Skip to main content

What Microbial Population Genomics Has Taught Us About Speciation

  • Chapter
  • First Online:
Book cover Population Genomics: Microorganisms

Part of the book series: Population Genomics ((POGE))

Abstract

Population genomics has emerged as a valuable tool to define and delimit species and to understand the mechanisms that drive and maintain speciation. Species and speciation have been notoriously difficult to study in microbes owing to their asexual reproduction, promiscuous horizontal gene transfer, and obscure microscopic niches. Over the past few years, whole-genome sequencing of closely related, locally co-occurring populations of microbes, combined with simulations and modelling, has revealed certain general features of microbial speciation: it is usually driven by divergent natural selection between distinct ecological niches (a form of the ecological species concept), and species distinctness is maintained by barriers to gene flow (a form of the biological species concept). In some cases, gene-flow barriers may come about as a natural consequence of ecological specialization. Although these features appear to be quite general, there are exceptions. Trivially, barriers to gene flow cannot be used to delimit clonal populations where there is negligible gene flow. More interestingly, it is unclear whether other barriers to gene flow, such as genetic incompatibilities or differences in phage-host range, are able to drive speciation in the absence of other selective pressures. Here, I discuss the extent to which speciation is driven by natural selection, gene-flow barriers, or a combination of the two, drawing on recent examples from bacterial and archaeal population genomics, experimental evolution, and modelling. I then describe how population genomic data can be used to define and delimit species boundaries, based upon nucleotide identity cutoffs or upon discontinuities in gene flow. Despite important limitations and caveats, delimitation methods provide a useful starting point for more detailed investigation into the genetic and ecological basis of speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acinas SG, Klepac-Ceraj V, Hun DE, Pharino C, Ceraj I, Distel DL, Polz MF. Fine-scale phylogenetic architecture of a complex bacterial community. Nature. 2004;430:551–4.

    Article  CAS  Google Scholar 

  • Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.

    Article  CAS  Google Scholar 

  • Bao Y-J, Shapiro BJ, Lee SW, Ploplis VA, Castellino FJ, Didelot X, Maiden MCJ, Gevers D, Shapiro BJ, Polz MF, et al. Phenotypic differentiation of streptococcus pyogenes populations is induced by recombination-driven gene-specific sweeps. Sci Rep. 2016;6:36644.

    Article  CAS  Google Scholar 

  • Bendall ML, Stevens SL, Chan L-K, Malfatti S, Schwientek P, Tremblay J, Schackwitz W, Martin J, Pati A, Bushnell B, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–601.

    Article  Google Scholar 

  • Blount ZD, Borland CZ, Lenski RE. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci U S A. 2008;105:7899–906.

    Article  CAS  Google Scholar 

  • Blount ZD, Barrick JE, Davidson CJ, Lenski RE. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature. 2012;488:513–8.

    Article  Google Scholar 

  • Bobay L-M, Ochman H. Biological species are universal across life’s domains. Genome Biol Evol. 2017;9:491–501.

    Article  Google Scholar 

  • Cadillo-Quiroz H, Didelot X, Held NL, Herrera A, Darling A, Reno ML, Krause DJ, Whitaker RJ. Patterns of gene flow define species of thermophilic Archaea. PLoS Biol. 2012;10:e1001265.

    Article  CAS  Google Scholar 

  • Caro-Quintero A, Konstantinidis KT. Bacterial species may exist, metagenomics reveal. Environ Microbiol. 2011;14:347–55.

    Article  Google Scholar 

  • Charron G, Leducq JB, Landry CR. Chromosomal variation segregates within incipient species and correlates with reproductive isolation. Mol Ecol. 2014;23:4362–72.

    Article  Google Scholar 

  • Coleman ML, Chisholm SW. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci U S A. 2010;107:18634–9.

    Article  CAS  Google Scholar 

  • Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS, et al. Rapid pneumococcal evolution in response to clinical interventions. Science. 2011;331:430–4.

    Article  CAS  Google Scholar 

  • Croucher NJ, Harris SR, Barquist L, Parkhill J, Bentley SD. A high-resolution view of genome-wide pneumococcal transformation. PLoS Pathog. 2012;8:e1002745.

    Article  CAS  Google Scholar 

  • Cui Y, Yang X, Didelot X, Guo C, Li D, Yan Y, Zhang Y, Yuan Y, Yang H, Wang J, et al. Epidemic clones, oceanic gene pools and epigenotypes in the free living marine pathogen Vibrio parahaemolyticus. Mol Biol Evol. 2015;32:1396–410.

    Article  CAS  Google Scholar 

  • David S, Sánchez-Busó L, Harris SR, Marttinen P, Rusniok C, Buchrieser C, Harrison TG, Parkhill J. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet. 2017;13:e1006855.

    Article  Google Scholar 

  • Dobzhansky T. A critique of the species concept in biology. Philos Sci. 1935;2:344.

    Article  Google Scholar 

  • Doolittle WF. Population genomics: how bacterial species form and why they don’t exist. Curr Biol. 2012;22:R451–3.

