Skip to main content

Genotyping and Sequencing Technologies in Population Genetics and Genomics

  • Chapter
  • First Online:
Population Genomics

Part of the book series: Population Genomics ((POGE))

Abstract

Genotypes are the central data to any population genetic and genomic study, and genotyping methods have steadily evolved since the first direct glimpses of genetic variation were enabled through enzyme protein electrophoresis. Following the development of the polymerase chain reaction, allozymes were supplanted by methods that directly measured allelic variation in nuclear and organellar DNA, most notably through the use of restriction fragment length polymorphisms (RFLPs), amplified fragment length polymorphisms (AFLPs), and microsatellites. At the turn of the millennium, genome-scale polymorphism detection and scoring still was hampered by the low-throughput nature of Sanger sequencing. This limitation changed with the advent of genotyping microarrays that at first yielded hundreds of data points per sample – a revolution at the time – and that subsequently improved to the point where hundreds of thousands of genetic variants could be scored simultaneously. These methods suffered a major flaw, however, in that their cost put them out of reach for studies of most ecologically important but economically unimportant species. The democratization of population genomics arrived with the advent of high-throughput, short-read sequencers and subsequent development of DNA library techniques to subsample the genome in a large number of individuals. Today, such methods – genotyping-by-sequencing, restriction site-associated DNA sequencing, RNA sequencing, and sequence capture – have become mainstays of the population geneticist’s toolkit. Refinements to existing library and sequencing methods continue to emerge at a rapid pace, and novel sequencing platforms may soon put the gold standard of long-read, genome-wide coverage within a broader reach. In this chapter, we comprehensively review genotyping methods used in population genetics, beginning with allozymes and progressing through AFLPs, microsatellites, and SNP arrays. We subsequently turn to a detailed discussion of methods that leverage next-generation technologies to enable truly genome-scale genotyping. Finally, we discuss recent developments and emerging technologies that constitute the “third wave” of sequencing and genotyping methods. Throughout, our aim is to provide methodological details that will be of use to population geneticists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avise JC. Molecular markers, natural history, and evolution. 2nd ed. Sunderland: Sinauer Associates; 2004.

    Google Scholar 

  • Backert S, Nielsen BL, Börner T. The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci. 1997;2:477–83.

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3:e3376.

    PubMed  PubMed Central  Google Scholar 

  • Barendse W, Armitage SM, Kossarek LM, Shalom A, Kirkpatrick BW, Ryan AM, Clayton D, Li L, Neibergs HL, Zhang N, Grosse WM. A genetic linkage map of the bovine genome. Nat Genet. 1994;6:227–35.

    CAS  PubMed  Google Scholar 

  • Barrett JW, Rajora OP, Yeh FCH, Dancik BP, Strobeck C. Mitochondrial-DNA variation and genetic-relationships of Populus species. Genome. 1993;36:87–93.

    CAS  PubMed  Google Scholar 

  • Beckmann JS, Kashi Y, Hallerman EM, Nave A, Soller M. Restriction fragment length polymorphism among Israeli Holstein-Friesian dairy bulls. Anim Genet. 1986;17:25–38.

    CAS  PubMed  Google Scholar 

  • Beismann H, Barker JH, Karp A, Speck T. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol Ecol. 1997;6:989–93.

    CAS  Google Scholar 

  • Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012;40:e72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bensch S, Åkesson M. Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol. 2005;14:2899–914.

    CAS  PubMed  Google Scholar 

  • Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berlin K, Koren S, Chin CS, et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol. 2015;33:623.

    CAS  PubMed  Google Scholar 

  • Bernatchez L, Guyomard R, Bonhomme F. DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Mol Ecol. 1992;1:161–73.

    CAS  PubMed  Google Scholar 

  • Birky CW Jr. Transmission genetics of mitochondria and chloroplasts. Annu Rev Genet. 1978;12:471–512.

    PubMed  Google Scholar 

  • Birky CW Jr. Evolution and variation in plant chloroplast and mitochondrial genomes. In: Gottlieb L, editor. Plant evolutionary biology. Netherlands: Springer; 1988. p. 23–53.

    Google Scholar 

  • Birol I, Raymond A, Jackman SD, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29:1492–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SL, Hawkins GA, Toldo SS, Fries R, Grosz MD, Yoo J. A genetic linkage map for cattle. Genetics. 1994;136:619–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blouin MS, Parsons M, Lacaille V, Lotz S. Use of microsatellite loci to classify individuals by relatedness. Mol Ecol. 1996;5:393–401.

