowry DB, Poss M, Reed L, Storfer A, Whitlock M. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat. 2016;188:379–97.Google Scholar
  123. Hofmann GE. Ecological epigenetics in marine metazoans. Front Mar Sci. 2017;4:4.Google Scholar
  124. Hohenlohe PA, Amishm SJ, Catchen JM, Allendorf FW, Luikart G. Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Resour. 2011;11:117–22.Google Scholar
  125. Holle BV, Simberloff D. Ecological resistance to biological invasion overwhelmed by Propagule pressure. Ecology. 2005;86:3212–8.Google Scholar
  126. Huang X, Li S, Ni P, Gao Y, Jiang B, Zhou Z, Zhan A. Rapid response to changing environments during biological invasions: DNA methylation perspectives. Mol Ecol. 2017;26:6621–33.Google Scholar
  127. Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L. Rapid evolution of a geographic cline in size in an introduced fly. Science. 2000;287:308–9.Google Scholar
  128. Huey RB, Gilchrist A, Hendry AP. Using invasive species to study evolution. In: Sax DF, Stachowicz JJ, Gaines SD, editors. Species invasions: insights into ecology, evolution and biogeography. Sunderland, MA: Sinauer Associates; 2005. p. 139–64.Google Scholar
  129. Hulme PE. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol. 2009;46:10–8.Google Scholar
  130. Huxel GR. Rapid displacement of native species by invasive species: effects of hybridization. Biol Conserv. 1999;89:143–52.Google Scholar
  131. IMO. International facts and figures – information resources on trade, safety, security, environment. Maritime Knowledge Centre; 2012.Google Scholar
  132. Jeffery NW, DiBacco C, Van Wyngaarden M, Hamilton LC, Stanley RRE, Bernier R, FitzGerald J, Matheson K, McKenzie CH, Nadukkalam Ravindran P, Beiko R, Bradbury IR. RAD sequencing reveals genomewide divergence between independent invasions of the European green crab (Carcinus maenas) in the Northwest Atlantic. Ecol Evol. 2017;7:2513–24.Google Scholar
  133. Jerde CL, Chadderton WL, Mahon AR, Renshaw MA, Corush J, Budny ML, Mysorekar S, Lodge DM. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Can J Fish Aquat Sci. 2013;70:522–6.Google Scholar
  134. Johnston EL, Piola RF, Clark GF. The role of propagule pressure in invasion success. In: Rilov G, Crooks JA, editors. Biological invasions in marine ecosystems, ecological studies 204. Berlin: Springer; 2009.Google Scholar
  135. Johnston SE, Orell P, Pritchard VL, Kent MP, Lien S, Niemelä E, Erkinaro J, Primmer CR. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar). Mol Ecol. 2014;23:3452–68.Google Scholar
  136. Johnson J, Bird CE, Johnston MA, Fogg AQ, Hogan JD. Regional genetic structure and genetic founder effects in the invasive lionfish: comparing the Gulf of Mexico, Caribbean and North Atlantic. Mar Biol. 2016;163:216.Google Scholar
  137. Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24(11):1403–5.Google Scholar
  138. Keller L, Waller D. Inbreeding effects in wild populations. Trends Ecol Evol. 2002;17:230–41.Google Scholar
  139. Kelly DW, Muirhead JR, Heath DD, Macisaac HJ. Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Mol Ecol. 2006;15:3641–53.Google Scholar
  140. Kelly RP, Port JA, Yamahara KM, Crowder LB. Using environmental DNA to census marine fishes in a large mesocosm. PLoS One. 2014;9:e86175.Google Scholar
  141. Klymus KE, Richter CA, Chapman DC, Paukert C. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol Conserv. 2015;183:77–84.Google Scholar
  142. Kolar CS, Lodge DM. Freshwater nonindigenous species: interactions with other global changes. In: Mooney HA, Hobbs RJ, editors. Invasive species in a changing world. Washington, DC: Island Press; 2000. p. 3–30.Google Scholar
  143. Konečný A, Estoup A, Duplantier J-M, Bryja J, Bâ K, Galan M, Tatard C, Cosson J-F. Invasion genetics of the introduced black rat (Rattus rattus) in Senegal, West Africa. Mol Ecol. 2013;22:286–300.Google Scholar
  144. Kovach RP, Hand BK, Hohenlohe PA, Cosart TF, Boyer MC, Neville HH, Muhlfeld CC, Amish SJ, Carim K, Narum SR, Lowe WH, Allendorf FW, Luikart G. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc R Soc B Biol Sci. 2016;283:1843.Google Scholar