    Article  CAS  Google Scholar 

  • Doolittle WF, Zhaxybayeva O. On the origin of prokaryotic species. Genome Res. 2009;19:744–56.

    Article  CAS  Google Scholar 

  • Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, Sogin ML. Methods Ecol Evol. 2013;4:1111–9.

    Article  Google Scholar 

  • Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science. 2007;315:476–80.

    Article  CAS  Google Scholar 

  • Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP. The bacterial species challenge: making sense of genetic and ecological diversity. Science. 2009;323:741–6.

    Article  CAS  Google Scholar 

  • Friedman J, Alm EJ, Shapiro BJ. Sympatric speciation: when is it possible in bacteria? PLoS One. 2013;8:e53539.

    Article  CAS  Google Scholar 

  • Gause GF. The struggle for existence. Baltimore: Williams & Williams; 1934.

    Book  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, de Peer YV, Vandamme P, Thompson FL, et al. Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol. 2005;3:733–9.

    Article  CAS  Google Scholar 

  • Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, Sudek S, Maitland A, Chittick L, Dos Santos F, Weitz JS, et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics. 2016;17:930.

    Article  Google Scholar 

  • Hanage WP. Fuzzy species revisited. BMC Biol. 2013;11:41.

    Article  Google Scholar 

  • Hanage WP, Fraser C, Spratt BG. Fuzzy species among recombinogenic bacteria. BMC Biol. 2005;3:6.

    Article  Google Scholar 

  • Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science. 2008;320:1081–5.

    Article  CAS  Google Scholar 

  • Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EM, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.

    Article  CAS  Google Scholar 

  • Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.

    Article  CAS  Google Scholar 

  • Klinger CR, Lau JA, Heath KD. Ecological genomics of mutualism decline in nitrogen-fixing bacteria. Proc Biol Sci. 2016;283:20152563.

    Article  Google Scholar 

  • Koeppel AF, Wu M. Species matter: the role of competition in the assembly of congeneric bacteria. ISME J. 2014;8:531–40.

    Article  CAS  Google Scholar 

  • Koeppel AF, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, Rooney AP, Brambilla E, Connor N, Ratcliff RM, et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci U S A. 2008;105:2504–9.

    Article  CAS  Google Scholar 

  • Kondrashov AS, Mina MV. Sympatric speciation: when is it possible? Biol J Linn Soc Lond. 1986;27:201–23.

    Article  Google Scholar 

  • Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.

    Article  CAS  Google Scholar 

  • Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci. 2006;361:1929–40.

    Article  Google Scholar 

  • Krause DJ, Whitaker RJ. Inferring speciation processes from patterns of natural variation in microbial genomes. Syst Biol. 2015;64:926–35.

    Article  CAS  Google Scholar 

  • Leducq J-B, Nielly-Thibault L, Charron G, Eberlein C, Verta J-P, Samani P, Sylvester K, Hittinger CT, Bell G, Landry CR. Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nat Microbiol. 2016;1:15003.

    Article  CAS  Google Scholar 

  • López-Pérez M, Rodriguez-Valera F. Pangenome evolution in the marine bacterium Alteromonas. Genome Biol Evol. 2016;8:1556–70.

    Article  Google Scholar 

  • Majewski J, Cohan FM. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics. 1999;152:1459–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mallet J. Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philos Trans R Soc Lond B Biol Sci. 2008;363:2971–86.

    Article  Google Scholar 

  • Mallet J, Besansky N, Hahn MW. How reticulated are species? Bioessays. 2015;38:140–9.

    Article  Google Scholar 

  • Marttinen P, Hanage WP. Speciation trajectories in recombining bacterial species. PLoS Comput Biol. 2017;13:e1005640.

    Article  Google Scholar 

  • Marttinen P, Croucher NJ, Gutmann MU, Corander J, Hanage WP. Recombination produces coherent bacterial species clusters in both core and accessory genomes. Microb Genom. 2015;1:e000038.

    PubMed  PubMed Central  Google Scholar 

  • Mayr E. Systematics and the origin of species. New York: Columbia University Press; 1942.

    Google Scholar 

  • Mell JC, Shumilina S, Hall IM, Redfield RJ. Transformation of natural genetic variation into Haemophilus influenzae genomes. PLoS Pathog. 2011;7:e1002151.

    Article  CAS  Google Scholar 

  • Meyer JR, Dobias DT, Medina SJ, Servilio L, Gupta A, Lenski RE. Ecological speciation of bacteriophage lambda in allopatry and sympatry. Science. 2016;354:1301–4.

    Article  CAS  Google Scholar 

  • Niehus R, Mitri S, Fletcher AG, Foster KR. Microbial genomes into multiple niches. Nat Commun. 2015;6:1–9.

    Article  Google Scholar 

  • Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Le Chatelier E, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol. 2014;32:822–8.

    Article  CAS  Google Scholar 

  • Popa O, Landan G, Dagan T. Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction. ISME J. 2016;11:543–554.

    Article  Google Scholar 

  • Porter SS, Chang PL, Conow CA, Dunham JP, Friesen ML. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J. 2016;11:248–62.