    CAS  PubMed  Google Scholar 

  • Boitard S, Schlotterer C, Nolte V, Pandey RV, Futschik A. Detecting selective sweeps from pooled next-generation sequencing samples. Mol Biol Evol. 2012;29:2177–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • BOL. 2016. http://www.barcodeoflife.org

  • Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Browning BL, Browning SR. Genotype imputation with millions of reference samples. Am J Hum Genet. 2016;98:116–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchert GP, Rajora OP, Hood JV, Dancik BP. Effects of harvesting on genetic diversity in old growth eastern white pine in Ontario, Canada. Conserv Biol. 1997;11:747–58.

    Google Scholar 

  • Buerkle CA, Gompert Z. Population genomics based on low coverage sequencing: how low should we go? Mol Ecol. 2013;22:3028–35.

    Google Scholar 

  • Buth DG. Genetic principles and the interpretation of electrophoretic data. In: Whitmore DH, editor. Electrophoretic and isoelectric focusing techniques in fishery management. Boca Raton: CRC Press; 1990. p. 1–22.

    Google Scholar 

  • Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR. Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am J Hum Genet. 1993;52:922–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camper SA, Luck DN, Yao Y, Woychik RP, Goodwin RG, Lyons RH Jr, Rottman FM. Characterization of the bovine prolactin gene. DNA. 1984;3:237–49.

    CAS  PubMed  Google Scholar 

  • Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature. 1987;325:31–6.

    CAS  PubMed  Google Scholar 

  • Cavers S, Navarro C, Lowe AJ. Chloroplast DNA phylogeography reveals colonization history of a Neotropical tree, Cedrela odorata L., in Mesoamerica. Mol Ecol. 2003;12:1451–60.

    CAS  PubMed  Google Scholar 

  • Cervera MT, Storme V, Soto A, Ivens B, Van Montagu M, Rajora OP, Boerjan W. Intraspecific and interspecific genetic and phylogenetic relationships in the genus Populus based on AFLP markers. Theor Appl Genet. 2005;111:1440–56.

    CAS  PubMed  Google Scholar 

  • Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988;16:11141–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chat J, Chalak L, Petit RJ. Strict paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in intraspecific crosses of kiwifruit. Theor Appl Genet. 1999;99:314–22.

    Google Scholar 

  • Chhatre VE, Rajora OP. Genetic divergence and signatures of natural selection in marginal populations of a keystone, long-lived conifer, eastern white pine (Pinus strobus) from northern Ontario. PLoS One. 2014;9:e97291.

    PubMed  PubMed Central  Google Scholar 

  • Christe C, Stölting KN, Paris M, et al. Adaptive evolution and segregating load contribute to the genomic landscape of divergence in two tree species connected by episodic gene flow. Mol Ecol. 2016;26:59. https://doi.org/10.1111/mec.13765.

    Article  CAS  PubMed  Google Scholar 

  • Clegg MT, Brown AH, Whitfeld PR. Chloroplast DNA diversity in wild and cultivated barley: implications for genetic conservation. Genet Res. 1984;43:339–43.

    CAS  Google Scholar 

  • Clegg MT, Ritland K, Zurawski G. Processes of chloroplast DNA evolution. In: Karlin S, Nevo E, editors. Evolutionary processes and theory. New York: Academic Press; 1986. p. 275–94.

    Google Scholar 

  • Craft KJ, Owens JD, Ashley MV. Application of plant DNA markers in forensic botany: genetic comparison of Quercus evidence leaves to crime scene trees using microsatellites. Forensic Sci Int. 2007;165:64–70.

    CAS  PubMed  Google Scholar 

  • Curtis SE, Clegg MT. Molecular evolution of chloroplast DNA sequences. Mol Biol Evol. 1984;1:291–301.

    CAS  PubMed  Google Scholar 

  • Dayanandan S, Bawa KS, Kesseli R. Conservation of microsatellites among tropical trees (Leguminosae). Am J Bot. 1997;84:1658–63.

    CAS  PubMed  Google Scholar 

  • De Wit P, Pespeni MH, Ladner JT, et al. The simple fool's guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Resour. 2012;12:1058–67.

    PubMed  Google Scholar 

  • Demesure B, Sodzi N, Petit RJ. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol. 1995;4:129–31.

    CAS  PubMed  Google Scholar 

  • DeWoody JA, Avise JC. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol. 2000;56:461–73.

    CAS  Google Scholar 

  • Doebley J, Renfroe W, Blanton A. Restriction site variation in the zea chloroplast genome. Genetics. 1987;117:139–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dowling TE, Moritz C, Palmer JD, Rieseberg LH. Nucleic acids III: analysis of fragments and restriction sites. In: Hillis DM, Moritz C, Mable BK, editors. Molecular systematics. 2nd ed. Sunderland: Sinauer Associates; 1996. p. 249–320.

