Skip to main content

Genomic Selection

  • Chapter
  • First Online:
Population Genomics

Part of the book series: Population Genomics ((POGE))

Abstract

Prediction of phenotypes is not only used for selection and breeding in animal and plant populations but also for the assessment of specific phenotypes, especially predisposition to diseases and disorders in human populations. The use of genetic markers has been shown to be useful for prediction and selection for phenotypic traits. The concept of using genetic markers for prediction of breeding values or phenotypes was suggested many decades ago, but applications of marker-assisted selection were limited due to the low number of markers that could be genotyped and the low number of confirmed quantitative trait loci (QTL) that could be selected upon. Genomic selection, in contrast, utilizes dense genetic markers across the whole genome for the prediction of phenotypes as all QTL can be assumed to be in linkage disequilibrium with at least one marker. Genomic selection allows thereby choosing the genetically best individuals without the need to confirm QTL. The concept of genomic selection, proposed in 2001, has since been further developed and applied. Nowadays, genomic selection is widely applied in breeding populations of plants and animals for the selection of future breeding individuals. The chapter introduces the general concept of genomic selection. It further discusses relevant prerequisites for the application of genomic selection, including genotyping platforms and reference populations. Some of the methods applied today as well as suggested advancements of methods are introduced. The final part of the chapter describes briefly applications in animal, plant, and human populations (status when writing this chapter), before concluding with some general notes on genomic selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • http://www.interbull.org. Interbull. 2013. Accessed 31.01.2013.

    Google Scholar 

  • Albrecht T, et al. Genome-based prediction of testcross values in maize. Theor Appl Genet. 2011;123:339–50.

    PubMed  Google Scholar 

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink JL. Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome. 2011;4:132–44.

    Google Scholar 

  • Avendaño S, Watson KA, Kranis A. Genomics in poultry breeding—from utopias to deliverables. In: 9th world congress on genetics applied to livestock production (WCGALP). Germany: Leipzig; 2010

    Google Scholar 

  • Baloche G, et al. Assessment of accuracy of genomic prediction for French Lacaune dairy sheep. J Dairy Sci. 2014;97:1107–16.

    CAS  PubMed  Google Scholar 

  • Barrell PJ, Meiyalaghan S, Jacobs JME, Conner AJ. Applications of biotechnology and genomics in potato improvement. Plant Biotechnol J. 2013;11:907–20.

    CAS  PubMed  Google Scholar 

  • Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 2016;242:23–36.

    CAS  PubMed  Google Scholar 

  • Battenfield SD, Guzmán C, Gaynor RC, Singh RP, Peña RJ, Dreisigacker S, Fritz AK, Poland JA. Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome. 2016;9(2). https://doi.org/10.3835/plantgenome2016.01.0005.

    Google Scholar 

  • Bauer E, et al. Towards a whole-genome sequence for rye (Secale cereale L.). Plant J. 2017;89:853–69.

    CAS  PubMed  Google Scholar 

  • Beaulieu J, Doerksen T, Clement S, MacKay J, Bousquet J. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity. 2014a;113:343–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu J, Doerksen TK, MacKay J, Rainville A, Bousquet J. Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genomics. 2014b;15:1048.

    PubMed  PubMed Central  Google Scholar 

  • Bernardo R. Genomewide selection with minimal crossing in self-pollinated crops. Crop Sci. 2010;50:624–7.

    Google Scholar 

  • Bernardo R, Yu J. Marker-assisted selection without QTL mapping: prospects for genome-wide selection for quantitative traits in maize. Maize Genet Cooperat Newslett 2007:26.

    Google Scholar 

  • Berry DP, Garcia JF, Garrick DJ. Development and implementation of genomic predictions in beef cattle. Anim Front. 2016;6:32–8.

    Google Scholar 

  • Bertin N, Martre P, Génard M, Quilot B, Salon C. Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. J Exp Bot. 2010;61:955–67.

    CAS  PubMed  Google Scholar 

  • Birol I, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29:1492–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boichard D, Ducrocq V, Croiseau P, Fritz S. Genomic selection in domestic animals: principles, applications and perspectives. C R Biol. 2016;339:274–7.

    PubMed  Google Scholar 

  • Bouquet A, Juga J. Integrating genomic selection into dairy cattle breeding programmes: a review. Animal. 2013;7:705–13.

