Advertisement

pp 1-4 | Cite as

Recent Activities of the GGOS Standing Committee on Performance Simulations and Architectural Trade-Offs (PLATO)

  • Benjamin Männel
  • Daniela Thaller
  • Markus Rothacher
  • Johannes Böhm
  • Jürgen Müller
  • Susanne Glaser
  • Rolf Dach
  • Richard Biancale
  • Mathis Bloßfeld
  • Alexander Kehm
  • Iván Herrera Pinzón
  • Franz Hofmann
  • Florian Andritsch
  • David Coulot
  • Arnaud Pollet
Chapter
Part of the International Association of Geodesy Symposia book series

Abstract

The Standing Committee on Performance Simulations and Architectural Trade-Offs (PLATO) was established by the Bureau of Networks and Observations of the Global Geodetic Observing System (GGOS) in order to support – by prior performance analysis – activities to reach the GGOS requirements for the accuracy and stability of the terrestrial reference frame. Based on available data sets and simulated observations for further stations and satellite missions the committee studies the impact of technique-specific improvements, new stations, and additional co-locations in space on reference frame products. Simulation studies carried out so far show the importance of the individual station performance and additional stations for satellite laser ranging, the perspectives for lunar laser ranging assuming additional stations and reflectors, and the significant impact of the new VGOS antennas. Significant progress is achieved in processing VLBI satellite tracking data. New insights in technique-specific error sources were derived based on real data from short baselines. Regarding co-location in space PLATO members confirmed that E-GRASP could fulfill the GGOS requirements with reaching a geocenter and scale accuracy and stability of 1 mm and 0.1 mm/year, respectively.

Keywords

Co-location DORIS GGOS GNSS Reference frames SLR VLBI 

References

  1. Altamimi Z, Rebischung P, Metivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res 121(8):6109–6131. https://doi.org/10.1002/2016JB013098. 2016JB013098Google Scholar
  2. Andritsch F, Grahsl A, Dach R, Jäggi A (2017) Comparing tracking scenarios to LAGEOS and Etalon by simulating realistic SLR observations. In: EGU general assembly, geophysical research abstracts, vol 19. EGU2017-16642Google Scholar
  3. Biancale R, Pollet A, Coulot D, Mandea M (2017) E-GRASP/Eratosthenes: a mission proposal for millimetric TRF realization. In: EGU general assembly, geophysical research abstracts, vol 19. EGU2017-8752Google Scholar
  4. Bloßfeld M, Rudenko S, Kehm A, Panafidina N, Müller H, Angermann D, Hugentobler U, Seitz M (2018) Consistent estimation of geodetic parameters from SLR satellite constellation measurements. J Geod (under review)Google Scholar
  5. Glaser S, König R, Ampatzidis D, Nilsson T, Heinkelmann R, Flechtner F, Schuh H (2017a) A global terrestrial reference frame from simulated VLBI and SLR data in view of GGOS. J Geod 91(7):723–733. https://doi.org/10.1007/s00190-017-1021-2 Google Scholar
  6. Glaser S, König R, Neumayer KH, Nilsson T, Heinkelmann R, Schuh H, Flechtner F (2017b) Simulated multi-technique TRFs for GGOS with focus on enhanced SLR and VLBI ground network architecture. In: IAG-IASPEI 2017, Abstract. G07-2-04Google Scholar
  7. Herrera Pinzón I, Rothacher M (2018) Assessment of local GNSS baselines at fundamental sites. J Geod. https://doi.org/10.1007/s00190-017-1108-9
  8. Hofmann F (2017) Lunar laser ranging - verbesserte Modellierung der Monddynamik und Schätzung relativistischer parameter. PhD thesis, Leibniz Universität Hannover. Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe C,Nr. 797Google Scholar
  9. Hofmann F, Müller J, Biskupek L, Currie D (2014) Benefit of the next generation corner cubes for lunar laser ranging analysis. In: EGU general assembly conference abstracts, vol 16, p 3299Google Scholar
  10. Kehm A, Bloßfeld M, Pavlis E, Seitz F (2017) Future global SLR network evolution and its impact on the terrestrial reference frame. J Geod. https://doi.org/10.1007/s00190-017-1083-1
  11. Pearlman M, Ma C, Neilan R, Noll C, Pavlis E, Saunier J, Schöne T, Barzaghi R, Thaller D, Bergstrand S, Müller J (2017) The GGOS bureau of networks and observations: an update on the space geodesy network and the new implementation plan for 2017-18. In: EGU general assembly, geophysical research abstracts, vol 19. EGU2017-10814-1Google Scholar
  12. Plank L, Hellerschmied A, McCallum J, Böhm J, Lovell J (2017) VLBI observations of GNSS-satellites: from scheduling to analysis. J Geod 91(7):867–880. https://doi.org/10.1007/s00190-016-0992-8 Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Benjamin Männel
    • 1
  • Daniela Thaller
    • 2
  • Markus Rothacher
    • 3
  • Johannes Böhm
    • 4
  • Jürgen Müller
    • 5
  • Susanne Glaser
    • 9
    • 10
  • Rolf Dach
    • 8
  • Richard Biancale
    • 6
  • Mathis Bloßfeld
    • 7
  • Alexander Kehm
    • 7
  • Iván Herrera Pinzón
    • 3
  • Franz Hofmann
    • 5
  • Florian Andritsch
    • 8
  • David Coulot
    • 11
  • Arnaud Pollet
    • 11
  1. 1.GFZ German Research Center for GeosciencesPotsdamGermany
  2. 2.Bundesamt für Kartographie und GeodäsieFrankfurt am MainGermany
  3. 3.Institut für Geodäsie und PhotogrammetrieETH ZürichZurichSwitzerland
  4. 4.Technische Universität WienViennaAustria
  5. 5.Institut fur ErdmessungLeibniz Universität HannoverHanoverGermany
  6. 6.CNES/GRGSToulouseFrance
  7. 7.Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM)MunichGermany
  8. 8.Astronomical Institute of the University of BernBernSwitzerland
  9. 9.Institute of Geodesy and Geoinformation ScienceTechnical University of BerlinBerlinGermany
  10. 10.GFZ German Research Center for GeosciencesPotsdamGermany
  11. 11.IGN/LAREGMarne la ValleeFrance

Personalised recommendations