    Google Scholar 

  • Duminil J, Pemonge MH, Petit RJ. A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes. 2002;2:428–30.

    CAS  Google Scholar 

  • Dumolin-Lapegue S, Pemonge M-H, Petit RJ. An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol. 1997;6:393–7.

    CAS  PubMed  Google Scholar 

  • Eckert AJ, Pande B, Ersoz ES, et al. High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genomes. 2009;5:225–34.

    Google Scholar 

  • Edelist C, Lexer C, Dillmann C, Sicard D, Rieseberg LH. Microsatellite signature of ecological selection for salt tolerance in a wild sunflower hybrid species, Helianthus paradoxus. Mol Ecol. 2006;15:4623–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M, Guyomard R. Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol Ecol. 1998;7:339–53.

    CAS  PubMed  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet. 2002;104:399–407.

    CAS  PubMed  Google Scholar 

  • Evans J, Kim J, Childs KL, et al. Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass Panicum virgatum. Plant J. 2014a;79:993–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans LM, Slavov GT, Rodgers-Melnick E, et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet. 2014b;46:1089–96.

    CAS  PubMed  Google Scholar 

  • Fabian DK, Kapun M, Nolte V, et al. Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol Ecol. 2012;21:4748–69.

    PubMed  PubMed Central  Google Scholar 

  • Fageria MS, Rajora OP. Effects of harvesting of increasing intensities on genetic diversity and population structure of white spruce. Evol Appl. 2013;6:778–94.

    PubMed  PubMed Central  Google Scholar 

  • Faivre-Rampant P, Zaina G, Jorge V, et al. New resources for genetic studies in Populus nigra: genome-wide SNP discovery and development of a 12k Infinium array. Mol Ecol Resour. 2016;16:1023–36.

    CAS  PubMed  Google Scholar 

  • Fan JB, Oliphant A, Shen R, et al. Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol. 2003;68:69–78.

    CAS  PubMed  Google Scholar 

  • Fischer MC, Rellstab C, Tedder A, et al. Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis halleri from the Alps. Mol Ecol. 2013;22:5594–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fullwood MJ, Wei C-L, Liu ET, Ruan Y. Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res. 2009;19:521–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gagnaire P-A, Pavey SA, Normandeau E, Bernatchez L. The genetic architecture of reproductive isolation during speciation-with-gene-flow in lake whitefish species pairs assessed by RAD sequencing. Evolution. 2013;67:2483–97.

    PubMed  Google Scholar 

  • Ghislain M, Spooner DM, Rodriguez F, et al. Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor Appl Genet. 2004;108:881–90.

    CAS  PubMed  Google Scholar 

  • Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA ‘fingerprints’. Nature. 1985;318:577–9.

    CAS  PubMed  Google Scholar 

  • Gillham NW. Organelle heredity. New York: Raven Press; 1978.

    Google Scholar 

  • Gnirke A, Melnikov A, Maguire J, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27:182–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godoy JA, Jordano P. Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites. Mol Ecol. 2001;10:2275–83.

    CAS  PubMed  Google Scholar 

  • Goncalves da Silva A, Barendse W, Kijas JW, et al. SNP discovery in nonmodel organisms: strand bias and base-substitution errors reduce conversion rates. Mol Ecol Resour. 2015;15:723–36.

    CAS  PubMed  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.

    CAS  PubMed  Google Scholar 

  • Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguichi AY, Young AB, Shoulson I, Bonilla E, Martin JB. A polymorphic DNA marker linked to Huntington's disease. Nature. 1983;306:238–44.

    Google Scholar 

  • Hamilton MB. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol. 1999;8:521–2.

    CAS  PubMed  Google Scholar 

  • Harris SA, Ingram R. Chloroplast DNA and biosystematics: the effects of intraspecific diversity and plastid transmission. Taxon. 1991;1:393–412.

    Google Scholar 

  • Hebert FO, Renaut S, Bernatchez L. Targeted sequence capture and resequencing implies a predominant role of regulatory regions in the divergence of a sympatric lake whitefish species pair (Coregonus clupeaformis). Mol Ecol. 2013;22:4896–914.

    CAS  PubMed  Google Scholar 

  • Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet. 1986;72:761–9.

    CAS  PubMed  Google Scholar 

  • Heuertz M, Fineschi S, Anzidei M, Pastorelli R, Salvini D, Paule L, Frascaria-Lacoste N, Hardy OJ, Vekemans X, Vendramin GG. Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Mol Ecol. 2004;13:3437–52.

