Skip to main content

Virtual Quake: Statistics, Co-seismic Deformations and Gravity Changes for Driven Earthquake Fault Systems

  • Conference paper
  • First Online:
International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH)

Abstract

With the ever increasing number of geodetic monitoring satellites, it is vital to have a variety of geophysical simulations produce synthetic datasets. Furthermore, just as hurricane forecasts are derived from the consensus among multiple atmospheric models, earthquake forecasts cannot be derived from a single comprehensive model. Here we present the functionality of Virtual Quake (formerly known as Virtual California), a numerical simulator that can generate sample co-seismic deformations, gravity changes, and InSAR interferograms in addition to producing probabilities for earthquake scenarios.Virtual Quake is now hosted by the Computational Infrastructure for Geodynamics. It is available for download and comes with a user manual. The manual includes a description of the simulator physics, instructions for generating fault models from scratch, and a guide to deploying the simulator in a parallel computing environment. http://geodynamics.org/cig/software/vq/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaimov S, Turcotte D, Shcherbakov R, Rundle J, Yakovlev G, Goltz C, Newman W (2008) Earthquakes: recurrence and interoccurrence times. Pure Appl Geophys 165(3–4):777–795

    Article  Google Scholar 

  • Donnellan A, Rundle J, Fox G, McLeod D, Grant L, Tullis T, Pierce M, Parker J, Lyzenga G, Granat R, Glasscoe M (2006) Quakesim and the solid Earth research virtual observatory. Pure Appl Geophys 163(11–12): 2263–2279

    Article  Google Scholar 

  • Hayes TJ, Tiampo KF, Rundle JB, Fernández J (2006) Gravity changes from a stress evolution earthquake simulation of California. J Geophys Res Solid Earth 111(B9)

    Google Scholar 

  • Heien E, Sachs M (2012) Understanding long-term earthquake behavior through simulation. Comput Sci Eng 14(5):10–20

    Article  Google Scholar 

  • Heki K, Matsuo K (2010) Coseismic gravity changes of the 2010 earthquake in central chile from satellite gravimetry. Geophys Res Lett 37(24)

    Google Scholar 

  • Holliday J, Graves W, Rundle J, Turcotte D (2014) Computing earthquake probabilities on global scales. Pure Appl Geophys. doi: 10.1007/ s00024-014-0951-3

    Google Scholar 

  • Matsuo K, Heki K (2011) Coseismic gravity changes of the 2011 tohoku-oki earthquake from satellite gravimetry. Geophys Res Lett 38(7)

    Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82(2):1018–1040

    Google Scholar 

  • Okubo S (1992) Gravity and potential changes due to shear and tensile faults in a half-space. J Geophys Res Solid Earth 97(B5):7137–7144

    Article  Google Scholar 

  • Rundle JB (1988a) A physical model for earthquakes: 1. Fluctuations and interactions. J Geophys Res Solid Earth 93(B6):6237–6254

    Article  Google Scholar 

  • Rundle JB (1988b) A physical model for earthquakes: 2. Application to southern California. J Geophys Res Solid Earth 93(B6):6255–6274

    Article  Google Scholar 

  • Rundle JB, Klein W, Tiampo K, Gross S (2000) Linear pattern dynamics in nonlinear threshold systems. Phys Rev E 61:2418–2431

    Article  Google Scholar 

  • Rundle JB, Rundle PB, Donnellan A, Turcotte DL, Shcherbakov R, Li P, Malamud BD, Grant LB, Fox GC, McLeod D, Yakovlev G, Parker J, Klein W, Tiampo KF (2005) A simulation-based approach to forecasting the next great San Francisco earthquake. Proc Natl Acad Sci USA 102(43): 15363–15367

    Article  Google Scholar 

  • Rundle JB, Rundle PB, Donnellan A, Li P, Klein W, Morein G, Turcotte D, Grant L (2006a) Stress transfer in earthquakes, hazard estimation and ensemble forecasting: inferences from numerical simulations. Tectonophysics 413(1–2):109–125

    Article  Google Scholar 

  • Rundle P, Rundle J, Tiampo K, Donnellan A, Turcotte D (2006b) Virtual California: fault model, frictional parameters, applications. In: Computational earthquake physics: simulations, analysis and infrastructure, part I. Pageoph topical volumes. Birkhäuser-Verlag, Basel, pp 1819–1846

    Google Scholar 

  • Rundle P, Rundle J, Tiampo K, Donnellan A, Turcotte D (2006c) Virtual california: fault model, frictional parameters, applications. Pure Appl Geophys 163(9):1819–1846