  145. Kumschick S, Gaertner M, Vilà M, Essl F, Jeschke JM, Pyšek P, Ricciardi A, Bacher S, Blackburn TM, Dick JTA, Evans T, Hulme PE, Kühn I, Mrugała A, Pergl J, Rabitsch W, Richardson DM, Sendek A, Winter M. Ecological impacts of alien species: quantification, scope, caveats, and recommendations. Bioscience. 2015;65:55–63.Google Scholar
  146. Lacoursière-Roussel A, Côté G, Leclerc V, Bernatchez L. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. J Appl Ecol. 2016;53:1148–57.Google Scholar
  147. Lancaster ML, Bradshaw CJA, Goldsworthy SD, Sunnucks P. Lower reproductive success in hybrid fur seal males indicates fitness costs to hybridization. Mol Ecol. 2007;16:3187–97.Google Scholar
  148. Lahoz-Monfort JJ, Guillera-Arroita G, Tingley R. Statistical approaches to account for false-positive errors in environmental DNA samples. Mol Ecol Resour. 2016;16:673–85.Google Scholar
  149. Lande R. Evolution of phenotypic plasticity in colonizing species. Mol Ecol. 2015;24:2038–45.Google Scholar
  150. Larson ER, Renshaw MA, Gantz CA, Umek J, Chandra S, Lodge DM, Egan SP. Environmental DNA (eDNA) detects the invasive crayfishes Orconectes rusticus and Pacifastacus leniusculus in large lakes of North America. Hydrobiologia 2017;800:173–85.Google Scholar
  151. Lau JA, terHorst CP. Causes and consequences of failed adaptation to biological invasions: the role of ecological constraints. Mol Ecol. 2015;24:1987–98.Google Scholar
  152. Lee CE. Evolutionary genetics of invasive species. Trends Ecol Evol. 2002:386–91.Google Scholar
  153. Lin Y, Chen Y, Yi C, Fong JJ, Kim W, Rius M, Zhan A. Genetic signatures of natural selection in a model invasive ascidian. Sci Rep. 2017;7:44080.Google Scholar
  154. Lippman ZB, Zamir D. Heterosis: revisiting the magic. Trends Genet. 2007;23:60–6.Google Scholar
  155. Lockwood JL, Cassey P, Blackburn T. The role of propagule pressure in explaining species invasions. Trends Ecol Evol. 2005;20:223–8.Google Scholar
  156. Lockwood BL, Sanders JG, Somero GN. Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. J Exp Biol. 2010;213(20):3548–58.Google Scholar
  157. Lombaert E, Guillemaud T, Cornuet J-M, Malausa T, Facon B, Estoup A. Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS One. 2010;5:e9743.Google Scholar
  158. Lowry E, Rollinson EJ, Laybourn AJ, Scott TE, Aiello-Lammens ME, Gray SM, Mickley J, Gurevitch J. Biological invasions: a field synopsis, systematic review, and database of the literature. Ecol Evol. 2013;3:182–96.Google Scholar
  159. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.Google Scholar
  160. Mahon AR, Jerde CL, Galaska M, Bergner JL, Chadderton WL, Lodge DM, Hunter ME, Nico LG. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS One. 2013;8:e58316.Google Scholar
  161. Mahon AR, Nathan LR, Jerde CL. Meta-genomic surveillance of invasive species in the bait trade. Conserv Genet Resour. 2014;6:563–7.Google Scholar
  162. Marescaux J, von Oheimb KCM, Etoundi E, von Oheimb PV, Albrecht C, Wilke T, Van Doninck K. Unravelling the invasion pathways of the quagga mussel (Dreissena rostriformis) into Western Europe. Biol Invasions. 2016;18:245–64.Google Scholar
  163. Marguerat S, Wilhelm Brian T, Bähler J. Next-generation sequencing: applications beyond genomes. Biochem Soc Trans. 2008;36(Pt 5):1091–6.Google Scholar
  164. Maruyama A, Nakamura K, Yamanaka H, Kondoh M, Minamoto T. The release rate of environmental DNA from juvenile and adult fish. PLoS One. 2014;9:e114639.Google Scholar
  165. Marx V. Biology: the big challenges of big data. Nature. 2013;498:255–60.Google Scholar
  166. Masters G, Norgrove L. Climate change and invasive alien species. CABI Working Paper 1. 2010.Google Scholar
  167. May P, Liao W, Wu Y, Shuai B, Richard McCombie W, Zhang MQ, Liu QA. The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun. 2013;4:2145.Google Scholar
  168. McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci. 1950;36:344–55.Google Scholar
  169. McKnight E, García-Berthou E, Srean P, Rius M. Global meta-analysis of native and nonindigenous trophic traits in aquatic ecosystems. Glob Chang Biol. 2017;23:1861–70.Google Scholar