    CAS  PubMed  Google Scholar 

  • Brenchley R, et al. Analysis of the bread wheat genome using whole genome shotgun sequencing. Nature. 2012;491:705–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breseghello F. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J Agric Food Chem. 2013;61:8277–86.

    CAS  PubMed  Google Scholar 

  • Burgueno J, de los Campos G, Weigel K, Crossa J. Genomic prediction of breeding values when modeling genotype x environment interaction using pedigree and dense molecular markers. Crop Sci. 2012;52:707–19.

    Google Scholar 

  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Araus JL. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol. 2012;54(5):312–20.

    PubMed  Google Scholar 

  • Calus MPL. Editorial: genomic selection with numerically small reference populations. Animal. 2016;10:1016–7.

    CAS  PubMed  Google Scholar 

  • de los Campos G, et al. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics. 2009;182:375–85.

    PubMed  PubMed Central  Google Scholar 

  • de los Campos G, Gianola D, Allison DB. Predicting genetic predisposition in humans: the promise of whole-genome markers. Nat Rev Genet. 2010;11:880–6.

    PubMed  Google Scholar 

  • de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics. 2013a;193:327–45.

    PubMed Central  Google Scholar 

  • de los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet. 2013b;9:e1003608.

    PubMed Central  Google Scholar 

  • Caspi R, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2014;42:D459–71.

    CAS  PubMed  Google Scholar 

  • Cericola F, et al. Optimizing training population size and genotyping strategy for genomic prediction using association study results and pedigree information. A case of study in advanced wheat breeding lines. PLoS One. 2017;12:e0169606.

    PubMed  PubMed Central  Google Scholar 

  • Chagné D, et al. The draft genome sequence of European Pear (Pyrus communis L. “Bartlett”). PLoS One. 2014;9:e92644.

    PubMed  PubMed Central  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells M. Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci. 2007;47:1018–30.

    CAS  Google Scholar 

  • Chao SM, et al. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics. 2010;11:727.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chawade A, Alexandersson E, Bengtsson T, Andreasson E, Levander F. Targeted proteomics approach for precision plant breeding. J Proteome Res. 2016;15:638–46.

    CAS  PubMed  Google Scholar 

  • Chen HD, He H, Zhou FS, Yu HH, Deng XW. Development of genomics-based genotyping platforms and their applications in rice breeding. Curr Opin Plant Biol. 2013;16:247–54.

    CAS  PubMed  Google Scholar 

  • Cowling WA, Balazs E. Prospects and challenges for genome-wide association and genomic selection in oilseed Brassica species. Genome. 2010;53:1024–8.

    CAS  PubMed  Google Scholar 

  • Cowling WA, Buirchell BJ, Falk DE. A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation. Crop Pasture Sci. 2009;60:1009–15.

    CAS  Google Scholar 

  • Croft D, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7.

    CAS  PubMed  Google Scholar 

  • Crossa J, et al. Genomic selection and prediction in plant breeding. J Crop Improv. 2011;25:239–61.

    Google Scholar 

  • Crossa J, et al. Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity. 2013;112:48–60.

    PubMed  PubMed Central  Google Scholar 

  • Cullis BR, Smith AB, Beeck CP, Cowling WA. Analysis of yield and oil from a series of canola breeding trials. Part II. Exploring variety by environment interaction using factor analysis. Genome. 2010;53:1002–16.

    CAS  PubMed  Google Scholar 

  • Daetwyler HD, Villanueva B, Woolliams JA. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One. 2008;3:e3395.

    PubMed  PubMed Central  Google Scholar 

  • Daetwyler HD, et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet. 2014;46:858–65.

    CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12(7):499–510. https://doi.org/10.1038/nrg3012.

    Article  CAS  PubMed  Google Scholar 

  • Dawson JC, et al. The use of unbalanced historical data for genomic selection in an international wheat breeding program. Field Crop Res. 2013;154:12–22.

    Google Scholar 

  • Dekkers JCM. Marker-assisted selection for commercial crossbred performance. J Anim Sci. 2007;85:2104–14.

    CAS  PubMed  Google Scholar 

  • Dekkers JCM, Hospital F. The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet. 2002;3:22–32.

    CAS  PubMed  Google Scholar 

  • Druet T, Macleod IM, Hayes BJ. Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions. Heredity. 2014;112:39–47.