    Article  Google Scholar 

  • Rundle JB, Holliday JR, Graves WR, Turcotte DL, Tiampo KF, Klein W (2012) Probabilities for large events in driven threshold systems. Phys Rev E 86:021106

    Article  Google Scholar 

  • Sachs MK, Heien EM, Turcotte DL, Yikilmaz MB, Rundle JB, Kellogg L (2012) Virtual California earthquake simulator. Seismol Res Lett 83(6): 973–978

    Article  Google Scholar 

  • Schultz K, Sachs M, Heien E, Rundle J, Turcotte D, Donnellan A (2014) Simulating gravity changes in topologically realistic driven earthquake fault systems: first results. Pure Appl Geophys. ISSN 0033-4553. doi: 10.1007/s00024-014-0926-4

    Google Scholar 

  • Sieh K, Stuiver M, Brillinger D (1989) A more precise chronology of earthquakes produced by the san andreas fault in southern California. J Geophys Res Solid Earth 94(B1):603–623

    Article  Google Scholar 

  • Sornette D, Knopoff L (1997) The paradox of the expected time until the next earthquake. Bull Seismol Soc Am 87(4):789–798

    Google Scholar 

  • Sun W, Okubo S, Fu G, Araya A (2009) General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric Earth model-applicable to deformed Earth surface and space-fixed point. Geophys J Int 177(3):817–833

    Article  Google Scholar 

  • Tiampo KF, Rundle JB, McGinnis S, Gross SJ, Klein W (2002) Eigenpatterns in southern California seismicity. J Geophys Res Solid Earth 107(B12):2429–2467

    Article  Google Scholar 

  • Tullis TE, Richards-Dinger K, Barall M, Dieterich JH, Field EH, Heien EM, Kellogg LH, Pollitz FF, Rundle JB, Sachs MK, Turcotte DL, Ward SN, Burak Yikilmaz M (2012a) A comparison among observations and earthquake simulator results for the allcal2 California fault model. Seismol Res Lett 83(6):994–1006

    Article  Google Scholar 

  • Tullis TE, Richards-Dinger K, Barall M, Dieterich JH, Field EH, Heien EM, Kellogg LH, Pollitz FF, Rundle JB, Sachs MK, Turcotte DL, Ward SN, Yikilmaz MB (2012b) Generic earthquake simulator. Seismol Res Lett 83 (6):959–963

    Article  Google Scholar 

  • Van Aalsburg J, Grant LB, Yakovlev G, Rundle PB, Rundle JB, Turcotte DL, Donnellan A (2007) A feasibility study of data assimilation in numerical simulations of earthquake fault systems. Phys Earth Planet Inter 163(14): 149–162 [Computational Challenges in the Earth Sciences]

    Google Scholar 

  • Van Aalsburg J, Rundle JB, Grant LB, Rundle PB, Yakovlev G, Turcotte DL, Donnellan A, Tiampo KF, Fernandez J (2010) Space- and time-dependent probabilities for earthquake fault systems from numerical simulations: feasibility study and first results. In: Seismogenesis and earthquake forecasting: the frank evison, volume II. Pageoph topical volumes. Springer, Basel, pp 113–123. ISBN 978-3-0346-0499-4

    Google Scholar 

  • Yakovlev G, Turcotte DL, Rundle JB, Rundle PB (2006) Simulation-based distributions of earthquake recurrence times on the San Andreas Fault system. Bull Seismol Soc Am 96(6):1995–2007

    Article  Google Scholar 

  • Yikilmaz MB, Turcotte DL, Yakovlev G, Rundle JB, Kellogg LH (2010) Virtual California earthquake simulations: simple models and their application to an observed sequence of earthquakes. Geophys J Int 180(2): 734–742

    Article  Google Scholar 

  • Yikimaz MB, Heien EM, Turcotte DL, Rundle JB, Kellogg LH (2011) A fault and seismicity based composite simulation in northern California. Nonlinear Processes Geophys 18(6):955–966

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Aeronautics and Space Administration (NASA) Earth and Space Science fellowship number NNX11AL92H. The release version of Virtual California and the Users’ Manual are hosted by the Computational Infrastructure for Geodynamics which is supported by NSF Grant EAR-0949446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasey W. Schultz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schultz, K.W. et al. (2015). Virtual Quake: Statistics, Co-seismic Deformations and Gravity Changes for Driven Earthquake Fault Systems. In: Hashimoto, M. (eds) International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH). International Association of Geodesy Symposia, vol 145. Springer, Cham. https://doi.org/10.1007/1345_2015_134

Download citation

Publish with us

Policies and ethics