    Article  Google Scholar 

  • Retchless AC, Lawrence JG. Phylogenetic incongruence arising from fragmented speciation in enteric bacteria. Proc Natl Acad Sci U S A. 2010;107:11453–8.

    Article  CAS  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 2003;424:1042–7.

    Article  CAS  Google Scholar 

  • Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pašić L, Thingstad TF, Rohwer F, Mira A. Explaining microbial population genomics through phage predation. Nat Rev Microbiol. 2009;7:828–36.

    Article  CAS  Google Scholar 

  • Rosen MJ, Davison M, Bhaya D, Fisher DS. Microbial diversity. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science. 2015;348:1019–23.

    Article  CAS  Google Scholar 

  • Schluter D. Evidence for ecological speciation and its alternative. Science. 2009;323:737–41.

    Article  CAS  Google Scholar 

  • Shapiro BJ. Signatures of natural selection and ecological differentiation in microbial genomes. Adv Exp Med Biol. 2014;781:339–59.

    Article  CAS  Google Scholar 

  • Shapiro BJ. How clonal are bacteria over time? Curr Opin Microbiol. 2016;31:116–23.

    Article  Google Scholar 

  • Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 2014;22:235–47.

    Article  CAS  Google Scholar 

  • Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabo G, Polz MF, Alm EJ. Population genomics of early events in the ecological differentiation of bacteria. Science. 2012;336:48–51.

    Article  CAS  Google Scholar 

  • Shapiro BJ, Leducq JB, Mallet J. What is speciation ? PLoS Genet. 2016;12:e1005860.

    Article  Google Scholar 

  • Takeuchi N, Cordero OX, Koonin EV, Kaneko K. Gene-specific selective sweeps in bacteria and archaea caused by negative frequency-dependent selection. BMC Biol. 2015;13:1–11.

    Article  Google Scholar 

  • Tilman D. Resource competition and community structure. Princeton: Princeton University Press; 1982.

    Google Scholar 

  • Vos M. A species concept for bacteria based on adaptive divergence. Trends Microbiol. 2011;19:1–7.

    Article  CAS  Google Scholar 

  • Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.

    Article  CAS  Google Scholar 

  • Yawata Y, Cordero OX, Menolascina F, Hehemann J-H, Polz MF, Stocker R. A competition-dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc Natl Acad Sci U S A. 2014;111:5622–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to the Canada Research Chairs program for funding and to members of my laboratory for useful discussions and comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jesse Shapiro .

Editor information

Editors and Affiliations

Glossary

Niche

A specific set of ecological parameters (environments, resources, physical and chemical characteristics, biotic interactions, etc.) to which an organism is adapted. This does not necessarily imply (but does not exclude) physical separation between niches. For the purposes of this chapter, “niche” and “habitat” are used more or less interchangeably, although “habitat” has a more spatial connotation, while niches can be temporal, behavioural, physiological, etc.

Ecological species concept (ESC)

A species concept in which speciation is driven by adaptation to distinct habitats or ecological niches, with each species inhabiting a distinct niche.

Biological species concept (BSC)

A species concept based on reproductive isolation (in the strict sense) or to barriers to gene flow, resulting in more gene flow within than between species, even if some between-species gene flow still occurs.

Allopatric speciation

Speciation driven by physical barriers to gene flow between incipient species, such that speciation may occur in the absence of natural selection.

Sympatric speciation

Speciation that occurs in the absence of physical barriers to gene flow, such that speciation must be driven by some combination of natural selection and/or genetic barriers to gene flow.

Mosaic sympatry

An intermediate between sympatry and allopatric, in which organisms inhabit different niches (e.g. particles or hosts) within an otherwise well-mixed environment.

Gene flow

A general term for exchange of DNA between chromosomes, including both homologous and nonhomologous DNA. In sexual organisms, gene flow occurs during meiosis. In microbes, gene flow can occur by phage-mediated transduction, plasmid-mediated conjugation, or natural competence (uptake of free DNA) followed by homologous or nonhomologous recombination.

Gene-specific selective sweep

The process in which an adaptive gene or allele spreads in a population by recombination faster than by clonal expansion. The result is that the adaptive variant is present in more than a single clonal background and that diversity is not purged genome-wide.

Genome-wide selective sweep

The process in which an adaptive gene or allele spreads in a population by clonal expansion of the genome that first acquired it. The result is that diversity is purged genome-wide and that the adaptive variant is linked in the same clonal frame as the rest of the genome.

ecoSNP

An ecologically associated single nucleotide polymorphism (SNP) with different nucleotides fixed between two different habitats (e.g. an A allele in habitat 1 and a T allele in habitat 2). Genes under divergent natural selection between niches or habitats (“niche-specifying genes”) are expected to contain a large number of ecoSNPs.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shapiro, B.J. (2018). What Microbial Population Genomics Has Taught Us About Speciation. In: Polz, M., Rajora, O. (eds) Population Genomics: Microorganisms. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_10

Download citation

Publish with us

Policies and ethics