    CAS  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010. https://doi.org/10.1093/nar/gkx382.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dürr J, Philipsson J. International cooperation: the pathway for cattle genomics. Anim Front. 2012;2:16–21.

    Google Scholar 

  • Duvick DN. Heterosis: feeding. People and protecting natural resources. In: Coors JG, Pandey S, editors. The genetics and exploitation of heterosis in crops. Madison, WI: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc.; 1999. p. 19–29.

    Google Scholar 

  • Elsik CG, Tellam RL, Worley KC. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009;324:522–8.

    PubMed  PubMed Central  Google Scholar 

  • Erbe M, et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J Dairy Sci. 2012;95:4114–29.

    CAS  PubMed  Google Scholar 

  • Falconer D, Mackay T. Quantitative genetics. London, UK: Longman, Harrow; 1996.

    Google Scholar 

  • Fernie AR, Schauer N. Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet. 2009;25:39–48.

    CAS  PubMed  Google Scholar 

  • Forabosco F, Lohmus M, Rydhmer L, Sundstrom LF. Genetically modified farm animals and fish in agriculture: a review. Livest Sci. 2013;153:1–9.

    Google Scholar 

  • Funk DA. Major advances in globalization and consolidation of the artificial insemination industry. J Dairy Sci. 2006;89:1362–8.

    CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganal MW, Röder MS. Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R, editors. Genomic assisted crop improvement: genomics applications in crops, vol. 2. Dordrecht: Springer; 2007. p. 1–24.

    Google Scholar 

  • García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van Tassell CP. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci U S A. 2016;113(28):E3995–4004. https://doi.org/10.1073/pnas.1519061113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrick DJ. The nature, scope and impact of genomic prediction in beef cattle in the United States. Genet Sel Evol. 2011;43:–17.

    Google Scholar 

  • Garrick DJ, Taylor JF, Fernando RL. Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol. 2009;41:55.

    PubMed  PubMed Central  Google Scholar 

  • Gerrits RJ, et al. Perspectives for artificial insemination and genomics to improve global swine populations. Theriogenology. 2005;63:283–99.

    PubMed  Google Scholar 

  • Gianola D. Priors in whole-genome regression: the Bayesian alphabet returns. Genetics. 2013;194:573–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gianola D, van Kaam JBCHM. Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics. 2008;178:2289–303.

    PubMed  PubMed Central  Google Scholar 

  • Goddard ME. Uses of genomics in livestock agriculture. Animal Production Science. 2012;52:73–7.

    CAS  Google Scholar 

  • Goddard ME, Hayes BJ. Genomic selection. J Anim Breed Genet. 2007;124:323–30.

    CAS  PubMed  Google Scholar 

  • Goddard ME, Hayes BJ, Meuwissen THE. Using the genomic relationship matrix to predict the accuracy of genomic selection. J Anim Breed Genet. 2011;128:409–21.

    CAS  PubMed  Google Scholar 

  • Goff SA, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 2002;296:92–100.

    CAS  PubMed  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.

    CAS  PubMed  Google Scholar 

  • Gouy M, et al. Experimental assessment of the accuracy of genomic selection in sugarcane. Theor Appl Genet. 2013;126:2575–86.

    CAS  PubMed  Google Scholar 

  • Grattapaglia D, Resende MDV. Genomic selection in forest tree breeding. Tree Genet Genomes. 2011;7:241–55.

    Google Scholar 

  • van Grevenhof I. Breeding against osteochondrosis. Wageningen: Wageningen University; 2011.

    Google Scholar 

  • Groenen MAM, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 2012;491:393–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Langridge P, Mir RR. Marker-assisted wheat breeding: present status and future possibilities. Mol Breed. 2010;26:145–61.

    Google Scholar 

  • Guzman C, et al. Wheat quality improvement at CIMMYT and the use of genomic selection on it. Appl Transl Genom. 2016;11:3–8.

    PubMed  PubMed Central  Google Scholar 

  • Haberland AM, König von Borstel U, Simianer H, König S. Integration of genomic information into sport horse breeding programs for optimization of accuracy of selection. Animal. 2012;6:1369–76.

    CAS  PubMed  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship information on genome-assisted breeding values. Genetics. 2007;177:2389–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Habier D, Tetens J, Seefried FR, Lichtner P, Thaller G. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol. 2010;42:–5.

    Google Scholar 

  • Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics. 2011;12:186.