  170. McQuillan JS, Robidart JC. Molecular-biological sensing in aquatic environments: recent developments and emerging capabilities. Curr Opin Biotechnol. 2017;45(Suppl C):43–50.Google Scholar
  171. Mead A, Carlton JT, Griffiths CL, Rius M. Revealing the scale of marine bioinvasions in developing regions, a south African re-assessment. Biol Invasions. 2011;13:1991–2008.Google Scholar
  172. Meilink WRM, Arntzen JW, van Delft JJCW, Wielstra B. Genetic pollution of a threatened native crested newt species through hybridization with an invasive congener in the Netherlands. Biol Conserv. 2015;184:145–53.Google Scholar
  173. Minchin D, Gollasch S. Fouling and Ships’ Hulls: how changing circumstances and spawning events may result in the spread of exotic species. Biofouling. 2003;19:111–22.Google Scholar
  174. Molnar JL, Gamboa RL, Revenga C, Spalding MD. Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ. 2008;6:485–92.Google Scholar
  175. Moran EV, Alexander JM. Evolutionary responses to global change: lessons from invasive species. Ecol Lett. 2014;17:637–49.Google Scholar
  176. Muhlfeld CC, Kovach RP, Jones LA, Al-Chokhachy R, Boyer MC, Leary RF, Lowe WH, Luikart G, Allendorf FW. Invasive hybridization in a threatened species is accelerated by climate change. Nat Clim Change. 2014;4:620–4.Google Scholar
  177. Narum SR, Gallardo P, Correa C, Matala A, Hasselman D, Sutherland BJG, Bernatchez L. Genomic patterns of diversity and divergence of two introduced salmonid species in Patagonia, South America. Evol Appl. 2017;10:402–16.Google Scholar
  178. Nathan LR, Jerde CL, Budny ML, Mahon AR. The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade. Conserv Biol. 2015;29:430–9.Google Scholar
  179. Naylor RL, Williams SL, Strong DR. Aquaculture – a gateway for exotic species. Science. 2001;294:1655–6.Google Scholar
  180. NHGRI. The cost of sequencing a human genome. 2016. https://www.genome.gov/sequencingcosts/.
  181. Nydam ML, Yanckello LM, Bialik SB, Giesbrecht KB, Nation GK, Peak JL. Introgression in two species of broadcast spawning marine invertebrate. Biol J Linn Soc. 2017a;120:879–90.Google Scholar
  182. Nydam ML, Giesbrecht KB, Stephenson EE. Origin and dispersal history of two colonial ascidian clades in the Botryllus schlosseri species complex. PLoS One. 2017b;12:e0169944.Google Scholar
  183. Ocaña K, de Oliveira D. Parallel computing in genomic research: advances and applications. Adv Appl Bioinforma Chemistry. 2015;8:23–35.Google Scholar
  184. Oduor AMO. Evolutionary responses of native plant species to invasive plants: a review. New Phytol. 2013;200:986–92.Google Scholar
  185. Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, Moretto M, Fontana P, Varotto C, Pisani D, Dekker T, Wrobel N, Viola R, Pertot I, Cavalieri D, Blaxter M, Anfora G, Rota-Stabelli O. Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila Pest. Genome Biol Evol. 2013;5:745–57.Google Scholar
  186. Orr HA, Turelli M. The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities. Evolution. 2001;55:1085–94.Google Scholar
  187. Oyarzún PA, Toro JE, Cañete JI, Gardner JPA. Bioinvasion threatens the genetic integrity of native diversity and a natural hybrid zone: smooth-shelled blue mussels (Mytilus spp.) in the strait of Magellan. Biol J Linn Soc. 2016;117:574–85.Google Scholar
  188. Padilla DK, Williams SL. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front Ecol Environ. 2004;2:131–8.Google Scholar
  189. Pardo-Diaz C, Salazar C, Jiggins CD. Towards the identification of the loci of adaptive evolution. Methods Ecol Evol. 2015;6:445–64.Google Scholar
  190. Parente TE, Moreira DA, Magalhães MGP, de Andrade PCC, Furtado C, Haas BJ, Stegeman JJ, Hahn ME. The liver transcriptome of suckermouth armoured catfish (Pterygoplichthys anisitsi, Loricariidae): identification of expansions in defensome gene families. Mar Pollut Bull. 2017;115:352–61.Google Scholar
  191. Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. Mol Ecol. 2016;25:2337–60.Google Scholar
  192. Pedreschi D, Kelly-Quinn M, Caffrey J, O’Grady M, Mariani S. Genetic structure of pike (Esox lucius) reveals a complex and previously unrecognized colonization history of Ireland. J Biogeogr. 2014;41:548–60.Google Scholar