    CAS  PubMed  Google Scholar 

  • Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet. 2007;39:1522–7.

    CAS  PubMed  Google Scholar 

  • Hoelzel AR. Molecular genetic analysis of populations: a practical approach. Oxford: IRL Press; 1992.

    Google Scholar 

  • Holliday JA, Ritland K, Aitken SN. Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol. 2010;188:501–14.

    PubMed  Google Scholar 

  • Holliday JA, Zhou L, Bawa R, Zhang M, Oubida RW. Evidence for extensive parallelism but divergent genomic architecture of adaptation along altitudinal and latitudinal gradients in Populus trichocarpa. New Phytol. 2016;209:1240. https://doi.org/10.1111/nph.13643.

    Article  CAS  PubMed  Google Scholar 

  • Hou ZG, Jiang P, Swanson SA, et al. A cost-effective RNA sequencing protocol for large-scale gene expression studies. Sci Rep. 2015;5:9570.

    PubMed  PubMed Central  Google Scholar 

  • Hugot JP, Chamaillard M, Zouali H, Lesage S. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599.

    CAS  PubMed  Google Scholar 

  • Johns C, Lu M, Lyznik A, Mackenzie S. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants. Plant Cell. 1992;4:435–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston SE, Orell P, Pritchard VL, et al. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar). Mol Ecol. 2014;23:3452–68.

    CAS  PubMed  Google Scholar 

  • Jones FC, Grabherr MG, Chan YF, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484:55–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang BY, Mann IK, Major JE, Rajora OP. Near-saturated and complete genetic linkage map of black spruce (Picea mariana). BMC Genomics. 2010;24:515.

    Google Scholar 

  • Kang BY, Major JE, Rajora OP. A high-density genetic linkage map of a black spruce (Picea mariana) × red spruce (Picea rubens) interspecific hybrid. Genome. 2011;54:128–43.

    CAS  PubMed  Google Scholar 

  • Kashi Y, Hallerman E, Soller M. Marker-assisted selection of candidate bulls for progeny testing programmes. Anim Prod. 1990;51:63–74.

    Google Scholar 

  • Kessler C. Class II restriction endonucleases. In: Obe G, Basler A, editors. Cytogenetics. Berlin: Springer Verlag; 1987. p. 225–79.

    Google Scholar 

  • Kiialainen A, Karlberg O, Ahlford A, et al. Performance of microarray and liquid based capture methods for target enrichment for massively parallel sequencing and SNP discovery. PLoS One. 2011;6:e16486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng. 2007;9:289–320.

    CAS  PubMed  Google Scholar 

  • Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press; 1983.

    Google Scholar 

  • King TL, Kalinowski ST, Schill WB, Spidle AP, Lubinski BA. Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation. Mol Ecol. 2001;10:807–21.

    CAS  PubMed  Google Scholar 

  • Knoop V. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet. 2004;46:123–39.

    CAS  PubMed  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA. 1989;86:6196–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kofler R, Pandey RV, Schlotterer C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics. 2011;27:3435–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kofler R, Betancourt AJ, Schlotterer C. Sequencing of pooled DNA samples (Pool-Seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster. PLoS Genet. 2012;8:e1002487.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kofler R, Gomez-Sanchez D, Schlotterer C. PoPoolationTE2: comparative population genomics of transposable elements using pool-seq. Mol Biol Evol. 2016a;33:2759–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kofler R, Langmuller AM, Nouhaud P, Otte KA, Schlotterer C. Suitability of different mapping algorithms for genome-wide polymorphism scans with pool-seq data. G3 Genes Genomes Genet. 2016b;6:3507–15.

    CAS  Google Scholar 

  • Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne RK. Estimating population size by genotyping faeces. Proc R Soc Lond B Biol Sci. 1999;266:657–63.

    CAS  Google Scholar 

  • Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318:420–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozarewa I, Ning Z, Quail MA, et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G plus C)-biased genomes. Nat Methods. 2009;6:291–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kress WJ, Erickson DL. DNA barcodes: methods and protocols. Methods Mol Biol. 2012;858:3–8.

    CAS  PubMed  Google Scholar 

  • Kwok PY. Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet. 2001;2:235–58.

    CAS  PubMed  Google Scholar 

  • Lansman RA, Shade RO, Shapira JF, Avise JC. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J Mol Evol. 1981;17:214–26.

