Skip to main content

Integrating Geological Prior Information into the Inverse Gravimetric Problem: The Bayesian Approach

  • Conference paper
VIII Hotine-Marussi Symposium on Mathematical Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 142))

Abstract

It is well known that the inverse gravimetric problem is generally ill-posed and therefore its solution requires some restrictive hypotheses and strong numerical regularization. However, if these initial assumptions are improperly used, the final results could be theoretically and physically admissible but far from the actual mass density distribution. In this work, a Bayesian approach to estimate the mass density distribution from gravity data coupled with a-priori geological information is presented. It requires to model the masses in voxels, each of them characterized by two random variables: one is a discrete label defining the type of material (or the geological unit), the other is a continuous variable defining the mass density (considered constant inside the single voxel). The a-priori geological information is translated in terms of this model, providing for each class of material the mean density and the corresponding variability and for each voxel the a-priori most probable label. Basically the method consists in a simulated annealing aided by a Gibbs sampler with the aim to find the MAP (maximum a posteriori) of the posterior probability distribution of labels and densities given the observations and the a-priori geological model. Some proximity constrains between labels of adjacent voxels are also introduced into the solution.

The proposed Bayesian method is here tested on two simulated scenarios. In particular the first is an example of bathymetry recovering, while the second a salt dome shape estimation. These experiments show the capability of the method to correct the possible inconsistencies between the a-priori geological model and the gravity observations: 86% and 60% of wrong voxels have been corrected in the first and second test respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azencott R (1988) Simulated annealing. Seminaire Bourbaki 30:223–237

    Google Scholar 

  • Barbosa VCF, Silva JBC (1994) Generalized compact gravity inversion. Geophysics 59(1):57–68

    Article  Google Scholar 

  • Barbosa VCF, Silva JBC, Medeiros WE (1997) Gravity inversion of basement relief using approximate equality constraints on depths. Geophysics 62(6):1745–1757

    Article  Google Scholar 

  • Barbosa VCF, Silva JBC, Medeiros WE (1999) Gravity inversion of a discontinuous relief stabilized by weighted smoothness constraints on depth. Geophysics 64(5):1429–1437

    Article  Google Scholar 

  • Bayes T (1984) An essay toward solving a problem in the doctrine of chances. Philos Trans R Soc Lond 53:370–418

    Article  Google Scholar 

  • Bosch M (1999) Lithologic tomography: from plural geophysical data to lithology estimation. J Geophys Res Solid Earth 104(B1):749–766

    Article  Google Scholar 

  • Bosch M (2004) The optimization approach to lithological tomography: combining seismic data and petrophysics for porosity prediction. Geophysics 69(5):1272–1282

    Article  Google Scholar 

  • Bosch M, McGaughey J (2001) Joint inversion of gravity and magnetic data under lithologic constraints. Lead Edge 20(8):877–881

    Article  Google Scholar 

  • Bosch M, Meza R, Jiménez R, Hönig A (2006) Joint gravity and magnetic inversion in 3D using Monte Carlo methods. Geophysics 71(4):G153–G156

    Article  Google Scholar 

  • Box GEP, Tiao GC (2011) Bayesian inference in statistical analysis. Wiley, New York

    Google Scholar 

  • Caratori Tontini F, Cocchi L, Carmisciano C (2009) Rapid 3-D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy). J Geophys Res Solid Earth 114(B2):1978–2012

    Google Scholar 

  • Casella G, Robert CP (1999) Monte Carlo statistical methods. Springer, New York

    Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res Solid Earth 100(B6):9761–9788

    Article  Google Scholar 

  • De Lacy MC, Sansò F, Rodriguez-Caderot G, Gil AJ (2002) The Bayesian approach applied to GPS ambiguity resolution. A mixture model for the discrete-real ambiguities alternative. J Geodesy 76(2):82–94

    Google Scholar 

  • Fedi M (2006) DEXP: a fast method to determine the depth and the structural index of potential fields sources. Geophysics 72(1):I1–I11

    Article  Google Scholar 

  • Fedi M, Rapolla A (1999) 3-D inversion of gravity and magnetic data with depth resolution. Geophysics 64(2):452–460

    Article  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI-6:721–741

    Article  Google Scholar 

  • Gordon AC, Mohriak WU, Barbosa VCF (2012) Crustal architecture of the Almada Basin, NE Brazil: an example of a non-volcanic rift segment of the South Atlantic passive margin. Geol Soc Lond Spec Publ 369:215–234

    Article  Google Scholar 

  • Guillen A, Menichetti V (1984) Gravity and magnetic inversion with minimization of a specific functional. Geophysics 49(8):1354–1360

    Article  Google Scholar 

  • Guillen A, Calcagno P, Courrioux G, Joly A, Ledru P (2008) Geological modelling from field data and geological knowledge: part II. Modelling validation using gravity and magnetic data inversion. Phys Earth Planet In 171(1):158–169

    Article  Google Scholar 

  • Last BJ, Kubik K (1983) Compact gravity inversion. Geophysics 48(6):713–721

    Article  Google Scholar 

  • Medeiros WE, Silva JBC (1996) Geophysical inversion using approximate equality constraints. Geophysics 61(6):1678–1688

    Article  Google Scholar 

  • Mosegaard K, Tarantola A (2002) Probabilistic approach to inverse problems. Int Geophys 81:237–265

    Article  Google Scholar 

  • Nagihara S, Hall SA (2001) Three-dimensional gravity inversion using simulated annealing: constraints on the diapiric roots of allochthonous salt structures. Geophysics 66(5):1438–1449

    Article  Google Scholar 

  • Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31(2):362–371

    Article  Google Scholar 

  • Parker RL (1973) The rapid calculation of potential anomalies. Geophys J R Astron Soc 31(4):447–455

    Article  Google Scholar 

  • Parker RL (1975) The theory of ideal bodies for gravity interpretation. Geophys J Int 42(2):315–334

    Article  Google Scholar 

  • Roy L, Sen MK, Blankenship DD, Stoffa PL, Richter TG (2005) Inversion and uncertainty estimation of gravity data using simulated annealing: an application over Lake Vostok, East Antarctica. Geophysics 70(1):J1–J12

    Article  Google Scholar 

  • Rozanov YA (1982) Markov random fields. Springer, New York

    Book  Google Scholar 

  • Sampietro D, Sansò F (2012) Uniqueness theorems for inverse gravimetric problems. IAG Symp 137:111–115

    Google Scholar 

  • Sansò F, Reguzzoni M, Triglione D (2011) Metodi Monte Carlo e delle Catene di Markov: una introduzione (in Italian). Maggioli Editore.

    Google Scholar 

  • Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J R Stat Soc Ser B (Methodological) 55(1):3–23

    Google Scholar 

  • Tarantola A (2002) Inverse problem theory: methods for data fitting and model parameter estimation. Elsevier Science, Amsterdam

    Google Scholar 

  • Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys 50(3):150–170

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions that contributed to improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rossi, L., Reguzzoni, M., Sampietro, D., Sansò, F. (2015). Integrating Geological Prior Information into the Inverse Gravimetric Problem: The Bayesian Approach. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds) VIII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, vol 142. Springer, Cham. https://doi.org/10.1007/1345_2015_57

Download citation

Publish with us

Policies and ethics