  193. Pérez-Portela R, Bumford A, Coffman B, Wedelich S, Davenport M, Fogg A, Swenarton MK, Coleman F, Johnston MA, Crawford DL, Oleksiak MF. Genetic homogeneity of the invasive lionfish across the Northwestern Atlantic and the Gulf of Mexico based on single nucleotide polymorphisms. Sci Rep. 2018;8:5062.Google Scholar
  194. Perry WL, Feder JL, Lodge DM. Implications of hybridization between introduced and resident Orconectes crayfishes. Conserv Biol. 2001;15:1656–66.Google Scholar
  195. Pfeifer B, Wittelsburger U, Ramos-Onsins SE, Lercher MJ. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol Biol Evol. 2014;31:1929–36.Google Scholar
  196. Phillips BL, Shine R. Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proc Natl Acad Sci U S A. 2004;101:17150–5.Google Scholar
  197. Piaggio AJ, Engeman RM, Hopken MW, Humphrey JS, Keacher KL, Bruce WE, Avery ML. Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Mol Ecol Resour. 2014;14:374–80.Google Scholar
  198. Pigliucci M. Phenotypic plasticity: beyond nature and nurture. Baltimore: JHU Press; 2001.Google Scholar
  199. Pimentel D, Zuniga R, Morrison D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ. 2005;52:273–88.Google Scholar
  200. Pray LA. Transposons: the jumping genes. Nat Educ. 2008;1:204.Google Scholar
  201. Prentis PJ, Wilson JR, Dormontt EE, Richardson DM, Lowe AJ. Adaptive evolution in invasive species. Trends Plant Sci. 2008;13:288–94.Google Scholar
  202. Pu C, Zhan A. Epigenetic divergence of key genes associated with water temperature and salinity in a highly invasive model ascidian. Biol Invasions. 2017;19:2015–28.Google Scholar
  203. Pudlo P, Marin J-M, Estoup A, Cornuet J-M, Gautier M, Robert CP. Reliable ABC model choice via random forests. Bioinformatics. 2016;32:859–66.Google Scholar
  204. Purcell KM, Ling N, Stockwell CA. Evaluation of the introduction history and genetic diversity of a serially introduced fish population in New Zealand. Biol Invasions. 2012;14:2057–65.Google Scholar
  205. Puzey J, Vallejo-Marin M. Genomics of invasion: diversity and selection in introduced populations of monkeyflowers (Mimulus guttatus). Mol Ecol. 2014;23:4472–85.Google Scholar
  206. Pyšek P, Richardson DM. Invasive species, environmental change and management, and health. Annu Rev Env Resour. 2010;35:25–55.Google Scholar
  207. Rahel FJ, Bierwagen B, Taniguchi Y. Managing aquatic species of conservation concern in the face of climate change and invasive species Manejo de Especies Acuáticas de Interés para la Conservación ante el Cambio Climático y las Especies Invasoras. Conserv Biol. 2008;22:551–61.Google Scholar
  208. Rašić G, Filipović I, Weeks AR, Hoffmann AA. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics. 2014;15:275.Google Scholar
  209. Reitzel AM, Herrera S, Layden MJ, Martindale MQ, Shank TM. Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol Ecol. 2013;22:2953–70.Google Scholar
  210. Rejmánek M, Richardson DM. What attributes make some plant species more invasive? Ecology. 1996;77:1655–61.Google Scholar
  211. Rhymer JM, Simberloff D. Extinction by hybridization and introgression. Annu Rev Ecol Syst. 1996;27:83–109.Google Scholar
  212. Ricciardi A, Macisaac HJ. Impacts of biological invasions on freshwater ecosystems. In: Fifty years of invasion ecology. Wiley-Blackwell; 2010. p. 211–24.Google Scholar
  213. Ricciardi A, Blackburn TM, Carlton JT, Dick JTA, Hulme PE, Iacarella JC, Jeschke JM, Liebhold AM, Lockwood JL, MacIsaac HJ, Pyšek P, Richardson DM, Ruiz GM, Simberloff D, Sutherland WJ, Wardle DA, Aldridge DC. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol Evol. 2017;32:464–74.Google Scholar
  214. Richardson MF, Sherman CDH. De novo assembly and characterization of the invasive northern Pacific Seastar Transcriptome. PLoS One. 2015;10:e0142003.Google Scholar
  215. Richardson DM, Pysek P, Rejmánek M, Barbour MG, Panetta FD, West CJ. Naturalization and invasion of alien plants-concepts and definitions. Divers Distrib. 2000;6:93–107.Google Scholar
