Skip to main content

Validation of GOCE/GRACE Satellite Only and Combined Global Geopotential Models Over Greece in the Frame of the GOCESeaComb Project

Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA,volume 143)

Abstract

The GOCESeaComb project, funded by ESA in the frame of the PRODEX program, aims to utilize GOCE data within combination schemes in order to achieve high-quality and accuracy predictions related to Earth’s gravity field, sea level and dynamic ocean topography. In this work the results from the detailed validation of the latest GOCE, GOCE/GRACE and combined global geopotential models are presented referring to the fourth release of the models and the various strategies (TIM, DIR, GOCO, EIGEN-S/c) employed for their determination. The validation is performed following two approaches. The first one refers to the evaluation of the GGMs signal and error in the form of the provided degree and error variances. The second refers to an external evaluation of the GGMs against local gravity, GPS/Leveling data and deflections of the vertical. In this validation step we follow a spectral enhancement approach of GOCE GGMs, where EGM08 is used to fill-in the medium and high-frequency content along with RTM effects for the high and ultra high part. From the evaluation with GPS/Levelling benchmarks, it is concluded that the GOCE/GRACE GGMs provide improved accuracies compared to EGM2008 by about 2 cm in the spectral range between d/o 120–230. Finally, GOCE/GRACE GGMs manage to provide the same, as EGM2008, level of reduction to the local gravity anomalies, with a standard deviation at the 6.1–6.2 mGal level and marginally better residuals, at the sub-arcsec level in the reduction of deflections of the vertical.

Keywords

  • Deflections of the vertical
  • Global geopotential models
  • GOCE
  • GPS/Levelling BMs
  • Gravity
  • Validation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/1345_2015_160
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-30895-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  • Albertella A, Savcenko R, Janjić T, Rummel R, Bosch W, Schröter J (2012) High resolution dynamic ocean topography in the Southern Ocean from GOCE. Geophys J Int 190:922–930

    CrossRef  Google Scholar 

  • Bruinsma SL, Förste C, Abrikosov O, Marty J-C, Rio M-H, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40:3607–3612. doi:10.1002/grl.50716

    CrossRef  Google Scholar 

  • Ekman M (1989) Impacts of geodynamic phenomena on systems for height and gravity. Bull Geod 63(3):281–296

    CrossRef  Google Scholar 

  • Förste C et~al. (2012) A preliminary update of the Direct approach GOCE Processing and a new release of EIGEN-6C. Presented at the AGU Fall Meeting 3–7 Dec 2012 San Francisco, Abstract No. G31B-0923

    Google Scholar 

  • Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85(11):845–860

    CrossRef  Google Scholar 

  • Gruber T, Gerlach C, Haagmans R (2012) Intercontinental height datum connection with GOCE and GPS-levelling data. J Geod Sci 2(4):270–280. doi:10.2478/v10156-012-0001-y

    Google Scholar 

  • Hayden T, Amjadiparvar B, Rangelova E, Sideris MG (2012) Evaluation of W0 in Canada using tide gauges and GOCE gravity field models. J Geod Sci 2(4):257–269. doi:10.2478/v10156-012-0008-4

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical Geodesy. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J Geod 85(10):723–740

    CrossRef  Google Scholar 

  • Knudsen P, Bingham R, Andersen OB, Rio M-H (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85(11):861–879

    CrossRef  Google Scholar 

  • Pail R et al (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi:10.1029/2010GL044906

    CrossRef  Google Scholar 

  • Pail R et al (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843

    CrossRef  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. doi:10.1029/2011JB008916

    CrossRef  Google Scholar 

  • Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. Deutsche Geodätische Kommission Reihe C (Heft 527). Verlag der Bayerischen Akademie der Wissenschaften, München, p 117 ISBN (Print) 3-7696-9566-6, ISSN 0065-5325

    Google Scholar 

  • Somieski A-E (2008) Astrogeodetic geoid and isostatic consideration in the North Aegean Sea, Greece. Dissertation for the Degree of Doctor of Philosophy, ETHZ, Dissert ETH No 17790. doi:10.3929/ethz-a-005710420

  • Šprlák M, Gerlach C, Pettersen PR (2012) Validation of GOCE global gravity field models using terrestrial gravity data in Norway. J Geod Sci 22:134–143

    Google Scholar 

  • Tziavos IN (1987) Determination of geoidal heights and deflections of the vertical for the Hellenic area using heterogeneous data. Bul Géod 61:177–197

    CrossRef  Google Scholar 

  • Tziavos IN, Vergos GS, Grigoriadis VN (2010) Investigation of topographic reductions and aliasing effects to gravity and the geoid over Greece based on various digital terrain models. Surv Geophys 31(3):23–67. doi:10.1007/s10712-009-9085-z

    CrossRef  Google Scholar 

  • Tziavos IN, Vergos GS, Mertikas SP, Daskalakis A, Grigoriadis VN, Tripolitsiotis A (2013) The contribution of local gravimetric geoid models to the calibration of satellite altimetry data and an outlook of the latest GOCE GGM performance in GAVDOS. Adv Space Res 51(8):1502–1522. doi:10.1016/j.asr.2012.06.013

    CrossRef  Google Scholar 

  • Vergos GS, Tziavos IN, Sideris MG (2006) On the validation of CHAMP- and GRACE-type EGMs and the construction of a combined model. Geod Cartogr 55(3):115–131

    Google Scholar 

  • Vergos GS, Grigoriadis VN, Tziavos IN, Kotsakis C (2014) Evaluation of GOCE/GRACE Global Geopotential Models over Greece with collocated GPS/Levelling observations and local gravity data. In: Marti U (ed) Gravity, geoid and height systems, International Association of Geodesy Symposia, Vol 141. Springer, Switzerland, pp.~85–92. doi:10.1007/978-3-319-10837-7_11

Download references

Acknowledgements

The authors wish to acknowledge the funding provided for this work by the European Space Agency in the frame of the ESA-PRODEX GOCESeaComb project (C4000106380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Tziavos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tziavos, I.N., Vergos, G.S., Grigoriadis, V.N., Tzanou, E.A., Natsiopoulos, D.A. (2015). Validation of GOCE/GRACE Satellite Only and Combined Global Geopotential Models Over Greece in the Frame of the GOCESeaComb Project. In: Rizos, C., Willis, P. (eds) IAG 150 Years. International Association of Geodesy Symposia, vol 143. Springer, Cham. https://doi.org/10.1007/1345_2015_160

Download citation