    PubMed  PubMed Central  Google Scholar 

  • Habier D, Fernando RL, Garrick DJ. Genomic BLUP decoded: a look into the black box of genomic prediction. Genetics. 2013;194:597–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes B, Bowman P, Chamberlain A, Goddard M. Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci. 2009a;92:433–43.

    CAS  PubMed  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Sel Evol. 2009b;41:–51.

    Google Scholar 

  • Hayes BJ, et al. Prospects for genomic selection in forage plant species. Plant Breeding. 2013;132:133–43.

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L. Genomic selection for crop improvement. Crop Sci. 2009;49:1–12.

    CAS  Google Scholar 

  • Heffner EL, Jannink JL, Sorrells ME. Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome. 2011;4:65–75.

    Google Scholar 

  • Henderson CR. Best linear unbiased estimation and prediction under a selection model. Biometrics. 1975a;31:423–47.

    CAS  PubMed  Google Scholar 

  • Henderson CR. Use of all relstives in intraherd prediction of breeding values and producing abilities. J Dairy Sci. 1975b;58:1910–6.

    Google Scholar 

  • Heslot N, Yang H-P, Sorrells ME, Jannink J-L. Genomic selection in plant breeding: a comparison of models. Crop Sci. 2012;52:146–60.

    Google Scholar 

  • Hickey JM. Sequencing millions of animals for genomic selection 2.0. J Anim Breed Genet. 2013;130:331–2.

    CAS  PubMed  Google Scholar 

  • Hickey JM, et al. Sequencing millions of animals for genomic selection 2.0. In: Proceedings, 10th world congress of genetics applied to livestock production. Vancouver; 2014.

    Google Scholar 

  • de Roos APW, Hayes BJ, Goddard ME. Reliability of genomic predictions across multiple populations. Genetics. 2009;183:1545–53.

    PubMed  PubMed Central  Google Scholar 

  • Hofheinz N, Borchardt D, Weissleder K, Frisch M. Genome-based prediction of test cross performance in two subsequent breeding cycles. Theor Appl Genet. 2012;125:1639–45.

    PubMed  Google Scholar 

  • Hutchison JL, Cole JB, Bickhart DM. Short communication: use of young bulls in the United States. J Dairy Sci. 2014;97:3213–120. https://doi.org/10.3168/jds.2013-7525.

    Article  CAS  PubMed  Google Scholar 

  • International Barley Genome Sequencing Consortium et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–6.

    Google Scholar 

  • Isik F, et al. Genomic selection in maritime pine. Plant Sci. 2016;242:108–19.

    CAS  PubMed  Google Scholar 

  • Iwata H, et al. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci. 2013;63:125–40.

    PubMed  PubMed Central  Google Scholar 

  • Iwata H, Hayashi T, Tsumura Y. Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genet Genomes. 2011;7:747–58.

    Google Scholar 

  • Iwata H, Jannink J-L. Accuracy of genomic selection prediction in barley breeding programs: a simulation study based on the real single nucleotide polymorphism data of barley breeding lines. Crop Sci. 2011;51:1915–27.

    Google Scholar 

  • Jannink J-L, Lorenz AJ, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics. 2010;9:166–77.

    CAS  PubMed  Google Scholar 

  • Jannink JL. Dynamics of long-term genomic selection. Genet Sel Evol. 2010;42:–35.

    Google Scholar 

  • Jenko J, et al. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genet Sel Evol. 2015;47:55.

    PubMed  PubMed Central  Google Scholar 

  • Jiang Y, et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science. 2014;344:1168–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston DJ, Tier B, Graser HU. Beef cattle breeding in Australia with genomics: opportunities and needs. Animal Production Science. 2012;52:100–6.

    Google Scholar 

  • Kanehisa M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–4.

    CAS  PubMed  Google Scholar 

  • Kärkkäinen HP, Sillanpää MJ. Fast genomic predictions via Bayesian G-BLUP and Multilocus models of threshold traits including censored Gaussian data. G3 (Bethesda). 2013;3:1511–23.

    Google Scholar 

  • Kizilkaya K, Fernando RL, Garrick DJ. Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. J Anim Sci. 2010;88:544–51.

    CAS  PubMed  Google Scholar 

  • Kumar S, Bink MCAM, Volz RK, Bus VGM, Chagne D. Towards genomic selection in apple (Malus x domestica Borkh.) breeding programmes: prospects, challenges and strategies. Tree Genet Genomes. 2012a;8:1–14.

