Skip to main content

Preparation of Chitin Nanofiber and Its Derivatives from Crab Shell and Their Efficient Biological Properties

  • Chapter
  • First Online:
Chitosan for Biomaterials III

Part of the book series: Advances in Polymer Science ((POLYMER,volume 287))

Abstract

Chitin nanofibers were prepared from crab shell for the purpose of utilizing crab shells. After the series chemical treatment and wet pulverization treatment, a uniform fibrous substance having a width of about 10 nm was obtained. The reason why fine fibrous chitin can be obtained is the structure of the crab shell. A characteristic of chitin nanofibers is their high dispersibility in water. Therefore, processing ability is improved, and biological properties of the nanofibers can be evaluated. Chitin nanofibers whose surface is modified to chitosan can be obtained after treatment with a relatively medium concentration of sodium hydroxide. Since chitosan nanofibers have an amino group on the surface, they are positively charged in an acidic aqueous solution. Chitin and chitosan nanofibers have various physiological functions when taken or applied to the skin. Effects of oral ingestion of chitosan nanofibers on chronic kidney disease (CKD) model, non-alcoholic steatohepatitis model, and inflammatory bowel disease model were studied. Furthermore, the biological effects of chitin and chitosan nanofibers for the skin are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4:657–665

    Article  PubMed  CAS  Google Scholar 

  2. Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules 10:1584–1588

    Article  CAS  PubMed  Google Scholar 

  3. Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi S.-B, Servos G, Hartwig HG (2006) Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus Mater Sci Eng A 421:143–153

    Google Scholar 

  4. Ifuku S, Yamada K, Morimoto M, Saimoto H (2012) Nanofibrillation of dry chitin powder by star burst system. J Nanomater 2012:1–7

    Article  CAS  Google Scholar 

  5. Shams MI, Ifuku S, Nogi M, Oku T, Yano H (2011) Fabrication of optically transparent chitin nanocomposites. Appl Phys A 102:325–331

    Article  CAS  Google Scholar 

  6. Ifuku S, Morooka S, Nakagaito AN, Morimoto M, Saimoto H (2011) Preparation and characterization of optically transparent chitin nanofiber/(meth)acrylic resin composites. Green Chem 13:1708–1711

    Article  CAS  Google Scholar 

  7. Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2011) Simple preparation method of chitin nanofibers with a uniform width of 10–20nm from prawn shell under neutral conditions. Carbohydr Polym 84:762–764

    Article  CAS  Google Scholar 

  8. Ifuku S, Nomura R, Morimoto M, Saimoto H (2011) Preparation of chitin nanofibers from mushrooms. Materials 4:1417–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fan F, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydr Polym 79:1046–1051

    Article  CAS  Google Scholar 

  10. Ifuku S, Ikuta A, Egusa M, Kaminaka K, Izawa H, Morimoto M, Saimoto H (2013) Preparation of high-strength transparent chitosan film reinforced with surface-deacetylated chitin nanofibers. Carbohydr Polym 98:1198–1202

    Article  CAS  PubMed  Google Scholar 

  11. Azuma K, Izumi R, Kawata M, Nagae T, Osaki T, Murahata Y, Tsuka T, Imagawa T, Ito N, Okamoto Y, Morimoto M, Izawa H, Saimoto H, Ifuku S (2015) Effects of oral administration of chitin nanofiber on plasma metabolites and gut microorganisms. Int J Mol Sci 16:21931–21949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anraku M, Michihara A, Yasufuku T, Akasaki K, Tsuchiya D, Nishio H, Maruyama T, Otagiri M, Maezaki Y, Kondo Y, Tomida H (2010) The antioxidative and antilipidemic effects of different molecular weight chitosans in metabolic syndrome model rats. Biol Pharm Bull 33:1994–1998

    Article  CAS  PubMed  Google Scholar 

  13. Anraku M, Tomida H, Michihara A, Tsuchiya D, Iohara D, Maezaki Y, Uekama K, Maruyama T, HIratyama F (2012) Antioxidant and renoprotective activity of chitosan in nephrectomized rats. Carbohydr Polym 89:302–304

    Article  CAS  PubMed  Google Scholar 

  14. Anraku M, Tanaka M, Hiraga A, Nagumo K, Imafuku T, Maezaki Y, Iohara D, Uekama K, Watanabe H, Hirayama F, Maruyama T, Otagiri M (2014) Effects of chitosan on oxidative stress and related factors in hemodialysis patients. Carbohydr Polym 112:152–157

    Article  CAS  PubMed  Google Scholar 

  15. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  PubMed  Google Scholar 

  16. Barreto FC, Barreto DV, Canziani MEF (2017) Uremia retention molecules and clinical outcomes. Contrib Nephrol 191:18–31

