IAG 150 Years pp 651-656 | Cite as

Metrology for Long Distance Surveying: A Joint Attempt to Improve Traceability of Long Distance Measurements

Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 143)


Based on the current state of technology, distance measurements over a few hundred metres in air with relative uncertainties significantly better than 10−6 are still an almost impossible challenge. In the European Joint Research Project (JRP) “Metrology for long distance surveying” measurement uncertainties in GNSS-based and optical distance metrology are going to be thoroughly investigated, novel technologies and primary standards developed and guidelines to improve surveying practice in the field worked out. A better understanding and a decrease of measurement uncertainty is also targeted for the critical local tie measurement at geodetic fundamental stations.


Calibration EDM GNSS Local ties Long distance Reference baseline 



The research project described in this paper is funded within the European Metrology Research Programme (EMRP) as JRP SIB60 Surveying. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.


  1. Brunner F, Lienhardt W (2012) Anwendung der “local scale parameter method (LSPM)” bei der vermessung von basislinien. AVN 119(08–09):363–368Google Scholar
  2. Brunner F, Rüeger JM (1992) Theory of the local scale parameter method for EDM. Bull Geod 66:355–364CrossRefGoogle Scholar
  3. Ciddor PE (1996) Refractive index of air: new equations for the visible and near infrared. Appl Opt 35(9):1566–1573CrossRefGoogle Scholar
  4. Ciddor PE, Hill RJ (1999) Refractive index of air. 2. Group index. Appl Opt 38(9):1663–1667CrossRefGoogle Scholar
  5. Colosimo G, Crespi M, Mazzoni A, Jones M, Missiaen D (2011) Determination of the CNGS global geodesy. OPERA Public Note 132:1–7Google Scholar
  6. Giacomo P (1984) News from the BIPM. Metrologia 20(1):25CrossRefGoogle Scholar
  7. Görres B (2010) Ist das GNSS–Antennenproblem gelöst? Zeitschrift für Vermessungswesen zfv 135(4):256–267Google Scholar
  8. Gross R, Beutler G, Plag H (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Plag HP, Pearlman M (eds) Global geodetic observing system meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin/Heidelberg, pp 209–224Google Scholar
  9. Heunecke O (2012) Auswertung des Ringversuchs auf der neuen Kalibrierbasis der UniBw München zur Bestimmung der Sollstrecken. AVN 2012(11–12):380–385Google Scholar
  10. Hieta T, Merimaa M, Vainio M, Seppä J, Lassila A (2011) High-precision diode-laser-based temperature measurement for air refractive index compensation. Appl Opt 50(31):5990–5998CrossRefGoogle Scholar
  11. ISO (2012) Optics and optical instruments – field procedures for testing geodetic and surveying instruments – Part 4: electro-optical distance meters (EDM instruments to reflectors).
  12. JCGM (2008) Evaluation of measurement data - guide to the expression of uncertainty in measurement, 1st edn. JCGM 100:2008.
  13. Jokela J, Häkli P (2010) Interference measurements of the Nummela standard baseline in 2005 and 2007. Publications of the Finnish Geodetic Institute, vol 144. Finnish Geodetic Institute, KirkkonummiGoogle Scholar
  14. Jokela J, Häkli P, Poutanen M, Kallio U, Ahola J (2012) Improving length and scale traceability in local geodynamical measurements. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet Earth, international association of geodesy symposia, vol 136. Springer, Berlin/Heidelberg, pp 59–66Google Scholar
  15. JRP SIB60 Consortium (2013) JRP surveying project webpage. Accessed 20 Dec 2013
  16. Koivula H, Häkli P, Jokela J, Buga A, Putrimas R (2012) GPS metrology: bringing traceable scale to a local crustal deformation GPS network. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet Earth, international association of geodesy symposia, vol 136. Springer, Berlin/Heidelberg, pp 105–112Google Scholar
