Skip to main content

Impact of Groundtrack Pattern of Double Pair Missions on the Gravity Recovery Quality: Lessons from the ESA SC4MGV Project

  • Conference paper
Book cover International Symposium on Earth and Environmental Sciences for Future Generations

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 147))

Abstract

The launch of the GRACE mission brought a broad interest within the geophysical community in monitoring temporal gravity field variations. Due to the limited lifetime of GRACE, several studies have been conducted for the search of optimal GRACE follow-on and future satellite gravity missions. These studies mainly discuss the use of alternative formations like Pendulum, Cartwheel and LISA as well as the double inline pair missions with different orbits as a possible substitute of the current GRACE mission. The double satellite pair configuration in a so-called Bender constellation, however, is currently in the focus of research into time-variable gravity field recovery by future satellite missions, where the primary objective is to achieve higher temporal and spatial resolutions.When looking for optimal double inline missions, one important aspect is the impact of the groundtrack pattern of such missions on the quality of gravity recovery. The investigation of pattern distribution impact on the recovery quality may lead to a better understanding of orbital parameter optimization. This study, in particular, investigates the influence of relative differences between the ascending nodes (longitude) in a double pair mission. The research aims to show how the variations in ascending node difference change the quality of gravity solutions to the large extent. We also show the impact of the time-variable gravity field itself on the error level of the gravity solutions, i.e. how the quality of the gravity field changes simply by changing the signal being sampled, but holding the sampling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anselmi A, Visser PNAM, van Dam T, Sneeuw N, Gruber T, Altès B, Christophe B, Cossu F, Ditmar PG, Murböck M, Parisch M, Renard M, Reubelt T, Sechi G, Texieira da Encarnação JG (2011) Assessment of a next generation gravity mission to monitor the variations of Earth’s gravity field, ESA-contract No. 22643/09/NL/AF, Executive Summary, Thales Alenia Space report SD-RP-AI-0721

    Google Scholar 

  • Bender PL, Wiese DN, Nerem RS (2008) A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proceedings of the third international symposium on formation flying, missions and technologies, pp 1–6. ESA/ESTEC, Noordwijk

    Google Scholar 

  • Ellmer M (2011) Optimization of the orbit parameters of future gravity missions using genetic algorithms. MSc thesis, University of Stuttgart. http://elib.uni-stuttgart.de/opus/volltexte/2012/7122/pdf/Ellmer.pdf

    Google Scholar 

  • Elsaka B (2010) Simulated satellite formation flights for detecting temporal variations of the Earth’s gravity field. PhD thesis, University of Bonn. http://hss.ulb.unibonn.de/2010/2151/2151.htm

  • Elsaka B, Kusche J, Ilk KH (2012) Recovery of the Earth’s gravity field from formation-flying satellites: temporal aliasing issues. Adv Space Res 50(11). doi:10.1016/j.asr.2012.07.016

    Google Scholar 

  • Elsaka B, Raimondo J-C, Brieden Ph, Reubelt T, Kusche J, Flechtner F, Iran Pour S, Sneeuw N, Müller J (2014) Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation. J Geodesy 88(2):31–43. doi:10.1007/s00190-013-0665-9

    Article  Google Scholar 

  • ESA-SC4MGV Study Team with contributions by Iran Pour S, Reubelt T, Sneeuw N, Daras I, Murböck M, Gruber T, Pail R, Weigelt M, van Dam T, Visser P, Texieira da Encarnação J, van den IJssel J, Tonetti S, Cornara S, Cesare S (2015) Assessment of satellite constellations for monitoring the variations in Earth’s gravity field. ESA-SC4MGV project, Final Report

    Google Scholar 

  • Gruber T, Bamber JL, Bierkens MFP, Dobslaw H, Murböck M, Thomas M, van Beek LPH, van Dam T, Vermeersen LLA, Visser PNAM (2011) Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst Sci Data 3:19–35. doi:10.5194/essd-3-19-2011

    Article  Google Scholar 

  • Iran Pour S., Reubelt T, Sneeuw N (2013) Quality assessment of sub-Nyquist recovery from future gravity satellite missions. Adv Space Res 52(5). doi:10.1016/j.asr.2013.05.026