    CAS  PubMed  Google Scholar 

  • Lansman RA, Avise JC, Aquadro CF, Shapira JF, Daniel SW. Extensive genetic variation in mitochondrial DNAs among geographic populations of the deer mouse, Peromyscus maniculatus. Evolution. 1983;37:1–16.

    CAS  PubMed  Google Scholar 

  • Lawson Handley LJ, Perrin N. Advances in our understanding of mammalian sex-biased dispersal. Mol Ecol. 2007;16:1559–78.

    CAS  PubMed  Google Scholar 

  • Lee H, Gurtowski J, Yoo S, et al. Third-generation sequencing and the future of genomics. bioRxiv. 2016. https://doi.org/10.1101/048603.

  • Lepoittevin C, Bodenes C, Chancerel E, et al. Single-nucleotide polymorphism discovery and validation in high-density SNP array for genetic analysis in European white oaks. Mol Ecol Resour. 2015;15:1446–59.

    CAS  PubMed  Google Scholar 

  • Lewontin RC, Hubby JT. A molecular approach to the study of genic heterozygosity in natural populations: amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966;54:595–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation. Annu Rev Genomics Hum Genet. 2009;10:387–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Little P, Annison G, Darling S, Williamson R, Cambar T, Model B. Model for antenatal diagnosis of b-thalassemia and other monogenic disorders by molecular analysis of linked DNA polymorphisms. Nature. 1980;285:144–7.

    CAS  PubMed  Google Scholar 

  • Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P. Evidence for two independent domestications of cattle. Proc Natl Acad Sci USA. 1994;91:2757–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lonsdale DM, Brears T, Hodge TP, Melville SE, Rottmann WH. The plant mitochondrial genome: homologous recombination as a mechanism for generating heterogeneity. Philos Trans R Soc B. 1988;319:149–63.

    CAS  Google Scholar 

  • Loridon K, Burgarella C, Chantret N, et al. Single-nucleotide polymorphism discovery and diversity in the model legume Medicago truncatula. Mol Ecol Resour. 2013;13:84–95.

    CAS  PubMed  Google Scholar 

  • Malenfant RM, Coltman DW, Davis CS. Design of a 9K illumina beadchip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing. Mol Ecol Resour. 2015;15:587–600.

    CAS  PubMed  Google Scholar 

  • Maxam AM, Gilbert W. New method for sequencing DNA. Proc Natl Acad Sci USA. 1977;74:560–4.

    Google Scholar 

  • Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65:499–559.

    CAS  PubMed  Google Scholar 

  • May B. Starch gel electrophoresis of allozymes. In: Hoelzel AR, editor. Molecular genetic analysis of populations: a practical approach. 2nd ed. New York: Oxford University Press; 1998. p 1–28 and 371–378.

    Google Scholar 

  • McKernan KJ, Peckham HE, Costa GL, et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 2009;19:1527–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metzlaff M, Börner T, Hagemann R. Variations of chloroplast DNAs in the genus Pelargonium and their biparental inheritance. Theor Appl Genet. 1981;60:37–41.

    CAS  PubMed  Google Scholar 

  • Meyer A. Molecular phylogenetic studies of fishes. In: Beaumont AR, editor. Evolution and genetics of aquatic organisms. New York: Chapman and Hall; 1993.

    Google Scholar 

  • Meyer A, Kocher TD, Basasibwaki P, Wilson AC. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature. 1990;347:550–3.

    CAS  PubMed  Google Scholar 

  • Mizuki N, Ota M, Kimura M, Ohno S, Ando H, Katsuyama Y, Yamazaki M, Watanabe K, Goto K, Nakamura S, Bahram S. Triplet repeat polymorphism in the transmembrane region of the MICA gene: a strong association of six GCT repetitions with Behcet disease. Proc Natl Acad Sci U S A. 1997;94:1298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moran Z, Orth DJ, Schmitt JD, Hallerman EM, Aguilar R. Effectiveness of DNA barcoding for identifying piscine prey items in stomach contents of piscivorous catfishes. Environ Biol Fish. 2015;99:161–7.

    Google Scholar 

  • Morgante M, Olivieri AM. PCR-amplified microsatellites as markers in plant genetics. Plant J. 1993;3:175–82.

    CAS  PubMed  Google Scholar 

  • Morizot DC, Schmidt ME. Starch gel electrophoresis and histochemical visualization of proteins. In: Whitmore DH, editor. Electrophoretic and isoelectric focusing techniques in fishery management. Boca Raton: CRC Press; 1990. p. 23–80.

    Google Scholar 

  • Mostovoy Y, Levy-Sakin M, Lam J, et al. A hybrid approach for de novo human genome sequence assembly and phasing. Nat Methods. 2016;13:587.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.