  216. Rieseberg LH, Archer MA, Wayne RK. Transgressive segregation, adaptation and speciation. Heredity (Edinb). 1999;83:363–72.Google Scholar
  217. Riquet F, Daguin-Thiebaut C, Ballenghien M, Bierne N, Viard F. Contrasting patterns of genome-wide polymorphism in the native and invasive range of the marine mollusc Crepidula fornicata. Mol Ecol. 2013;22:1003–18.Google Scholar
  218. Rius M, Darling JA. How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol. 2014;29:233–42.Google Scholar
  219. Rius M, Turon X, Ordonez V, Pascual M. Tracking invasion histories in the sea: facing complex scenarios using multilocus data. PLoS One. 2012;7:e35815.Google Scholar
  220. Rius M, Clusella-Trullas S, McQuaid CD, Navarro RA, Griffiths CL, Matthee CA, von der Heyden S, Turon X. Range expansions across ecoregions: interactions of climate change, physiology and genetic diversity. Glob Ecol Biogeogr. 2014;23:76–88.Google Scholar
  221. Rius M, Bourne S, Hornsby H, Chapman D. Applications of next-generation sequencing to the study of biological invasions. Curr Zool. 2015a;61:488–504.Google Scholar
  222. Rius M, Turon X, Bernardi G, Volckaert FAM, Viard F. Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes. Biol Invasions. 2015b;17:869–85.Google Scholar
  223. Roderick GK, Navajas M. Genes in new environments: genetics and evolution in biological control. Nat Rev Genet. 2003;4:889–99.Google Scholar
  224. Roman J, Darling JA. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol. 2007;22:454–64.Google Scholar
  225. Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, Chiari Y, Dernat R, Duret L, Faivre N, Loire E, Lourenco JM, Nabholz B, Roux C, Tsagkogeorga G, Weber AAT, Weinert LA, Belkhir K, Bierne N, Glemin S, Galtier N. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature. 2014;515:261–3.Google Scholar
  226. Rossman AY. A special issue on global movement of invasive plants and fungi. Bioscience. 2001;51:93–4.Google Scholar
  227. Saarman NP, Pogson GH. Introgression between invasive and native blue mussels (genus Mytilus) in the Central California hybrid zone. Mol Ecol. 2015;24:4723–38.Google Scholar
  228. Salvi D, Macali A, Mariottini P. Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree. PLoS One. 2014;9:e108696.Google Scholar
  229. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG. The population biology of invasive species. Annu Rev Ecol Evol Syst. 2001;32:305–32.Google Scholar
  230. Sassenhagen I, Wilken S, Godhe A, Rengefors K. Phenotypic plasticity and differentiation in an invasive freshwater microalga. Harmful Algae. 2015;41:38–45.Google Scholar
  231. Sassoubre LM, Yamahara KM, Gardner LD, Block BA, Boehm AB. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ Sci Technol. 2016;50:10456–64.Google Scholar
  232. Sato A, Bishop JD. Field identification of “types” A and B of the ascidian Ciona intestinalis in a region of sympatry. Mar Biol. 2012;159:1611–9.Google Scholar
  233. Sax DF, Stachowicz JJ, Gaines SD. Introduction. In: Stachowicz JJ, Gaines SD, editors. Species invasions: insights into ecology, evolution, and biogeography. Sunderland, MA: Sinauer Associates Inc.; 2005.Google Scholar
  234. Schlaepfer DR, Glättli M, Fischer M, van Kleunen M. A multi-species experiment in their native range indicates pre-adaptation of invasive alien plant species. New Phytol. 2010;185:1087–99.Google Scholar
  235. Scholin CA. What are “ecogenomic sensors?” A review and thoughts for the future. Ocean Sci. 2010;6:51–60.Google Scholar
  236. Schrader L, Kim JW, Ence D, Zimin A, Klein A, Wyschetzki K, Weichselgartner T, Kemena C, Stökl J, Schultner E, Wurm Y, Smith CD, Yandell M, Heinze J, Gadau J, Oettler J. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat Commun. 2014;5:5495.Google Scholar
  237. Schultz MT, Lance RF. Modeling the sensitivity of field surveys for detection of environmental DNA (eDNA). PLoS One. 2015;10:e0141503.Google Scholar
  238. Scriver M, Marinich A, Wilson C, Freeland J. Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquat Bot. 2015;122:27–31.Google Scholar
  239. Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Gen. 2018.  https://doi.org/10.1038/s41576-018-0003-4.