    Google Scholar 

  • Kumar S, et al. Genomic selection for fruit quality traits in apple (Malus x domestica Borkh.). PLoS One. 2012b;7(5):e36674.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz PRN, et al. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genomics. 2017;18:335.

    PubMed  PubMed Central  Google Scholar 

  • Li Z-K, Zhang F. Rice breeding in the post-genomics era: from concept to practice. Curr Opin Plant Biol. 2013;16:261–9.

    PubMed  Google Scholar 

  • Lien S, et al. The Atlantic salmon genome provides insights into rediploidization. Nature. 2016;533:200–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lillehammer M, Meuwissen THE, Sonesson AK. Genomic selection for maternal traits in pigs. J Anim Sci. 2011;89:3908–16.

    CAS  PubMed  Google Scholar 

  • Lillehammer M, Meuwissen THE, Sonesson AK. A low-marker density implementation of genomic selection in aquaculture using within-family genomic breeding values. Genet Sel Evol. 2013;45

    Google Scholar 

  • Lin Z, Hayes BJ, Daetwyler HD. Genomic selection in crops, trees and forages: a review. Crop Pasture Sci. 2014;65:1177–91.

    Google Scholar 

  • Lindblad-Toh K, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–19.

    CAS  PubMed  Google Scholar 

  • Lôbo RB, et al. Implementation of DNA markers to produce genomically—enhanced EPDs in Nellore cattle. Acta Sci Vet. 2011;39(Suppl 1):s23–7.

    Google Scholar 

  • Longin CFH, Mi X, Würschum T. Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet. 2015;128:1297–306.

    PubMed  Google Scholar 

  • Lorenzana RE, Bernardo R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet. 2009;120:151–61.

    PubMed  Google Scholar 

  • Lund MS, et al. A common reference population from four European Holstein populations increases reliability of genomic predictions. Genet Sel Evol. 2011;43:43.

    PubMed  PubMed Central  Google Scholar 

  • Lush JL. Linebreeding. Iowa Agric Exp Sta Bull 1933:301.

    Google Scholar 

  • Lush JL. Family merit and individual merit as bases for selection. Am Nat. 1947;81:241–61.

    Google Scholar 

  • Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer; 1998.

    Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed. 2005;15:271–89.

    CAS  Google Scholar 

  • MacLeod IM, et al. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits. BMC Genomics. 2016;17:144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makowsky R, et al. Beyond missing heritability: prediction of complex traits. PLoS Genet. 2011;7:e1002051.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511.

    CAS  PubMed  Google Scholar 

  • Marulanda JJ, et al. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor Appl Genet. 2016;129:1901–13.

    CAS  PubMed  Google Scholar 

  • Mascher M, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–33.

    CAS  PubMed  Google Scholar 

  • Mather KA, et al. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics. 2007;177:2223–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, O’Connell J, Moore SS, Smith TP, Sonstegard TS, Van Tassell CP. Development and characterization of a high density SNP genotyping assay for cattle. PLoS One. 2009;4:e5350. https://doi.org/10.1371/journal.pone.0005350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCouch S. Diversifying selection in plant breeding. PLoS Biol. 2004;2:1507–12.

    CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meuwissen THE, Luan T, Woolliams JA. The unified approach to the use of genomic and pedigree information in genomic evaluations revisited. J Anim Breed Genet. 2011;128:429–39.

    CAS  PubMed  Google Scholar 

  • Morandini P, Salamini F. Plant biotechnology and breeding: allied for years to come. Trends Plant Sci. 2003;8:70–5.

    CAS  PubMed  Google Scholar 

  • Morota G, Gianola D. Kernel-based whole-genome prediction of complex traits: a review. Front Genet. 2014;5:363.

    PubMed  PubMed Central  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J. Crop genomics: advances and applications. Nat Rev Genet. 2012;13:85–96.

    CAS  Google Scholar 

  • Muir B, Van Doormaal BJ, Kistemaker G. International genomic co-operation—North American perspective. In: Proceedings of the Interbull international workshop, Paris, France; 2010. pp 71–76.

    Google Scholar 

  • Myburg AA, et al. The genome of Eucalyptus grandis. Nature. 2014;510:356–62.

    CAS  PubMed  Google Scholar 

  • Myles S. Improving fruit and wine: what does genomics have to offer? Trends Genet. 2013;29:190–6.