    CAS  PubMed  Google Scholar 

  • Murphy RW, Sites JW, Buth DG, Haufler CH. Isozyme electrophoresis. In: Hillis DM, Moritz C, Mable BK, editors. Molecular systematics. 2nd ed. Sunderland: Sinauer Associates; 1996. p. 51–120.

    Google Scholar 

  • Nadeau NJ, Whibley A, Jones RT, et al. Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing. Philos Trans R Soc B Biol Sci. 2012;367:343–53.

    CAS  Google Scholar 

  • Nakamura Y, Leppert M, O'Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987;235:1616–22.

    CAS  PubMed  Google Scholar 

  • National Conservation Training Center (NCTC) 2017. https://nctc.fws.gov/courses/csp/csp3157/content/terms/microsatellite.html

  • Neale DB, Sederoff RR. Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor Appl Genet. 1989;77:212–6.

    CAS  PubMed  Google Scholar 

  • Neiman MR, Sundling S, Groenberg H, et al. Library preparation and multiplex capture for massive parallel sequencing applications made efficient and easy. PLoS One. 2012;7:e48616.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neves LG, Davis JM, Barbazuk WB, Kirst M. Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J. 2013;75:146–56.

    CAS  PubMed  Google Scholar 

  • Nielsen EE, Hansen MM, Loeschcke V. Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years. Mol Ecol. 1997;6:487–92.

    CAS  Google Scholar 

  • Normark BB, McCune AR, Harrison RG. Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences. Mol Biol Evol. 1991;8:819–34.

    CAS  PubMed  Google Scholar 

  • Okou DT, Steinberg KM, Middle C, et al. Microarray-based genomic selection for high-throughput resequencing. Nat Methods. 2007;4:907–9.

    CAS  PubMed  Google Scholar 

  • Olson MS, McCauley DE. Mitochondrial DNA diversity, population structure, and gender association in the gynodioecious plant Silene vulgaris. Evolution. 2002;56:253–62.

    CAS  PubMed  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C. Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol. 1995;4:347–54.

    CAS  PubMed  Google Scholar 

  • Paetkau D, Waits LP, Clarkson PL, Craighead L, Vyse E, Ward R, Strobeck C. Variation in genetic diversity across the range of North American brown bears. Conserv Biol. 1998;12:418–29.

    Google Scholar 

  • Palmé AE, Su Q, Rautenberg A, Manni F, Lascoux M. Postglacial recolonization and cpDNA variation of silver birch, Betula pendula. Mol Ecol. 2003;12(2):201–12.

    PubMed  Google Scholar 

  • Palmé AE, Su Q, Palsson S, Lascoux M. Extensive sharing of chloroplast haplotypes among European birches indicates hybridization among Betula pendula, B. pubescens and B. nana. Mol Ecol. 2004;13(1):167–78.

    PubMed  Google Scholar 

  • Palmer JD. Evolution of chloroplast and mitochondrial DNA in plants and algae. In: McIntyre RJ, editor. Molecular evolutionary genetics. New York: Plenum Press; 1985. p. 131–240.

    Google Scholar 

  • Palmer JD. Mitochondrial DNA in plant systematics: applications and limitations. In: Soltis PS, Soltis DE, Doyle JJ, editors. Molecular systematics of plants. New York: Springer; 1992. p. 36–49.

    Google Scholar 

  • Palmer JD, Herbon LA. Tricircular mitochondrial genomes of Brassica and Raphanus: reversal of repeat configurations by inversion. Nucleic Acids Res. 1986;14:9755–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer JD, Herbon LA. Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence. J Mol Evol. 1988;28:87–97.

    CAS  PubMed  Google Scholar 

  • Palmer JD, Thompson WF. Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA. 1981;78:5533–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer JD, Zamir D. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA. 1982;79:5006–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA. 2000;97:6960–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, Johnson GS, DeFrance HB, Ostrander EA, Kruglyak L. Genetic structure of the purebred domestic dog. Science. 2004;304:1160–4.

    CAS  PubMed  Google Scholar 

  • Pascoal S, Cezard T, Eik-Nes A, et al. Rapid convergent evolution in wild crickets. Curr Biol. 2014;24:1369–74.

    CAS  PubMed  Google Scholar 

  • Pavy N, Pelgas B, Beauseigle S, et al. Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics. 2008;9:21.

    PubMed  PubMed Central  Google Scholar 

  • Pavy N, Gagnon F, Rigault P, et al. Development of high-density SNP genotyping arrays for white spruce (Picea glauca) and transferability to subtropical and nordic congeners. Mol Ecol Resour. 2013;13:324–36.

