Skip to main content

Comparison of Different Techniques for Tropospheric Wet Delay Retrieval Over South America and Surrounding Oceans

  • Conference paper
VIII Hotine-Marussi Symposium on Mathematical Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 142))

Abstract

Water vapour (WV) plays a fundamental role in several weather processes that deeply influence human activities. Satellite based radiometers, Ground based Global Navigation Satellite Systems (GNSS) and Numerical Weather Models (NWM) permit to obtain either measurements or estimates or forecasts of WV. This work presents a 2 years systematic comparison to address the agreement on the tropospheric wet delay retrieved by the three mentioned independent techniques over permanent stations belonging to SIRGAS (Sistema de Referencia para las Américas) GNSS network. SIRGAS tropospheric total delay estimations are compared with the official International GNSS Service (IGS) ones, with the measurements from the Jason-1 satellite radiometer (JMR) in terms of Zenith Wet Delays (ZWD) and, finally, with the ZWD computed from ERA Interim, the last reanalysis dataset from the European Center for Medium-Range Weather Forecasts (ECMWF). All the differences between the techniques, which were considered in order to yield a reliable comparison, are discussed. The statistical results of mean (μ), standard deviation (σ) and correlation (ρ), show that the highest agreement is reached between SIRGAS and IGS products (μ = −0. 5 mm, \(\sigma = 5.6\,\mathrm{mm}\), ρ = 0. 98), whereas slightly worse values are obtained in the comparisons with the JMR measurements (\(\mu = -7.4\,\mathrm{mm}\), \(\sigma = 15.4\,\mathrm{mm}\), ρ = 0. 91), and the ERA Interim data (μ = −1. 5 mm, σ = 16. 6 mm, ρ = 0. 91).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Askne J, Nordius H (1987) Estimation of tropospheric delay for microwave from surface weather data. Rad Sci 22:379–386

    Article  Google Scholar 

  • Berg H (1948) Allgemeine meteorologie. Duemmler, Bonn

    Google Scholar 

  • Bevis M, Businger S, Herring TA et al (1992) GPS meteorology: remote sensing of the atmospheric water vapor using the global positioning system. J Geophys Res 97:15787–15801

    Google Scholar 

  • Bock O, Willis P, Lacarra M, Bosser P. (2010) An inter-comparison of zenith tropospheric delays derived from DORIS and GPS data. Adv Space Res 46(10):1648–1660

    Article  Google Scholar 

  • Böhm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304

    Google Scholar 

  • Brunini C, Sánchez L, Drewes H et al (2012) Improved analysis strategy and accessibility of the SIRGAS reference frame. IAG Symp 136:3–10

    Google Scholar 

  • Buyn S, Bar-Sever Y (2009) A new type of troposphere zenith path delay product of the International GNSS service. J Geod 83:367–373. doi:10.1007/s00190-008-0288-8

    Google Scholar 

  • Calori A, Colosimo G, Crespi M et al (2013) Zenith wet delay retrieval using two different techniques for the South American region and their comparison. IAG Symp 139:59–65. doi:10.1007/978-3-642-37222-3_8

    Google Scholar 

  • Christensen EJ, Haines BJ, Keihm SJ et al (1994) Calibration of TOPEX/POSEIDON at platform harvest. J Geophys Res 99:24465–24485

    Google Scholar 

  • Dach R, Brockmann E, Schaer S et al (2009) GNSS processing at CODE: status report. J Geod 83:353–365. doi:10.1007/s00190-008-0281-2

    Google Scholar 

  • Davis JL, Herring TA, Shapiro II et al (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Google Scholar 

  • Dow JM, Neilan RE, Rizos C, (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83:191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Edwards S, Moore P, King M (2004) Assessment of the Jason-1 and TOPEX/Poseidon microwave radiometer performance using GPS from offshore sites in the North sea. Marine Geod 27:717–727

    Article  Google Scholar 

  • Fernandes MJ, Pires N, Lazáro C et al (2013) Tropospheric delays from GNSS for application in coastal altimetry. Adv Space Res 51:1352–1368. doi:http://dx.doi.org/10.1016/j.asr.2012.04.025

  • Hogg D, Guiraud F, Decker M (1981) Measurement of excess radio-transmission length on earth-space paths. Astron Astrophys 95:304–307

    Google Scholar 

  • Keihm SJ, Janssen MA, Ruf CS et al (1995) TOPEX/Poseidon microwave radiometer (TMR). III. Wet troposphere range correction algorithm and pre-launch error budget. IEEE Trans Geosci Remote Sensing 33(1):147–161

    Google Scholar 

  • Kouba J (2008) Implementing and testing of the gridded Vienna Mapping Function 1 (VMF1). J Geod 82:193–205

    Article  Google Scholar 

  • Kursinski E, Hajj G, Schofield J et al (1997). Observing the Earth’s atmosphere with radio occultation measurements using the global positioning system. J Geophys Res 102:23429–23465

    Google Scholar 

  • Mackern MV, Mateo ML, Robin AM et al (2009) A terrestrial reference frame, coordinates and velocities for South American stations: contributions to Central Andes geodynamics. Adv Geosci 22:181–184

    Google Scholar 

  • Mendes VB, Prates G, Santos L et al (2000) An evaluation of the accuracy of models for the determination of the weighted mean temperature of the atmosphere. In: Proceedings of ION, pp 433–438

    Google Scholar 

  • Mitchell JFB (1989) The greenhouse effect and climate change. Rev Geophys 27:115–139

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101:3227–3246

    Article  Google Scholar 

  • Picot N, Case K, Desai S et al (2003) AVISO and PODAAC User Handbook. IGDR and GDR Jason Products, SMM-MU-M5-OP-13184-CN (AVISO), JPL D-21352 (PODAAC)

    Google Scholar 

  • Rocken C, Van Hove T, Ware R (1997) Near real-time GPS sensing of atmospheric water vapor. Geophys Res Lett 24:3221–3224

    Article  Google Scholar 

  • Ruf CS, Keihm SJ, Subramanya B et al (1994) TOPEX/POSEIDON microwave radiometer performance and in-flight calibration. J Geophys Res 99:24915–24926

    Google Scholar 

  • Saastamoinen J (1972) Contributions to the theory of atmospheric refraction. Bull Gèod 105(1):279–298

    Article  Google Scholar 

  • Teke K, Böhm J, Nilsson T et al (2011) Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J Geod 85:395–413

    Google Scholar 

  • Wentz J, Schabel M (2000) Precise climate monitoring using complementary satellite data sets. Nature 403:414–416. doi:10.1038/35000184

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the three anonymous Reviewers and the Chief Editor for the valuable suggestions that thoroughly helped improving the present work. The authors recognize the fundamental role of the IGS for delivering GNSS data and products to the user community (Dow et al. 2009). ECMWF ERA-Interim data used in this study have been obtained from the ECMWF Data Server. This work was partially supported by Progetto di cooperazione Scientifica e Tecnologica Italia-Argentina 2011–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Calori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Calori, A., Colosimo, G., Crespi, M., Mackern, M.V. (2015). Comparison of Different Techniques for Tropospheric Wet Delay Retrieval Over South America and Surrounding Oceans. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds) VIII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, vol 142. Springer, Cham. https://doi.org/10.1007/1345_2015_6

Download citation

Publish with us

Policies and ethics