    Article  CAS  PubMed  Google Scholar 

  17. Niwa T (2017) The role of carbon adsorbent in the conservative management of chronic kidney disease. Panminerva Med 59:139–148

    Article  PubMed  Google Scholar 

  18. Shimizu H, Hirose Y, Goto S, Nishijima F, Zrelli H, Zghonda N, Niwa T, Miyazaki H (2012) Indoxyl sulfate enhances angiotensin II signaling through upregulation of epidermal growth factor receptor expression in vascular smooth muscle cells. Life Sci 91:172–177

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe H (2013) Molecular mechanisms for uremic toxin-induced oxidative tissue damage via a cardiovascular-renal connection. Yakugaku Zasshi 133:889–895

    Article  CAS  PubMed  Google Scholar 

  20. Niwa T (2011) Role of indoxyl sulfate in the progression of chronic kidney disease and cardiovascular disease: experimental and clinical effects of oral sorbent AST-120. Ther Apher Dial 15:120–124

    Article  CAS  PubMed  Google Scholar 

  21. Owada A, Nakao M, Koike J, Ujiie K, Tomita K, Shiigai T (1997) Effects of oral adsorbent AST-120 on the progression of chronic renal failure: a randomized controlled study. Kidney Int Suppl 63:S188–S190

    CAS  PubMed  Google Scholar 

  22. Shimoishi K, Anraku M, Kitamura K, Tasaki Y, Taguchi K, Hashimoto M, Fukunaga E, Maruyama T, Otagiri M (2007) An oral adsorbent, AST-120 protects against the progression of oxidative stress by reducing the accumulation of indoxyl sulfate in the systemic circulation in renal failure. Pharm Res 24:1283–1289

    Article  CAS  PubMed  Google Scholar 

  23. Niwa T (2013) Targeting protein-bound uremic toxins in chronic kidney disease. Expert Opin Ther Targets 17:1287–1301

    Article  CAS  PubMed  Google Scholar 

  24. Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318

    Article  CAS  PubMed  Google Scholar 

  25. Ifuku S (2014) Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules 19:18367–18380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Anraku M, Tabuchi R, Ifuku S, Nagae T, Iohara D, Tomida H, Uekama K, Maruyama T, Miyamura S, Hirayama F, Otagiri M (2017) An oral absorbent, surface-deacetylated chitin nano-fiber ameliorates renal injury and oxidative stress in 5/6 nephrectomized rats. Carbohydr Polym 161:21–25

    Article  CAS  PubMed  Google Scholar 

  27. Azuma K, Nishihara M, Shimizu H, Itoh Y, Takashima O, Osaki T, Itoh N, Imagawa T, Murahata Y, Tsuka T, Izawa H, Ifuku S, Minami S, Saimoto H, Okamoto Y, Morimoto M (2015) Biological adhesive based on carboxymethyl chitin derivatives and chitin nanofibers. Biomaterials 42:20–29

    Article  CAS  PubMed  Google Scholar 

  28. Azuma K, Ifuku S, Osaki T, Okamoto Y, Minami S (2014) Preparation and biomedical applications of chitin and chitosan nanofibers. J Biomed Nanotechnol 10:2891–2920

    Article  CAS  PubMed  Google Scholar 

  29. Chae SY, Jang MK, Nah JW (2005) Influence of molecular weight on oral absorption of water soluble chitosans. J Control Release 102:383–394

    Article  CAS  PubMed  Google Scholar 

  30. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15:11–20

    Article  PubMed  Google Scholar 

  31. Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, Felin J, Perkins R, Boren J, Oresic M, Bäckhed F (2010) The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51:1101–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tilg H, Cani PD, Mayer EA (2016) Gut microbiome and liver diseases. Gut 65:2035–2044

    Article  CAS  PubMed  Google Scholar 

  33. Fukui H (2017) Gut microbiome-based therapeutics in liver cirrhosis: basic consideration for the next step. J Clin Transl Hepatol 5:249–260

    PubMed  PubMed Central  Google Scholar 

  34. Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, Felin J, Perkins R, Boren J, Oresic M, Bäckhed F (2015) The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51:1101–1112

    Article  CAS  Google Scholar 

  35. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106:3698–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sobhonslidsuk A, Chanprasertyothin S, Pongrujikorn T, Kaewduang P, Promson K, Petraksa S, Ongphiphadhanakul B (2018) The Association of gut Microbiota with nonalcoholic steatohepatitis in Thais. Biomed Res Int:9340316

    Google Scholar 

  37. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57:601–609

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Guo Z, Xue Z, Sun Z, Zhang M, Wang L, Wang G, Wang F, Xu J, Cao H, Xu H, Lv Q, Zhong Z, Chen Y, Qimuge S, Menghe B, Zheng Y, Zhao L, Chen W, Zhang H (2015) A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J 9:1979–1990