    CAS  PubMed  Google Scholar 

  • Pavy N, Gagnon F, Deschenes A, et al. Development of highly reliable in silico SNP resource and genotyping assay from exome capture and sequencing: an example from black spruce (Picea mariana). Mol Ecol Resour. 2016;16:588–98.

    CAS  PubMed  Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol. 1998;15:1275–87.

    CAS  PubMed  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7:e37135.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petit RJ, Csaikl UM, Bordács S, Burg K, Coart E, Cottrell J, van Dam B, Deans JD, Dumolin-Lapègue S, Fineschi S, Finkeldey R. Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. For Ecol Manag. 2002;156:5–26.

    Google Scholar 

  • Phillips J, Panny S, Kazazian H, Bochun C, Scott C, Smith R. Prenatal diagnosis of sickle cell anemia by restriction endonuclease analysis: hindIII polymorphisms in v-globin genes extend applicability. Proc Natl Acad Sci USA. 1980;77:2853–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Picelli S, Bjorklund AK, Reinius B, et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 2014;24:2033–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plant-Microbe Genomics Facility (PMGF). 2017. https://pmgf.osu.edu/services/genotyping/example

  • Plomion C, Bartholome J, Lesur I, et al. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster). Mol Ecol Resour. 2016;16:574–87.

    CAS  PubMed  Google Scholar 

  • Pring DR, Lonsdale DM. Molecular biology of higher plant mitochondrial DNA. Int Rev Cytol. 1985;97:1–46.

    CAS  Google Scholar 

  • Prober JM, Trainor GL, Dam RJ, Hobbs FW, Robertson CW, Zagursky RJ, Cocuzza AJ, Jensen MA, Baumeister K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987;238:336–41.

    CAS  PubMed  Google Scholar 

  • Quéméré E, Hibert F, Miquel C, Lhuillier E, Rasolondraibe E, Champeau J, Rabarivola C, Nusbaumer L, Chatelain C, Gautier L, Ranirison P. A DNA metabarcoding study of a primate dietary diversity and plasticity across its entire fragmented range. PLoS One. 2013;8:e58971.

    PubMed  PubMed Central  Google Scholar 

  • Quick J, Loman NJ, Duraffour S, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature. 2016;530:228.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajora OP, Rahman MH, Buchert GP, Dancik BP. Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Canada. Mol Ecol. 2000;9:339–48.

    CAS  PubMed  Google Scholar 

  • Remington DL, Whetten RW, Liu BH, O’Malley DM. Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet. 1999;98:1279–92.

    CAS  PubMed  Google Scholar 

  • Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell. 2015;58:586–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rheindt FE, Fujita MK, Wilton PR, Edwards SV. Introgression and phenotypic assimilation in Zimmerius flycatchers (Tyrannidae): population genetic and phylogenetic inferences from genome-wide SNPs. Syst Biol. 2014;63:134–52.

    PubMed  Google Scholar 

  • Ritter E, Gebhardt C, Salamini F. Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics. 1990;125:645–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivin CJ, Zimmer EA, Cullis CA, Walbot V, Huynh T, Davis RW. Evaluation of genomic variability at the nucleic acid level. Plant Mol Biol Report. 1983;1:9–16.

    CAS  Google Scholar 

  • Roberts JR. Restriction and modification enzymes and their recognition sequences. Nucleic Acids Res. 1984;12:R167–204.

    PubMed  PubMed Central  Google Scholar 

  • Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 1996;242:84–9.

    CAS  PubMed  Google Scholar 

  • Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science. 1998;281:363.

    CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA. 1984;81:8014–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4.

    CAS  PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf ST, Higuchi R, Horn GT, Mullis KB, Ehrlich HA. Primer-directed enzymatic amplification of DNA. Science. 1988;239:487–91.

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schardl CL, Pring DR, Lonsdale DM. Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-sterile maize. Cell. 1985;43:361–8.

    CAS  PubMed  Google Scholar 

  • Scheet P, Stephens M. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet. 2006;78:629–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlotterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals-mining genome-wide polymorphism data without big funding. Nat Rev Genet. 2014;15:749–63.

    PubMed  Google Scholar 

  • Shen R, Fan JB, Campbell D, et al. High-throughput SNP genotyping on universal bead arrays. Mutat Res Fundam Mol Mech Mutagen. 2005;573:70–82.

    CAS  Google Scholar 

  • Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550:345. https://doi.org/10.1038/nature24286. Advance Online Publication.

    Article  CAS  PubMed  Google Scholar 

  • Sinclair WT, Morman JD, Ennos RA. The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Mol Ecol. 1999;8:83–8.

