Advertisement

A Method of Airborne Gravimetry by Combining Strapdown Inertial and New Satellite Observations via Dynamic Networks

  • J. Skaloud
  • I. Colomina
  • M. E. Parés
  • M. Blázquez
  • J. Silva
  • M. Chersich
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 147)

Abstract

We revisit the concept of scalar gravity anomaly determination by an airborne strapdown INS–GNSS system. We built on the previously investigated concepts (mainly within 1995–2005 period) while trying to decrease the error spectrum of the system caused by accelerometer biases at lower frequencies and GNSS-position/velocity noise at shorter wavelengths. We propose to determine the random long-term accelerometer bias through combination of −GRACE + GOCE data that provide an unbiased field with 80 km resolution while the decrease in velocity noise is expected by precise-point-positioning (PPP) method that merges satellite-phase observations from GPS and Galileo. In the absence of Galileo constellation we focus our practical demonstration on the gravity-anomaly determination via INS/GNSS data filtering. We present first the modeling of an extended Kalman filter/smoother that determines the gravity anomaly together with the trajectory, which is a preferred method over the cascade determination (i.e. separate estimation of trajectory and specific forces, GNSS acceleration and low-pass filtering of the merged signal). Second, we show how to incorporate the same modeling within the concept of dynamic networks. This approach allows imposing cross-over conditions on the state of gravity anomaly at trajectory intersections while estimating the sensor and trajectory errors at the same time. This is indeed rigorous formulation of the problem that is expected to surpass the conditioning via cross-over adjustment that in previous investigations followed the filtering-smoothing. Despite the remaining challenges of the method of dynamic network caused by large number of parameters (i.e. > 106), we present first assessment of such implementation that was obtained within European FP7 GAL project.

Keywords

Airborne gravimetry Dynamic networks Gravity anomalies INS/GNSS integration 

Notes

Acknowledgements

The research reported in this article was conducted within the “Galileo for Gravity” (GAL) project funded by the European Commission (grant 287193), within the 7th European Programme for Research and Development (FP7), and managed by the European Global Navigation Satellite Systems Agency (GSA). GAL was realized by a consortium lead by the Italian company Galileian Plus.

The contribution of GeoNumerics to this article was partially funded by the Spanish project DINA (Ref. SPTQ120-1X005688XV0, Progama Torres y Quevedo, Ministerio de Economía y Competitividad,Spain).

The first author thanks to Dr. Alex Bruton for providing a data set and programs for the purpose of comparison.

