Skip to main content

SPINA Region (South of Iberian Peninsula, North of Africa) GNSS Geodynamic Model

  • Conference paper
  • 832 Accesses

Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA,volume 147)

Abstract

As it is well known, GNSS data analysis is a powerful tool to study geodynamic processes. However, observational methodologies and data analysis results should be adapted to determine local or even regional effects. It is particularly important in tectonic plate boundary areas when looking for subduction zone limits.

When using Continuous GNSS (CGNSS) observing receiver networks, a set of precise topocentric coordinates (e, n, u) for each place, will be available. Furthermore time series formed by the daily positions will produce the sites temporal variations. If those time series are long enough, horizontal components (e, n) use to show linear behaviors if there are no other geodynamic effect affecting the tectonic plates movement. Anyway the height component (u) uses to show periodical but not linear effects. But often time series are disturbed by different processes, as local subsidence, periodic dilatation compression effects, GNSS signal interferences, etc.

This paper shows a detailed topocentric coordinates time series study for sites belonging to what we call the SPINA network, which stands for South of the Iberian Peninsula, North of Africa Region. To avoid the above mentioned local effects, a priori quality control is carefully performed. Solutions are obtained by processed positioning with respect to a IGS reference station and by PPP processing (Precise Point Positioning), using the Bernese software. Results will be compared and combined. Then, a designed methodology, using filter processes, harmonic adjustments and wavelets will be applied. As final product we expect to get horizontal displacement model to describe the regional geodynamic main characteristics.

Keywords

  • Boundary zone tectonic plates
  • Regional crustal deformation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Chattopadhyay AK, Mondal S, Chattopadhyay T (2013) Independent component analysis for the objective classification of globular clusters of the galaxy NGC 5128. Comput Stat Data Anal 57:17–32

    CrossRef  Google Scholar 

  • Dach R, Hugentobler U, Walser P (2011) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Bern

    Google Scholar 

  • Fernandes RMS, Ambrosius BAC, Noomen R, Bastos L, Wortel M, Spakman W, Govers R (2003) The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data. Geophys Res Lett 30(16):1828. doi:10.1029/2003GL017089

    CrossRef  Google Scholar 

  • González PJ, Tiampo KF, Palano M, Cannavó F, Fernández J (2012) The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading. Nat Geosci 5:821–825

    CrossRef  Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    CrossRef  Google Scholar 

  • Khazaradze G, Echeverría A, Asensio E (2014) Present-day crustal deformation field of the Iberian Peninsula estimated by GPS measurements. Física de la Tierra 26:25–46

    CrossRef  Google Scholar 

  • Kierulf HP, Plag HP, Bingley RM, Teferle N, Demir C, Cingoz A, Yildiz H, Garate J, Davila JM, Silva CG, Zdunek R, Jaworski L, Martinez-Benjamin JM, Orus R, Aragon A (2008) Comparison of GPS analysis strategies for high-accuracy vertical land motion. Phys Chem Earth 33:194–204

    CrossRef  Google Scholar 

  • Koulali A, Ouazar D, Tahayt A, King RW, Vernant P, Reilinger RE, McClusky S, Mourabit T, Davila JM, Amraoui N (2011) New GPS constraints on active deformation along the Africa–Iberia plate boundary. Earth Planet Sci Lett 308:211–217

    CrossRef  Google Scholar 

  • Kulkarni MN, Radhakrishnan N, Rai D (2006) Global positioning system in disaster monitoring of Koyna Dam, western Maharashtra. Surv Rev 37(292):490–497

    CrossRef  Google Scholar 

  • Kumar KV, Miyashita K, Jianxin L (2002) Secular crustal deformation in central Japan, based on the wavelet analysis of GPS time-series data. Earth Planets Space 54:133–139

    CrossRef  Google Scholar 

  • Mallat S (2008) A wavelet tour of signal processing. Elsevier, Amsterdam. ISBN: 13:978-0-12-374370-1

    Google Scholar 

  • Mancilla FDL, Stich D, Berrocoso M, Martín R, Morales J, Fernández-Ros A, Páez R, Pérez-Peña A (2013) Delamination in the Betic Range: deep structure, seismicity, and GPS motion. Geology 41(3):307–310

    CrossRef  Google Scholar 

  • Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Ramírez ME, Jiménez Y, González MJ, Berrocoso M, Sánchez-Francisco M (2005) A new data analysis technique in the study of mutual event lightcurves. Astron Astrophys 448:1197–1206

    CrossRef  Google Scholar 

Download references

Acknowledgements

We are thankful to all individuals and institutions contributing to GPS data collection and dissemination. Thanks are due to RAP (IECA, Instituto de Estadística y Cartografía de Andalucía, Junta de Andalucía), REGAM (Consejería de Obras Públicas y ordenación del Territorio, Región de Murcia) and MERISTEMUM (Consejeriá de Agua, Agricultura y Medio Ambiente, Región de Murcia) for the Murcia Region CGPS Networks, ERVA (Generalitat Valenciana) for Valencian Reference Stations Network, IGN (Instituto Geográfico Nacional), IGS (International GNSS Service), ROA (Real Instituto y Observatorio de la Armada) and from Portugal permanent stations by RENEP (Direcção Geral do Território). We would also like to thank Onsala Space Observatory for their calculation of the ocean tide loading parameters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rosado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rosado, B. et al. (2016). SPINA Region (South of Iberian Peninsula, North of Africa) GNSS Geodynamic Model. In: Freymueller, J.T., Sánchez, L. (eds) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia, vol 147. Springer, Cham. https://doi.org/10.1007/1345_2016_252

Download citation