  240. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, Winter M, Arianoutsou M, Bacher S, Blasius B, Brundu G, Capinha C, Celesti-Grapow L, Dawson W, Dullinger S, Fuentes N, Jäger H, Kartesz J, Kenis M, Kreft H, Kühn I, Lenzner B, Liebhold A, Mosena A, Moser D, Nishino M, Pearman D, Pergl J, Rabitsch W, Rojas-Sandoval J, Roques A, Rorke S, Rossinelli S, Roy HE, Scalera R, Schindler S, Štajerová K, Tokarska-Guzik B, van Kleunen M, Walker K, Weigelt P, Yamanaka T, Essl F. No saturation in the accumulation of alien species worldwide. Nat Commun. 2017;8:14435.Google Scholar
  241. Sherman CDH, Lotterhos KE, Richardson MF, Tepolt CK, Rollins LA, Palumbi SR, Miller AD. What are we missing about marine invasions? Filling in the gaps with evolutionary genomics. Mar Biol. 2016;163:198.Google Scholar
  242. Sigsgaard EE, Nielsen IB, Bach SS, Lorenzen ED, Robinson DP, Knudsen SW, Pedersen MW, Jaidah MA, Orlando L, Willerslev E, Møller PR, Thomsen PF. Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat Ecol Evol. 2016;1:0004.Google Scholar
  243. Sigsgaard EE, Nielsen IB, Carl H, Krag MA, Knudsen SW, Xing Y, Holm-Hansen TH, Møller PR, Thomsen PF. Seawater environmental DNA reflects seasonality of a coastal fish community. Mar Biol. 2017;164:128.Google Scholar
  244. Simberloff D. The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst. 2009;40:81–102.Google Scholar
  245. Simberloff D. Biological invasions: prospects for slowing a major global change. Elem Sci Anth. 2013;1:000008.Google Scholar
  246. Simon A, Britton R, Gozlan R, van Oosterhout C, Volckaert FAM, Hänfling B. Invasive cyprinid fish in Europe originate from the single introduction of an admixed source population followed by a complex pattern of spread. PLoS One. 2011;6:e18560.Google Scholar
  247. Simpson TJS, Dias PJ, Snow M, Muñoz J, Berry T. Real-time PCR detection of Didemnum perlucidum (Monniot, 1983) and Didemnum vexillum (Kott, 2002) in an applied routine marine biosecurity context. Mol Ecol Resour. 2017;17:443–53.Google Scholar
  248. Sinclair JS, Arnott SE. Strength in size not numbers: propagule size more important than number in sexually reproducing populations. Biol Invasions. 2016;18:497–505.Google Scholar
  249. Sloop CM, Ayres DR, Strong DR. The rapid evolution of self-fertility in Spartina hybrids (Spartina alterniflora × foliosa) invading San Francisco Bay, CA. Biol Invasions. 2009;11:1131–44.Google Scholar
  250. Somero GN. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. J Exp Biol. 2010;213:912–20.Google Scholar
  251. Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW. Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc Natl Acad Sci. 2002;99:15497–500.Google Scholar
  252. Stapley J, Reger J, Feulner PG, Smadja C, Galindo J, Ekblom R, Bennison C, Ball AD, Beckerman AP, Slate J. Adaptation genomics: the next generation. Trends Ecol Evol. 2010;25:705–12.Google Scholar
  253. Stapley J, Santure AW, Dennis SR. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol. 2015;24:2241–52.Google Scholar
  254. Stelkens RB, Brockhurst MA, Hurst GDD, Miller EL, Greig D. The effect of hybrid transgression on environmental tolerance in experimental yeast crosses. J Evol Biol. 2014;27:2507–19.Google Scholar
  255. Stelkens RB, Schmid C, Seehausen O. Hybrid breakdown in Cichlid fish. PLoS One. 2015;10:e0127207.Google Scholar
  256. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE. Big data: astronomical or genomical? PLoS Biol. 2015;13:e1002195.Google Scholar
  257. Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity (Edinb). 2008;100:158–70.Google Scholar
  258. Stockwell CA, Hendry AP, Kinnison MT. Contemporary evolution meets conservation biology. Trends Ecol Evol. 2002;18:94–101.Google Scholar
  259. Stuart YE, Campbell TS, Hohenlohe PA, Reynolds RG, Revell LJ, Losos JB. Rapid evolution of a native species following invasion by a congener. Science. 2014;346:463–6.Google Scholar
  260. Suarez AV, Tsutsui ND. The evolutionary consequences of biological invasions. Mol Ecol. 2008;17:351–60.Google Scholar
  261. Sullivan W. The institute for the study of non-model organisms and other fantasies. Mol Biol Cell. 2015;26:387–9.Google Scholar
  262. Takahara T, Minamoto T, Yamanaka H, Doi H, Zi K. Estimation of fish biomass using environmental DNA. PLoS One. 2012;7:e35868.Google Scholar
  263. Takahara T, Minamoto T, Doi H. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS One. 2013;8:e56584.Google Scholar
  264. Tepolt CK. Adaptation in marine invasion: a genetic perspective. Biol Invasions. 2015;17:887–903.Google Scholar
  265. Tepolt CK, Palumbi SR. Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. Mol Ecol. 2015;24:4145–58.Google Scholar