    CAS  PubMed  Google Scholar 

  • Neale DB, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15:R59.

    PubMed  PubMed Central  Google Scholar 

  • Nielsen HM, Sonesson AK, Meuwissen THE. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes. J Anim Sci. 2011;89:630–8.

    CAS  PubMed  Google Scholar 

  • Northcutt SL. Genomic choices. American Angus Association®/AngusGenetics Inc. release. 2011. http://www.angus.org/AGI/GenomicChoice070811.pdf (posted July, 2011)

  • Nystedt B, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84.

    CAS  PubMed  Google Scholar 

  • Ober U, et al. Predicting genetic values: a kernel-based best linear unbiased prediction with genomic data. Genetics. 2011;188:695–708.

    PubMed  PubMed Central  Google Scholar 

  • Patry C. Impacts of genomic selection on classical genetic evaluations. Jouy-en-Josas: Institut National de la Recherche Agronomique (INRA); 2011.

    Google Scholar 

  • Potato Genome Sequencing Consortium, et al. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475:189–95.

    Google Scholar 

  • Preisinger R. Genome-wide selection in poultry. Animal Production Science. 2012;52:121–5.

    CAS  Google Scholar 

  • Proudfoot C, et al. Genome edited sheep and cattle. Transgenic Res. 2015;24:147–53.

    CAS  PubMed  Google Scholar 

  • Pryce JE, Daetwyler HD. Designing dairy cattle breeding schemes under genomic selection: a review of international research. Anim Prod Sci. 2012;52:107–14.

    Google Scholar 

  • Pszczola M, Calus MPL. Updating the reference population to achieve constant genomic prediction reliability across generations. Animal. 2015;10:1018–24.

    PubMed  Google Scholar 

  • Pszczola M, Strabel T, van Arendonk JAM, Calus MPL. The impact of genotyping different groups of animals on accuracy when moving from traditional to genomic selection. J Dairy Sci. 2012;95:5412–21.

    CAS  PubMed  Google Scholar 

  • Ratcliffe B, et al. A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods. Heredity (Edinb). 2015;115(6):547–55.

    CAS  Google Scholar 

  • Remington DL, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A. 2001;98:11479–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Resende M, et al. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol. 2012a;193

    Google Scholar 

  • Resende MDV, et al. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 2012b;194:116–28.

    PubMed  Google Scholar 

  • Resende RMS, Casler MD, Resende MDV. Genomic selection in forage breeding: accuracy and methods. Crop Sci. 2014;54:143–56.

    Google Scholar 

  • Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, Grattapaglia D. Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding with an additive-dominant model. Heredity (Original Article). 2017. https://doi.org/10.1038/hdy.2017.37.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rius-Vilarrasa E, et al. Influence of model specifications on the reliabilities of genomic prediction in a Swedish–Finnish red breed cattle population. J Anim Breed Genet. 2012;129:369–79.

    CAS  PubMed  Google Scholar 

  • Rosenberg NA, Nordborg M. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet. 2002;3:380–90.

    CAS  PubMed  Google Scholar 

  • Rubin C-J, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464:587–91.

    CAS  PubMed  Google Scholar 

  • Rudi N, Norton GW, Alwang J, Asumugha G. Economic impact analysis of maker-assisted breeding for resistance to pests and post harvest deterioration of cassava. Afr J Agr Res Econ. 2010;4:110–22.

    Google Scholar 

  • Rutkoski JE, Heffner EL, Sorrells ME. Genomic selection for durable stem rust resistance in wheat. Euphytica. 2011;179:161–73.

    Google Scholar 

  • Saatchi M, Schnabel RD, Rolf MM, Taylor JF, Garrick DJ. Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle. Genet Sel Evol. 2012;44:38.

    PubMed  PubMed Central  Google Scholar 

  • Sánchez-Molano E, et al. Genomic prediction of traits related to canine hip dysplasia. Front Genet. 2015;6:97.

    PubMed  PubMed Central  Google Scholar 

  • Schaeffer L. Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet. 2006;123:218–23.

    CAS  PubMed  Google Scholar 

  • Schnable PS, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5.

    CAS  PubMed  Google Scholar 

  • Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT. Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci. 2002;163:381–95.

    CAS  Google Scholar 

  • Shen X, Alam M, Fikse F, Rönnegård L. A novel generalized ridge regression method for quantitative genetics. Genetics. 2013;193(4):1255–68.

