IAG 150 Years pp 117-123 | Cite as

Impact of Antenna Phase Centre Calibrations on Position Time Series: Preliminary Results

  • D. Sidorov
  • F. N. Teferle
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 143)

Abstract

Advances in GPS error modelling and the continued effort of re-processing have considerably decreased the scatter in position estimates over the last decade. The associated reduction of noise in derived position time series has revealed the presence of previously undetected periodic signals. It has been shown that these signals have frequencies related to the orbits of the GPS satellites. A number of potential sources for these periodicities at the draconitic frequency and its harmonics have already been suggested in the literature and include, e.g., errors in the sub-daily tidal models, multipath and unresolved integer ambiguities. Due to the geometrical relationship between the observing site and the orbiting satellite, deficiencies in the modelling of electromagnetic phase centres of receiving antennas have the potential to also contribute to the discovered periodic signals. The change from relative to absolute type mean antenna/radome calibrations within the International GNSS Service (IGS) led to a significant improvement, but the use of individual calibrations could possibly add further refinements to computed solutions. However, at this stage providing individual calibrations for all IGS stations is not feasible. Furthermore, antenna near-field electromagnetic effects might outweigh the benefits of individual calibrations once an antenna is permanently installed. In this study, we investigate the differences between position estimates obtained using individual and type mean antenna/radome calibrations as used by the IGS community. We employ position time series derived from precise point positioning (PPP) as implemented in two scientific GNSS software packages. Our results suggest that the calibration differences propagate directly into the position estimates, affecting both sub-daily and daily results and yielding periodic variations. The sub-daily variations have periods close to half a sidereal day and one sidereal day with peak-to-peak amplitudes of up to 10 mm in all position components. The stacked power spectra of the daily difference time series reveal peaks at the GPS draconitic frequency and its harmonics with peak-to-peak amplitudes of up to 1 mm. Although these results are still preliminary, they confirm that small differences between individual and type mean antenna/radome calibrations propagate into position time series and may be partly responsible for the spurious signals with draconitic frequency and its harmonics.

Keywords

Antenna phase centre calibration Global positioning system GPS draconitic year Spurious signals 

References

  1. Bilich A, Mader GL (2010) GNSS absolute antenna calibration at the National Geodetic Survey. In: Proceedings of ION GNSS 2010, Portland, pp 1369–1377Google Scholar
  2. BSWteam (2012) BSW electronic mail #0310. Release of the new Bernese version 5.2. ftp://ftp.unibe.ch/aiub/bswmail/bswmail.0310
  3. Collilieux X, Métivier L, Altamimi Z, van Dam T, Ray J (2011) Quality assessment of GPS reprocessed terrestrial reference frame. GPS Solutions 15(3):219–231. doi:10.1007/s10291-010-0184-6CrossRefGoogle Scholar
  4. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern. http://www.bernese.unibe.ch/docs50/DOCU50.pdf
  5. Dilßner F, Seeber G, Wübbena G, Schmitz M (2008) Impact of near-field effects on the GNSS position solution. In: Proceedings of ION GNSS 2008, Savannah, pp 612–624Google Scholar
  6. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3CrossRefGoogle Scholar
  7. Görres B, Campbell J, Becker M, Siemes M (2006) Absolute calibration of GPS antennas: laboratory results and comparison with field and robot techniques. GPS Solutions 10(2):136–145. doi:10.1007/s10291-005-0015-3CrossRefGoogle Scholar
  8. Griffiths J, Ray JR (2013) Sub-daily alias and draconitic errors in the IGS orbits. GPS Solutions 17(3):413–422. doi:10.1007/s10291-012-0289-1CrossRefGoogle Scholar
  9. King MA, Watson CS (2010) Long GPS coordinate time series: multipath and geometry effects. J Geophys Res 115(B4):B04403. doi:10.1029/2009JB006543CrossRefGoogle Scholar
  10. King MA, Bevis M, Wilson T, Johns B, Blume F (2012) Monument-antenna effects on GPS coordinate time series with application to vertical rates in Antarctica. J Geod 86(1):53–63. doi:10.1007/s00190-011-0491-xCrossRefGoogle Scholar
  11. Penna NT, King MA, Stewart MP (2007) GPS height time series: short-period origins of spurious long-period signals. J Geophys Res 112(B2):B02402. doi:10.1029/2005JB004047CrossRefGoogle Scholar
  12. Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solutions 12(1):55–64. doi:10.1007/s10291-007-0067-7CrossRefGoogle Scholar
  13. Rodriguez-Solano CJ, Hugentobler U, Steigenberger P, Lutz S (2012) Impact of Earth radiation pressure on GPS position estimates. J Geod 86(5):309–317. doi:10.1007/s00190-011-0517-4CrossRefGoogle Scholar
  14. Scargle JD (1982) Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853. doi:10.1086/160554CrossRefGoogle Scholar
  15. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi:10.1007/s00190-007-0148-yCrossRefGoogle Scholar
  16. Springer TA (2009) NAPEOS - mathematical models and algorithms. Technical report, DOPS-SYS-TN-0100-OPS-GN, issue 1.0, ESA-ESOC. ftp://dgn6.esoc.esa.int/napeos/DOPS-SYS-TN-0100-OPS-GN-MathModels.pdf
  17. Steigenberger P, Hugentobler U, Schmid R, Hessels U, Klügel T, Seitz M (2013) GPS-specific local effects at the geodetic observatory Wettzell. In: Altamimi Z, Collilieux X (eds) Reference frames for applications in geosciences. IAG symposia, vol 138, pp 125–130. doi:10.1007/978-3-642-32998-2_20CrossRefGoogle Scholar
  18. Stewart MP, Penna NT, Lichti DD (2005) Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares. J Geod 79(8):479–489. doi:10.1007/s00190-005-0478-6CrossRefGoogle Scholar
  19. Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114(B9):B09403. doi:10.1029/2009JB006344CrossRefGoogle Scholar
  20. Wübbena G, Schmitz M, Boettcher G, Schumann C (2006) Absolute GNSS antenna calibration with a robot: repeatability of phase variations, calibration of GLONASS and determination of carrier-to-noise pattern. In: Proceedings of IGS workshop 2006: perspectives and visions for 2010 and beyond, DarmstadtGoogle Scholar
  21. Zeimetz P, Kuhlmann H (2008) On the accuracy of absolute GNSS antenna calibration and the conception of a new anechoic chamber. In: Integrating generations, FIG working week 2008,StockholmGoogle Scholar
  22. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. doi:10.1029/96JB03860CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • D. Sidorov
    • 1
    • 2
  • F. N. Teferle
    • 1
  1. 1.Geophysics LaboratoryUniversity of LuxembourgLuxembourg CityLuxembourg
  2. 2.Astronomical InstituteUniversity of BernBernSwitzerland

Personalised recommendations