  266. Teske PR, Sandoval-Castillo J, Sasaki M, Beheregaray LB. Invasion success of a habitat-forming marine invertebrate is limited by lower-than-expected dispersal ability. Mar Ecol Prog Ser. 2015;536:221–7.Google Scholar
  267. Thomsen PF, Kielgast J, Iversen LL, Moller PR, Rasmussen M, Willerslev E. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One. 2012;7:e41732.Google Scholar
  268. Thomsen PF, Møller PR, Sigsgaard EE, Knudsen SW, Jørgensen OA, Willerslev E. Environmental DNA from seawater samples correlate with trawl catches of subarctic, Deepwater fishes. PLoS One. 2016;11:e0165252.Google Scholar
  269. Toews DP, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012;21:3907–30.Google Scholar
  270. Toledo-Hernández C, Vélez-Zuazo X, Ruiz-Diaz CP, Patricio AR, Mège P, Navarro M, Sabat AM, Betancur RR, Papa R. Population ecology and genetics of the invasive lionfish in Puerto Rico. Aquat Invasions. 2014;9:227–37.Google Scholar
  271. Tournadre J. Anthropogenic pressure on the open ocean: the growth of ship traffic revealed by altimeter data analysis. Geophys Res Lett. 2014;41:7924–32.Google Scholar
  272. Trucchi E, Mazzarella AB, Gilfillan GD, Lorenzo MT, Schönswetter P, Paun O. BsRADseq: screening DNA methylation in natural populations of non-model species. Mol Ecol. 2016;25:1697–713.Google Scholar
  273. Trumbo DR, Epstein B, Hohenlohe PA, Alford RA, Schwarzkopf L, Storfer A. Mixed population genomics support for the central marginal hypothesis across the invasive range of the cane toad (Rhinella marina) in Australia. Mol Ecol. 2016;25:4161–76.Google Scholar
  274. Tsoar A, Shohami D, Nathan R. A movement ecology approach to study seed dispersal and plant invasion: an overview and application of seed dispersal by Fruit Bats. In: Richardson DM, editor. Fifty years of invasion ecology: the legacy of Charles Elton. Oxford, UK: Blackwell Publishing Ltd; 2011. p. 103–19.Google Scholar
  275. Tucker AJ, Chadderton WL, Jerde CL, Renshaw MA, Uy K, Gantz C, Mahon AR, Bowen A, Strakosh T, Bossenbroek JM, Sieracki JL, Beletsky D, Bergner J, Lodge DM. A sensitive environmental DNA (eDNA) assay leads to new insights on Ruffe (Gymnocephalus cernua) spread in North America. Biol Invasions. 2016;18:3205–22.Google Scholar
  276. Turner CR, Barnes MA, Xu CCY, Jones SE, Jerde CL, Lodge DM. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol Evol. 2014;5:676–84.Google Scholar
  277. Twyford AD, Ennos RA. Next-generation hybridization and introgression. Heredity. 2012;108:179–89.Google Scholar
  278. Uchii K, Doi H, Minamoto T. A novel environmental DNA approach to quantify the cryptic invasion of non-native genotypes. Mol Ecol Resour. 2016;16:415–22.Google Scholar
  279. Ungerer MC, Baird SJE, Pan J, Rieseberg LH. Rapid hybrid speciation in wild sunflowers. Proc Natl Acad Sci. 1998;95:11757–62.Google Scholar
  280. Valdez-Moreno M, Quintal-Lizama C, Gómez-Lozano R, García-Rivas MC. Monitoring an Alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean. PLoS One. 2012;7:e36636.Google Scholar
  281. van Kleunen M, Dawson W, Maurel N. Characteristics of successful alien plants. Mol Ecol. 2015;24:1954–68.Google Scholar
  282. Vandepitte K, de Meyer T, Helsen K, van Acker K, Roldan-Ruiz I, Mergeay J, Honnay O. Rapid genetic adaptation precedes the spread of an exotic plant species. Mol Ecol. 2014;23:2157–64.Google Scholar
  283. Vera M, Díez-del-Molino D, García-Marín J-L. Genomic survey provides insights into the evolutionary changes that occurred during European expansion of the invasive mosquitofish (Gambusia holbrooki). Mol Ecol. 2016;25:1089–105.Google Scholar
  284. Viard F, David P, Darling JA. Marine invasions enter the genomic era: three lessons from the past, and the way forward. Curr Zool. 2016;62:629–42.Google Scholar
  285. Voisin M, Engel CR, Viard F. Differential shuffling of native genetic diversity across introduced regions in a brown alga: aquaculture vs. maritime traffic effects. Proc Natl Acad Sci. 2005;102(15):5432–7.Google Scholar
  286. Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, Greuter L, Sivasundar A, Seehausen O. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol Ecol. 2013;22:787–98.Google Scholar
  287. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.Google Scholar
  288. Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M, Jeandel C, Leinfelder R, McNeill JR, Richter DD, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, Zhisheng A, Grinevald J, Odada E, Oreskes N, Wolfe AP. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science. 2016;351(6269).Google Scholar
  289. Webber BL, Raghu S, Edwards OR. Opinion: is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat? Proc Natl Acad Sci. 2015;112:10565–7.Google Scholar