    Google Scholar 

  • NGGM-D Study Team with contributions by Baldesarra M, Brieden P, Danzmann K, Daras I, Doll B, Feili D, Flechtner F, Flury J, Gruber T, Heinzel G, Iran Pour S, Kusche J, Langemann M, Löcher A, Müller J, Müller V, Murböck M, Naeimi M, Pail R, Raimondo J-C, Reiche J, Reubelt T, Sheard B, Sneeuw N (2014) e2motion - Earth system mass transport mission - concept for a next generation gravity field mission. Final Report of Project “Satellite Gravimetry of the Next Generation (DLR NGGM-D)”, Munich 2014. ISBN 978-3-7696-8597-8

    Google Scholar 

  • Savcenko R, Bosch W (2008) EOT08a – empirical ocean tide model from multi-mission satellite altimetry. Report No. 81, Deutsches Geodätisches Forschungsinstitut (DGFI), München

    Google Scholar 

  • Sharifi M, Sneeuw N, Keller W (2007) Gravity recovery capability of four generic satellite formations. In: Kilicoglu A, Forsberg R (eds) Gravity field of the Earth, general command of mapping. ISSN 1300-5790. Special issue 18, pp 211–216

    Google Scholar 

  • Ray R (2008) GOT4.7 (2008) (Private communication), extension of Ray R, A global ocean tide model from Topex/Poseidon altimetry. GOT99.2 NASA Tech Memo 209478, Sept. 1999

    Google Scholar 

  • Reubelt T, Sneeuw N, Iran Pour S, Hirth M, Fichter W, Müller J, Brieden Ph, Flechtner F, Raimondo J-C, Kusche J, Elsaka B, Gruber T, Pail R, Murböck M, Doll B, Sand R, Wang X, Klein V, Lezius M, Danzmann K, Heinzel G, Sheard B, Rasel E, Gilowski M, Schubert C, Schäfer W, Rathke A, Dittus H, Pelivan I (2014) Future gravity field satellite missions. In: Flechtner F, Sneeuw N, Schuh W-D (eds) Observation of the system Earth from space - CHAMP, GRACE, GOCE and future missions. GEOTECHNOLOGIEN Science Report No. 20, Series “Advanced Technologies in Earth Sciences”. Springer, Berlin. ISBN 978-3-642-32134-4

    Google Scholar 

  • van Dam T, Visser P, Sneeuw N, Losch M, Gruber T, Bamber J, Bierkens M, King M, Smit M (2008) Monitoring and modelling individual sources of mass distribution and transport in the Earth system by means of satellites. ESA-contract 20403, Final Report

    Google Scholar 

  • Visser PNAM, Sneeuw N, Reubelt T, Losch M, van Dam T (2010) Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophys J Int 181:789–805

    Google Scholar 

  • Wagner C, McAdoo D, Klokočník J, Kostelecký J (2006) Degradation of geopotential recovery from short repeat-cycle orbits: application to GRACE monthly fields. J Geodesy 80(2):94–103. doi:10.1007/s00190-006-0036-x

    Article  Google Scholar 

  • Weigelt M, Sneeuw N, Schrama EJO, Visser PNAM (2012) An improved sampling rule for mapping geopotential functions of a planet from a near polar orbit. J Geodesy. doi:10.1007/s00190-012-0585-0

    Google Scholar 

  • Wiese DN, Folkner WM, Nerem RS (2009) Alternative mission architectures for a gravity recovery satellite mission. J Geodesy 83:569–581. doi:10.1007/s00190-008-0274-1

    Article  Google Scholar 

  • Wiese DN, Nerem RS, Lemoine FG (2011) Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. J Geodesy 86:81–98. doi:10.1007/s00190-011-0493-8

    Article  Google Scholar 

Download references

Acknowledgements

This study was part of the project “Assessment of Satellite Constellations for Monitoring the Variations in Earth’s Gravity Field (SC4MGV)”. ESA-ESTEC is gratefully acknowledged for funding the project under Contract No. 4000108663/13/NL/MV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Iran Pour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pour, S.I., Weigelt, M., Reubelt, T., Sneeuw, N. (2016). Impact of Groundtrack Pattern of Double Pair Missions on the Gravity Recovery Quality: Lessons from the ESA SC4MGV Project. In: Freymueller, J.T., Sánchez, L. (eds) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia, vol 147. Springer, Cham. https://doi.org/10.1007/1345_2016_228

Download citation

Publish with us

Policies and ethics