    PubMed  PubMed Central  Google Scholar 

  • Shu YJ, et al. Genomic selection of seed weight based on low-density SCAR markers in soybean. Genet Mol Res. 2013;12:2178–88.

    CAS  PubMed  Google Scholar 

  • Shumbusho F, Raoul J, Astruc JM, Palhiere I, Elsen JM. Potential benefits of genomic selection on genetic gain of small ruminant breeding programs1. J Anim Sci. 2013;91:3644–57.

    CAS  PubMed  Google Scholar 

  • Snelling WM, et al. Partial-genome evaluation of postweaning feed intake and efficiency of crossbred beef cattle12. J Anim Sci. 2011;89:1731–41.

    CAS  PubMed  Google Scholar 

  • Somers DJ, Kirkpatrick R, Moniwa M, Walsh A. Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome. 2003;46:431–7.

    CAS  PubMed  Google Scholar 

  • Sonesson AK, Meuwissen THE. Testing strategies for genomic selection in aquaculture breeding programs. Genet Sel Evol. 2009;41:37.

    PubMed  PubMed Central  Google Scholar 

  • Spindel J, et al. Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet. 2013;126:2699–716.

    CAS  PubMed  Google Scholar 

  • Stein L. Genome annotation: from sequence to biology. Nat Rev Genet. 2001;2:493–503.

    CAS  PubMed  Google Scholar 

  • Stock KF, Jönsson L, Ricard A, Mark T. Genomic applications in horse breeding. Anim Front. 2016;6:45–52.

    Google Scholar 

  • Sun XC, Fernando R, Dekkers J. Contributions of linkage disequilibrium and co-segregation information to the accuracy of genomic prediction. Genet Sel Evol. 2016;48(1):77.

    PubMed  PubMed Central  Google Scholar 

  • Swan AA, Johnston DJ, Brown DJ, Tier B, Graser H-U. Integration of genomic information into beef cattle and sheep genetic evaluations in Australia. Animal Production Science. 2012;52:126–32.

    CAS  Google Scholar 

  • Sweeney M, McCouch S. The complex history of the domestication of rice. Ann Bot. 2007;100:951–7.

    PubMed  PubMed Central  Google Scholar 

  • Takeda S, Matsuoka M. Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet. 2008;9:444–57.

    CAS  PubMed  Google Scholar 

  • Tan B, Grattapaglia D, Martins GS, Ferreira KZ, Sundberg B, Ingvarsson PK. Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids. BMC Plant Biol. 2017;17(1):110. https://doi.org/10.1186/s12870-017-1059-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan W, Proudfoot C, Lillico SG, Whitelaw CBA. Gene targeting, genome editing: from Dolly to editors. Transgenic Res. 2016;25:273–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang C, et al. The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants. 2016;2:16073.

    CAS  PubMed  Google Scholar 

  • Tenaillon MI, Austerlitz F, Tenaillon O. Apparent mutational hotspots and long distance linkage disequilibrium resulting from a bottleneck. J Evol Biol. 2008;21:541–50.

    CAS  PubMed  Google Scholar 

  • Thavamanikumar S, Southerton SG, Bossinger G, Thumma BR. Dissection of complex traits in forest trees—opportunities for marker-assisted selection. Tree Genet Genomes. 2013;9:627–39.

    Google Scholar 

  • Thornton PK. Livestock production: recent trends, future prospects. Phil Trans Roy Soc B-Biol Sci. 2010;365:2853–67.

    Google Scholar 

  • Thorwarth P, et al. Genomic prediction ability for yield-related traits in German winter barley elite material. Theor Appl Genet. 2017;130(8):1669–83.

    PubMed  Google Scholar 

  • Toro MA, Varona L. A note on mate allocation for dominance handling in genomic selection. Genet Sel Evol. 2010;42:33.

    PubMed  PubMed Central  Google Scholar 

  • Trebbi D, et al. High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet. 2011;123:555–69.

    PubMed  Google Scholar 

  • Tribout T, Larzul C, Phocas F. Efficiency of genomic selection in a purebred pig male line. J Anim Sci. 2012;90:4164–76.

    CAS  PubMed  Google Scholar 

  • Tuskan GA, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313:1596–604.

    CAS  PubMed  Google Scholar 

  • van der Werf JHJ. Marker-assisted selection in sheep and goats. In: Guimarães EP, Ruane J, Scherf BD, Sonnino A, Dargie JD, editors. Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. Rome: Food and Agriculture Organization of the United Nations; 2007.