  17. Méchain M, Delambre M (1806) Base de système métrique decimal ou mesure de l’arc du meridian compris entre les parallèles de Dunkerque et Barcelone, execute en 1792 et années suivantes. Suite des Mémoires de l’institute, Tome PremierGoogle Scholar
  18. Meiners-Hagen K, Pollinger F (2012) Rückführbare Messung langer Distanzen in der PTB - Traceable measurements of long distances in the PTB. AVN 118(08–09):283–290Google Scholar
  19. Milne GA, Davis JL, Mitrovica JX, Scherneck HG, Johansson JM, Vermeer M, Koivula H (2001) Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291(5512):2381–2385CrossRefGoogle Scholar
  20. Nocquet J, Walpersdorf A, Jouanne F, Masson F, Chéry J, Vernant P (2011) Slow deformation in the western alps from a decade of continuous GPS measurements. In: Proceedings of 3rd international colloquium - scientific and fundamental aspects of the Galileo programme, Copenhagen, 31 August–2 September 2011Google Scholar
  21. Plag H, Pearlman M (eds) (2009) Global geodetic observing system meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin/HeidelbergGoogle Scholar
  22. Pollinger F, Meyer T, Beyer J, Doloca NR, Schellin W, Niemeier W, Jokela J, Häkli P, Abou-Zeid A, Meiners-Hagen K (2012) The upgraded PTB 600 m baseline: a high-accuracy reference for the calibration and the development of long distance measurement devices. Meas Sci Technol 23(9):094018CrossRefGoogle Scholar
  23. Rothacher M, Beutler G, Behrend D, Donellan A, Hinderer J, Ma C, Noll C, Oberst J, Pearlman M, Plag HP, Richter B, Schöne T, Tavernier G, Woodworth PL (2009) The future global geodetic observing system. In: Plag HP, Pearlman M (eds) Global geodetic observing system meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin/Heidelberg, pp 237–273Google Scholar
  24. Rüeger JM (1996) Electronic distance measurement –an introduction, 4th edn. Springer, BerlinCrossRefGoogle Scholar
  25. Seeber G (2003) Satellite geodesy, 2nd edn. Walter de Gruyter, Berlin/New YorkCrossRefGoogle Scholar
  26. Wallerand JP, Abou-Zeid A, Badr T, Balling P, Jokela J, Kugler R, Matus M, Merimaa M, Poutanen M, Prieto E, van den Berg S, Zucco M (2008) Towards new absolute long distance measurement in air. In: NCSL International Workshop and Symposium, OrlandoGoogle Scholar
  27. Weinbach U, Schön S (2011) GNSS receiver clock modeling when using high-precision oscillators and its impact on PPP. Adv Space Res 47(2):229–238CrossRefGoogle Scholar
  28. Weiss A, Hennes M, Rotach M (2001) Derivation of the refractive index and temperature gradiens from optical scintillometry to correct atmospherically induced errors for highly precise geodetic measurements. Surv Geophys 22:589–596CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Physikalisch-Technische Bundesanstalt (PTB)BraunschweigGermany
  2. 2.Instituto Nazionale di Ricerca Metrologica (INRIM)TorinoItaly
  3. 3.SP Technical Research Institute of SwedenBoråsSweden
  4. 4.University of BonnInstitute of Geodesy and GeoinformationBonnGermany
  5. 5.Finnish Geodetic InstitutePL 15, Geodeetinrinne 202431 MasalaFinland
  6. 6.National Scientific Centre “Institute of Metrology” (NSC-IM)KharkovUkraine
  7. 7.Centre for Metrology and Accreditation (MIKES)EspooFinland
  8. 8.Technische Universität BraunschweigInstitut für Geodäsie und PhotogrammetrieBraunschweigGermany
  9. 9.Instituto Português da Qualidad (IPQ)Rua António Gia̋o 2CaparicaPortugal
  10. 10.Leibniz Universität HannoverInstitut für ErdmessungHannoverGermany
  11. 11.National Metrology Institute VSLThijsseweg 11JA DelftThe Netherlands
  12. 12.Conservatoire National des Arts et Métiers (CNAM)ParisFrance

Personalised recommendations