References

  1. Bastos L, Tome P, Cunha T, Cunha S (2000) Gravity anomalies from airborne measurements - experiments using a low cost IMU device. In: The International Association of Geodesy Symposia Serie, Banff, vol 123Google Scholar
  2. Brown J, Niebauer TM, Klopping FJ (2002) Towards a dynamic absolute gravity system. In: Sideris M (ed) International Association of Geodesy Symposia, vol 123. Springer, New York, pp 223–225Google Scholar
  3. Brozena J, Peters M, Salman R (1996) Arctic airborne gravity measurement program. In: IAG symposia GRAGEOMAR, gravity, geoid and marine geodesy, vol 117, pp 131–138CrossRefGoogle Scholar
  4. Bruton A, Glennie C, Schwarz K (1999) Differentiation for high precision GPS velocity and acceleration determination. GPS Solutions 2(4):7–22CrossRefGoogle Scholar
  5. Colomina I, Blazquez M (2004) A unified approach to static and dynamic modeling in photogrammetry and remote sensing. Int Arch Photogramm Remote Sensing Spat Inf Sci 35-B1:178–183Google Scholar
  6. Diez J, Fernández A, D’Angelo P, Caramagno A (2006) GRANADA: a low-cost commercial simulator for GNSS receivers design and evaluation. In: Proceedings of the NAVITEC 2006, Noordjwik, p 8Google Scholar
  7. Ferguson S, Hammada Y (2002) Experiences with AIRGrav: results from a new airborne gravimeter. In: Sideris M (ed) International Association of Geodesy Symposia, vol 123. Springer, New York, pp 211–222Google Scholar
  8. Forsberg R, Olesen A, Keller K (2002) Airborne gravity survey of the north greenland continental shelf. In: Sideris M (ed) International Association of Geodesy Symposia, vol 123. Springer, New York, pp 225–240Google Scholar
  9. Friess P (1990) Kinematische positionsbestimmung fur die aerotriangulation mit dem navstar global positioning system. Ph.D. thesis, TU MunchenGoogle Scholar
  10. Fukushima T (2012) Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers. J Geod 86:271–285CrossRefGoogle Scholar
  11. Gelb A (1988) Applied optimal estimation. The MIT Press, CambridgeGoogle Scholar
  12. Gerlach C, Dorobantu R, Ackermann C, Kjorsvik NS, Boedecker G (2010) Preliminary results of a GPS/INS airborne gravimetry experiment over the german alps. In: Mertikas SP (ed) International Association of Geodesy Symposia, vol 135. Springer, New York, pp 3–9Google Scholar
  13. Gilardoni M, Reguzzoni M, Sampietro D (2013) A least-squares collocation procedure to merge local geoids with the aid of satellite-only gravity models: the Italian/Swiss geoids case study. Boll Geofis Teor Appl 54(4):303–319Google Scholar
  14. Gilardoni M, Reguzzoni M, Sampietro D (2014) Using GOCE to straighten and sew European local geoids: preliminary study and first results. In: Marti U (ed) Gravity, geoid and height systems. International Association of Geodesy Symposia, vol 141. Springer, New York, pp 229–234Google Scholar
  15. Gilardoni M, Reguzzoni M, Sampietro D (2016) GECO: a global gravity model by locally combining GOCE data and EGM2008. Stud Geophys Geod 60:228–247CrossRefGoogle Scholar
  16. Glennie C (1999) Analysis of airborne gravity by SINS/DGPS. INS, gravity, University of CalgaryGoogle Scholar
  17. Glennie C, Schwarz K (1999) A comparison and analysis of airborne gravimetry results from two strapdown inertial/DGPS systems. J Geod 73(6):311–321CrossRefGoogle Scholar
  18. Global Navigation Satellite Systems Agency (2011) GAL: Galileo for gravity. GSA research project FP7-287193Google Scholar
  19. Jones P, Johnson AC (1995) Airborne gravity survey in southern palmer land, antartica. In: IAG symposia G4, IUGG XXI general assembly, Boulder, pp 117–124Google Scholar
  20. Klingele E, Cocard M, Kahle H, Halliday M (1997) Kinematic GPS as a source for airborne gravity reduction: the airborne gravity survey of Switzerland. J Geophys Res 102(B4):7705–7715CrossRefGoogle Scholar
  21. Li X (2011) Strapdown INS/DGPS airborne gravimetry tests in the Gulf of Mexico. J Geod 85:597–605CrossRefGoogle Scholar
  22. Li Y, Schwarz K, Wei M (1994) The spectral window for airborne gravity and geoid determination. In: International symposium on kinematic systems in geodesy, geomatics and navigation (KIS 1994), pp 445–456Google Scholar
  23. Migliaccio F, Reguzzoni M, Sanso F, Tselfes N (2009) An error model for the GOCE space-wise solution by Monte Carlo methods. In: Sideris M (ed) International Association of Geodesy Symposia, vol 133. Springer, New York, pp 337–344Google Scholar
  24. Parés M, Navarro J, Colomina I (2015) On the generation of realistic simulated inertial measurements. In: Proceedings of the DGON 2015 inertial sensors and systems (ISS), KarlsruheGoogle Scholar
  25. Reguzzoni M, Tselfes N (2009) Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis. J Geod 83(1):13–29CrossRefGoogle Scholar
  26. Rouzaud D, Skaloud J (2011) Rigorous integration of inertial navigation with optical sensors by dynamic networks. J Inst Navig 58(2):141–152CrossRefGoogle Scholar
  27. Sampietro D, Mansi AH, Amodio A, Sanso F (2015) Gravity anomalies and geoid undulation from strapdown airborne gravimetry: outcomes from the gal project. In: IAG symposia G2, IUGG general assembly 26, PragueGoogle Scholar
  28. Sampietro D, Capponi M, Triglione D, Mansi A, Marchetti P, Sansò F (2016) GTE: a new software for gravitational terrain effect computation: theory and performances. Pure Appl Geophys 1–19. doi:10.1007/s00024-016-1265-4
  29. Sarjakoski T (1984) On sparse matrix techniques for computing weight coefficient matrices. ISPRS Int Arch Photogramm Remote Sens XXV-A3:932–944Google Scholar
  30. Schwarz K (1987) Approaches to kinematic geodesy. In: Geodetic theory and methodology. Department of Geomatics Engineering, The University of CalgaryGoogle Scholar
  31. Schwarz K, Li Y (1995) What can airborne gravimetry contribute to geoid determination? In: IAG Symposia G4, IUGG XXI general assembly, Boulder, pp 143–152Google Scholar
  32. Seeber G (1993) Satellite geodesy. Walter de Gruyter, BerlinGoogle Scholar
  33. Termens A, Colomina I (2006) Network approach versus state-space approach for strapdown inertial kinematic gravimetry. In: International Association of Geodesy Symposia, vol 131. Springer, New York, pp 107–112Google Scholar
  34. Timmen L, Bastos L, Forsberg R, Gidskehaug A, Meyer U (1999) Airborne gravity surveying for oceanography, geology and geodesy - the experiences from AGMASCO. In: IAG General Assembly, Birmingham. International Association of Geodesy Symposia, vol 121, pp 118–123CrossRefGoogle Scholar
  35. Tome P (2002) Integration of inertial and satellite navigation systems for aircraft attitude determination. Ph.D. thesis, Department of Applied Mathematics, University of PortoGoogle Scholar
  36. Wei M, Schwarz K (1994) An error analysis of airborne vector gravimetry. In: International symposium on kinematic systems in geodesy, geomatics and navigation (KIS 1994)Google Scholar
  37. Wei M, Schwarz K (1998) Flight test results from a strapdown airborne gravity system. J Geod 72:323–332CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. Skaloud
    • 1
  • I. Colomina
    • 2
  • M. E. Parés
    • 3
  • M. Blázquez
    • 2
  • J. Silva
    • 4
  • M. Chersich
    • 5
  1. 1.Geodetic Engineering Laboratory (TOPO)LausanneSwitzerland
  2. 2.GeoNumericsCastelldefelsSpain
  3. 3.CTTCCastelldefelsSpain
  4. 4.DEIMOS EngenhariaLisboaPortugal
  5. 5.ESRI Italia c/o EUCENTREPaviaItaly

Personalised recommendations