Skip to main content

Abstract

In this study, we present a global terrestrial reference frame (TRF) from simulated very long baseline interferometry (VLBI) observations. In the time span from 2008 until 2014, 695 standard VLBI rapid turnaround (R1, R4) 24 h-sessions were simulated using a network of 28 globally distributed stations. Within the software VieVS@GFZ, we apply different measurement noise at the observation level and investigate the impact on the TRF and on the Earth rotation parameters. We find that the effect of varying only the noise applied within the simulation is not proportional to the changes in the estimates and their uncertainties. For instance, increasing the noise level from 15 ps to 300 ps increases the uncertainty of the station positions by a factor of 3.5, of station velocities by 5, of polar motion by 3.4, and of UT1-UTC by 1.5. A comparison with the VLBI-TRF derived from real observations within the same time span shows that the solution simulated with a noise level based on the formal errors of real observations is still too optimistic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://lupus.gsfc.nasa.gov/files_IVS-AC/discontinuities.txt.

  2. 2.

    http://hpiers.obspm.fr/webiers/icrf2/icrf2-defining.dat.

  3. 3.

    http://vlbi.obs.u-bordeaux1.fr/index.php.

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Bizouard C, Gambis D (2011) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2008. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf

    Google Scholar 

  • Boehm J, Wresnik J, Pany A (2006) Simulation of wet zenith delays and clocks. Technical report, IVS Memorandum 2006-013v03. ftp://ivscc.gsfc.nasa.gov/pub/memos/ivs-2006-013v03.pdf

  • Boehm J, Boehm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The New Vienna VLBI software VieVS. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet Earth. International Association of Geodesy Symposia, vol 136. Springer, Berlin/Heidelberg, pp 1007–1011. doi:10.1007/978-3-642-20338-1_126

    Chapter  Google Scholar 

  • Collilieux X, Altamimi Z, Argus D, Boucher C, Dermanis A, Haines B, Herring T, Kreemer C, Lemoine F, Ma C, MacMillan D, Mäkinen J, Métivier L, Ries J, Teferle F, Wu X (2014) External evaluation of the terrestrial reference frame: report of the task force of the IAG sub-commission 1.2. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet. International Association of Geodesy Symposia, vol 139, Springer, Berlin/Heidelberg, pp 197–202. doi:10.1007/978-3-642-37222-3_25

    Google Scholar 

  • Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Böckmann S, Bolotin S, Charlot P, Collioud A, Engelhardt G, Gipson J, Gontier AM, Heinkelmann R, Kurdubov S, Lambert S, Lytvyn S, MacMillan DS, Malkin Z, Nothnagel A, Ojha R, Skurikhina E, Sokolova J, Souchay J, Sovers OJ, Tesmer V, Titov O, Wang G, Zharov V (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150(2):58. http://stacks.iop.org/1538-3881/150/i=2/a=58

    Article  Google Scholar 

  • Gross R, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin/Heidelberg, pp 209–224. doi:10.1007/978-3-642-02687-4_7

    Chapter  Google Scholar 

  • Herring TA, Davis JL, Shapiro II (1990) Geodesy by radio interferometry: the application of Kalman filtering to the analysis of very long baseline interferometry data. J Geophys Res Solid Earth 95(B8):12,561–12,581. doi:10.1029/JB095iB08p12561

    Article  Google Scholar 

  • Morel L, Willis P (2005) Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Adv Space Res 36(3):358–368. http://dx.doi.org/10.1016/j.asr.2005.05.113

    Article  Google Scholar 

  • Nilsson T, Haas R (2010) Impact of atmospheric turbulence on geodetic very long baseline interferometry. J Geophys Res Solid Earth 115(B3):b03407. doi:10.1029/2009JB006579

    Article  Google Scholar 

  • Nilsson T, Soja B, Karbon M, Heinkelmann R, Schuh H (2015) Application of Kalman filtering in VLBI data analysis. Earth Planets Space 67(1):1–9. doi:10.1186/s40623-015-0307-y

    Article  Google Scholar 

  • Nothnagel A, International VLBI Service for Geodesy and Astrometry (IVS) et al (2015) The IVS data input to ITRF2014. International VLBI Service for Geodesy and Astrometry, GFZ Data Services. doi:10.5880/GFZ.1.1.2015.002

    Google Scholar 

  • Pany A, Boehm J, MacMillan D, Schuh H, Nilsson T, Wresnik J (2011) Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J Geod 85(1):39–50. doi:10.1007/s00190-010-0415-1

    Article  Google Scholar 

  • Petit G, Luzum B (eds) (2010) IERS Conventions (2010). IERS Technical note, vol 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany

    Google Scholar 

  • Rummel R (2000) Global integrated geodetic and geodynamic observing system (GIGGOS). In: Towards an integrated global geodetic observing system (IGGOS). International Association of Geodesy Symposia, vol 120. Springer, Berlin/Heidelberg, pp 253–260. doi:10.1007/978-3-642-59745-9_53

    Google Scholar 

  • Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. doi:http://dx.doi.org/10.1016/j.jog.2012.07.007

    Google Scholar 

  • Schuh H, König R, Ampatzidis D, Glaser S, Flechtner F, Heinkelmann R, Nilsson TJ (2016) GGOS-SIM: simulation of the reference frame for the global geodetic observing system. Springer, Berlin/Heidelberg, pp 1–6. doi:10.1007/1345_2015_217

    Google Scholar 

  • Tatarski VI (1961) Wave propagation in a turbulent medium. Translated by R.A. Silverman. McGraw-Hill, New York, 285 pp. Science 134(3475):324–325. doi:10.1126/science.134.3475.324-b

    Google Scholar 

  • Treuhaft RN, Lanyi G (1987) The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci 22(2):251–265

    Article  Google Scholar 

  • Zhu S, Reigber C, König R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J Geod 78(1–2):103–108. doi:10.1007/s00190-004-0379-0

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for the financial support within the project “GGOS-SIM” (SCHU 1103/8-1) and the IVS (Nothnagel et al. 2015) for providing the data used within this study. The valuable comments of three anonymous reviewers are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Glaser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Glaser, S. et al. (2016). Simulation of VLBI Observations to Determine a Global TRF for GGOS. In: Freymueller, J.T., Sánchez, L. (eds) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia, vol 147. Springer, Cham. https://doi.org/10.1007/1345_2016_256

Download citation

Publish with us

Policies and ethics