    Google Scholar 

  • Sobel JM, Streisfeld MA. Strong premating reproductive isolation drives incipient speciation in Mimulus aurantiacus. Evolution. 2015;69:447–61.

    PubMed  Google Scholar 

  • Soria-Carrasco V, Gompert Z, Comeault AA, et al. Stick insect genomes reveal natural Selection’s role in parallel speciation. Science. 2014;344:738–42.

    CAS  PubMed  Google Scholar 

  • Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98:503–17.

    CAS  PubMed  Google Scholar 

  • Sperisen C, Büchler U, Gugerli F, Mátyás G, Geburek T, Vendramin GG. Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol Ecol. 2001;10:257–63.

    CAS  PubMed  Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci U S A. 2005;102:14694–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Straub SCK, Parks M, Weitemier K, et al. Navigating the tip of the genomic icebeg: next-generation sequencing for plant systematics. Am J Bot. 2012;99:349–64.

    CAS  PubMed  Google Scholar 

  • Streiff RE, Labbe TH, Bacilieri RO, Steinkellner HE, Glossl JO, Kremer AN. Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol. 1998;7:317–28.

    Google Scholar 

  • Suren H, Hodgins KA, Yeaman S, et al. Exome capture from the spruce and pine giga-genomes. Mol Ecol Resour. 2016;16:1136–46.

    CAS  PubMed  Google Scholar 

  • Sytsma KJ, Gottlieb LD. Chloroplast DNA evolution and phylogenetic relationships in Clarkia Sect. peripetasma (Onagraceae). Evolution. 1986;40:1248–61.

    CAS  PubMed  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol. 1991;17:1105–9.

    CAS  PubMed  Google Scholar 

  • Taberlet P, Camarra JJ, Griffin S, Uhres E, Hanotte O, Waits LP, Dubois-Paganon C, Burke T, Bouvet J. Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol. 1997;6:869–76.

    CAS  PubMed  Google Scholar 

  • Tollefsrud MM, Kissling R, Gugerli F, Johnsen Ø, Skrøppa T, Cheddadi R, Van der Knaap WO, Latałowa M, TerHürne-Berson RU, Litt T, Geburek T. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol. 2008;17:4134–50.

    CAS  PubMed  Google Scholar 

  • Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. 2010;38:e159.

    PubMed  PubMed Central  Google Scholar 

  • Travis SE, Ritland K, Whitham TG, Keim P. A genetic linkage map of Pinyon pine (Pinus edulis) based on amplified fragment length polymorphisms. Theor Appl Genet. 1998;97:871–80.

    CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313:1596–604.

    CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535–8.

    Google Scholar 

  • Vigilant L, Pennington R, Harpending H, Kocher TD, Wilson AC. Mitochondrial DNA sequences in single hairs from a southern African population. Proc Natl Acad Sci USA. 1989;86:9350–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vignal A, Milan D, San Cristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol. 2002;34:275–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vila C, Leonard JA, Gotherstrom A, et al. Widespread origins of domestic horse lineages. Science. 2001;291:474–7.

    CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner DB, Furnier GR, Saghai-Maroof MA, Williams SM, Dancik BP, Allard RW. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci USA. 1987;84:2097–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280:1077–82.

    CAS  PubMed  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell. 1981;25:793–803.

    CAS  PubMed  Google Scholar 

  • Wendel JF. New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci USA. 1989;86:4132–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski SA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson GA, Strobeck C, Wu L, Coffin JW. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol Ecol. 1997;6:697–9.

    CAS  PubMed  Google Scholar 

  • Yanez JM, Naswa S, Lopez ME, et al. Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation in wild and farmed American and European populations. Mol Ecol Resour. 2016;16:1002–11.

    CAS  PubMed  Google Scholar 

  • Zhou L, Holliday JA. Targeted enrichment of the black cottonwood (Populus trichocarpa) gene space using sequence capture. BMC Genomics. 2012;13:703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Bawa R, Holliday JA. Exome resequencing reveals signatures of demographic and adaptive processes across the genome and range of black cottonwood (Populus trichocarpa). Mol Ecol. 2014;23:2486–99.

    CAS  PubMed  Google Scholar 

  • Zurawski G, Clegg MT. Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol. 1987;38:391–418.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Holliday .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holliday, J.A., Hallerman, E.M., Haak, D.C. (2018). Genotyping and Sequencing Technologies in Population Genetics and Genomics. In: Rajora, O. (eds) Population Genomics. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2017_5

Download citation

Publish with us

Policies and ethics