  290. Weber DS, Stewart BS, Lehman N. Genetic consequences of a severe population bottleneck in the Guadalupe Fur seal (Arctocephalus townsendi). J Hered. 2004;95:144–53.Google Scholar
  291. Weinig C, Brock MT, Dechaine JA, Welch SM. Resolving the genetic basis of invasiveness and predicting invasions. Genetica. 2007;129:205–16.Google Scholar
  292. Wellband KW, Heath DD. Plasticity in gene transcription explains the differential performance of two invasive fish species. Evol Appl. 2017;10:563–76.Google Scholar
  293. White TA, Perkins SE, Heckel G, Searle JB. Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol Ecol. 2013;22:2971–85.Google Scholar
  294. Whitfield PE, Gardner T, Vives SP, Gilligan MR, Courtenay WR Jr, Ray C, Hare JA. Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser. 2002;235:289–97.Google Scholar
  295. Whitney KD, Gabler CA. Rapid evolution in introduced species, “invasive traits” and recipient communities: challenges for predicting invasive potential. Divers Distrib. 2008;14:569–80.Google Scholar
  296. Whitney KD, Broman KW, Kane NC, Hovick SM, Randell RA, Rieseberg LH. Quantitative trait locus mapping identifies candidate alleles involved in adaptive introgression and range expansion in a wild sunflower. Mol Ecol. 2015;24:2194–211.Google Scholar
  297. Widmer A, Schmid-Hempel P, Estoup A, Scholl A. Population genetic structure and colonization history of Bombus terrestris s.l. (Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity. 1998;81:563–72.Google Scholar
  298. Wilcox CL, Motomura H, Matsunuma M, Bowen BW. Phylogeography of lionfishes (Pterois) indicate taxonomic over splitting and hybrid origin of the invasive Pterois volitans. J Hered. 2018;14:162–75.Google Scholar
  299. Willan RC, Russell BC, Murfet NB, Moore KL, McEnnulty FR, Horner SK, Hewitt CL, Dally GM, Campbell ML, Bourke ST. Outbreak of Mytilopsis sallei (Récluz, 1849) (Bivalvia: Dreissenidae) in Australia. Molluscan Res. 2000;20:25–30.Google Scholar
  300. Williams F, Eschen R, Harris A, Djeddour D, Pratt C, Shaw R, Varia S, Lamontagne-Godwin J, Thomas S, Murphy S. The economic cost of invasive non-native species on Great Britain. CABI Project Number VM10066. 2010. p. 1–99.Google Scholar
  301. Williams M, Zalasiewicz J, Haff P, Schwägerl C, Barnosky AD, Ellis EC. The Anthropocene biosphere. Anthropocene Rev. 2015;2:196–219.Google Scholar
  302. Williamson M. Invaders, weeds and the risk from genetically manipulated organisms. Experientia. 1993;49:219–24.Google Scholar
  303. Wilson JR, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM. Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol. 2009;24:136–44.Google Scholar
  304. Wolf JBW, Bayer T, Haubold B, Schilhabel M, Rosenstiel P, Tautz D. Nucleotide divergence vs. gene expression differentiation: comparative transcriptome sequencing in natural isolates from the carrion crow and its hybrid zone with the hooded crow. Mol Ecol. 2010:162–75.Google Scholar
  305. Wrange A-L, Charrier G, Thonig A, Alm Rosenblad M, Blomberg A, Havenhand JN, Jonsson PR, André C. The story of a hitchhiker: population genetic patterns in the invasive barnacle Balanus(Amphibalanus) improvisus Darwin 1854. PLoS One. 2016;11:e0147082.Google Scholar
  306. Yamamoto S, Minami K, Fukaya K, Takahashi K, Sawada H, Murakami H, Tsuji S, Hashizume H, Kubonaga S, Horiuchi T, Hongo M, Nishida J, Okugawa Y, Fujiwara A, Fukuda M, Hidaka S, Suzuki KW, Miya M, Araki H, Yamanaka H, Maruyama A, Miyashita K, Masuda R, Minamoto T, Kondoh M. Environmental DNA as a “Snapshot” of fish distribution: a case study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan. PLoS One. 2016;11:e0149786.Google Scholar
  307. Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P. Genomic signature of adaptation to climate in Medicago truncatula. Genetics. 2014;196:1263–75.Google Scholar
  308. Yu Y, Andrés JA. Genetic architecture of contemporary adaptation to biotic invasions: quantitative trait locus mapping of beak reduction in soapberry bugs. G3 (Bethesda). 2014;4:255–64.Google Scholar
  309. Zaiko A, Martinez JL, Schmidt-Petersen J, Ribicic D, Samuiloviene A, Garcia-Vazquez E. Metabarcoding approach for the ballast water surveillance – an advantageous solution or an awkward challenge? Mar Pollut Bull. 2015;92:25–34.Google Scholar
  310. Zhang Y-Y, Zhang D-Y, Barrett SCH. Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Mol Ecol. 2010;19:1774–86.Google Scholar
  311. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ocean and Earth Science, National Oceanography CentreUniversity of SouthamptonEuropean WayUK
  2. 2.Centre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgAuckland ParkSouth Africa

Personalised recommendations