    Google Scholar 

  • VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414–23.

    CAS  PubMed  Google Scholar 

  • VanRaden PM, Wiggans GR. Derivation, calculation, and use of national animal model information. J Dairy Sci. 1991;74:2737–46.

    CAS  PubMed  Google Scholar 

  • VanRaden PM, Wiggans GR, Van Tassell CP, Sonstegard TS, Schenkel F. Benefits from cooperation in genomics. In: Proceedings of the Interbull international workshop. Genomic information in genetic evaluations. Uppsala, Sweden; 2009a pp 67–72.

    Google Scholar 

  • VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS. Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci. 2009b;92:16–24. https://doi.org/10.3168/jds.2008-1514.

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, et al. The genome of the domesticated apple (Malus [times] domestica Borkh.). Nat Genet. 2010;42:833–9.

    CAS  PubMed  Google Scholar 

  • Wade CM, et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science. 2009;326:865–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh B. Quantitative genetics. In: eLS. John Wiley & Sons Ltd., Chichester. 2001

    Google Scholar 

  • Wiggans GR, VanRaden PM, Cooper TA. The genomic evaluation system in the United States: past, present, future. J Dairy Sci. 2011;94:3202–11.

    CAS  PubMed  Google Scholar 

  • Wilkins PW, Humphreys MO. Progress in breeding perennial forage grasses for temperate agriculture. J Agric Sci. 2003;140:129–50.

    CAS  Google Scholar 

  • Williams AV, Nevill PG, Krauss SL. Next generation restoration genetics: applications and opportunities. Trends Plant Sci. 2014;19:529–37.

    CAS  PubMed  Google Scholar 

  • Windhausen VS, et al. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 (Bethesda). 2012;2:1427–36.

    Google Scholar 

  • Wu J, et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013;23:396–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wurschum T, Abel S, Zhao Y. Potential of genomic selection in rapeseed (Brassica napus L.) breeding. Plant Breeding. 2014;133:45–51.

    Google Scholar 

  • Wurschum T, Reif J, Kraft T, Janssen G, Zhao Y. Genomic selection in sugar beet breeding populations. BMC Genet. 2013;14:85.

    PubMed  PubMed Central  Google Scholar 

  • Xu S, Hu Z. Methods of plant breeding in the genome era. Genet Res. 2010;92:423–41.

    CAS  Google Scholar 

  • Yan ZB, Yan WG, Deren CW, McClung A. Hybrid rice breeding. B.R. Wells Rice Research Series—Arkansas Agricultural Experiment Station University of Arkansas, vol 591. 2011. pp 61–63.

    Google Scholar 

  • Yang J, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young CW, Bonczek RR, Johnson DG. Inbreeding of and relationship among registered Holsteins. J Dairy Sci. 1988;71:1659–66.

    CAS  PubMed  Google Scholar 

  • Yu J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science. 2002;296:79–92.

    CAS  PubMed  Google Scholar 

  • Zamir D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet. 2001;2:983–9.

    CAS  PubMed  Google Scholar 

  • Zapata-Valenzuela J, et al. SNP markers trace familial linkages in a cloned population of Pinus taeda-prospects for genomic selection. Tree Genet Genomes. 2012;8:1307–18.

    Google Scholar 

  • Zelener N, Poltri SNM, Bartoloni N, Lopez CR, Hopp HE. Selection strategy for a seedling seed orchard design based on trait selection index and genomic analysis by molecular markers: a case study for Eucalyptus dunnii. Tree Physiol. 2005;25:1457–67.

    CAS  PubMed  Google Scholar 

  • Zhao F, Xu S. An expectation and maximization algorithm for estimating G x E interaction effects. Theor Appl Genet. 2012;124:1375–87.

    PubMed  Google Scholar 

  • Zhao Y, et al. Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet. 2012;124:769–76.

    PubMed  Google Scholar 

  • Zhong SQ, Dekkers JCM, Fernando RL, Jannink JL. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics. 2009;182:355–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimin A, et al. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics. 2014;196:875–90.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Jonas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jonas, E., Fikse, F., Rönnegård, L., Mouresan, E.F. (2018). Genomic Selection. In: Rajora, O. (eds) Population Genomics. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_11

Download citation

Publish with us

Policies and ethics