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ozato N, Saito S, Yamaguchi T, Katashima M, Tokuda I, Sawada K, Katsuragi Y, Kakuta M, Imoto S, Ihara K, Nakaji S (2019) Blautia genus associated with visceral fat accumulation in adults 20-76 years of age. NPJ Biofilms Microbiomes 5:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Abramson ES, Huttenhower C, Littman D (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2:e01202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Goto M, Iohara D, Michihara A, Ifuku S, Azuma K, Kadowaki D, Maruyama T, Otagiri M, Hirayama F, Anraku M (2020) Effects of surface-deacetylated chitin nanofibers on non-alcoholic steatohepatitis model rats and their gut microbiota. Int J Biol Macromol 164:659–666

    Article  CAS  PubMed  Google Scholar 

  42. Anraku M, Iohara D, Hiraga A, Uekama K, Ifuku S, Pipkin JD, Hirayama F (2015) Formation of elastic gels from deacetylated chitin nanofibers reinforced with sulfobutyl ether β-cyclodextrin. Chem Lett 44:285–287

    Article  CAS  Google Scholar 

  43. Anraku M, Gebicki JM, Iohara D, Tomida H, Uekama K, Maruyama T, Hirayama F, Otagiri M (2018) Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr Polym 199:141–149

    Article  CAS  PubMed  Google Scholar 

  44. Anraku M, Hiraga A, Iohara D, Pipkin JD, Uekama K, Hirayama F (2015) Slow-release of famotidine from tablets consisting of chitosan/sulfobutyl ether β-cyclodextrin composites. Int J Pharm 487:142–147

    Article  CAS  PubMed  Google Scholar 

  45. Tabuchi R, Azuma K, Izumi R, Tanou T, Okamoto Y, Nagae T, Iohara D, Uekama K, Otagiri M, Hirayama F, Ifuku S, Anraku M (2017) Surface-deacetylated chitin nanofibers reinforced with a sulfobutyl ether β-cyclodextrin gel loaded with prednisolone as potential therapy for inflammatory bowel disease. Carbohydr Polym 174:1087–1094

    Article  CAS  PubMed  Google Scholar 

  46. Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6:265sr6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ahmad SI, Ahmad R, Khan MS, Kant R, Shahid S, Gautam L, Hasan GM, Hassan MI (2020) Chitin and its derivatives: structural properties and biomedical applications. Int J Biol Macromol 1:526–539

    Article  CAS  Google Scholar 

  48. Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V (2019) Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. Int J Biol Macromol 20:5889

    CAS  Google Scholar 

  49. Ito I, Osaki T, Ifuku S, Saimoto H, Takamori Y, Kurozumi S, Imagawa T, Azuma K, Tsuka T, Okamoto Y, Minami S (2014) Evaluation of the effects of chitin nanofibrils on skin function using skin models. Carbohydr Polym 30:464–470

    Article  CAS  Google Scholar 

  50. Ito I, Yoneda T, Omura Y, Osaki T, Ifuku S, Saimoto H, Azuma K, Imagawa T, Tsuka T, Murahata Y, Ito N, Okamoto Y, Minami S (2015) Protective effect of chitin urocanate nanofibers against ultraviolet radiation. Mar Drugs 19:7463–7475

    Article  CAS  Google Scholar 

  51. Izumi R, Azuma K, Izawa H, Morimoto M, Nagashima M, Osaki T, Tsuka T, Imagawa T, Ito N, Okamoto Y, Saimoto H, Ifuku S (2016) Chitin nanofibrils suppress skin inflammation in atopic dermatitis-like skin lesions in NC/Nga mice. Carbohydr Polym 1:320–327

    Article  CAS  Google Scholar 

  52. Izumi R, Komada S, Ochi K, Karasawa L, Osaki T, Murahata Y, Tsuka T, Imagawa T, Itoh N, Okamoto Y, Izawa H, Morimoto M, Saimoto H, Azuma K, Ifuku S (2015) Favorable effects of superficially deacetylated chitin nanofibrils on the wound healing process. Carbohydr Polym 5:461–467

    Article  CAS  Google Scholar 

  53. Azuma K, Koizumi R, Izawa H, Morimoto M, Saimoto H, Osaki T, Ito N, Yamashita M, Tsuka T, Imagawa T, Okamoto Y, Inoue T, Ifuku S (2019) Hair growth-promoting activities of chitosan and surface-deacetylated chitin nanofibers. Int J Biol Macromol 1:11–17

    Article  CAS  Google Scholar 

  54. Tabuchi R, Azuma K, Izumi R, Tanou T, Okamoto Y, Nagae T, Iohara D, Uekama K, Otagiri M, Hirayama F, Ifuku S, Anraku M (2016) Biomaterials based on freeze dried surface-deacetylated chitin nanofibers reinforced with sulfobutyl ether beta-cyclodextrin gel in wound dressing applications. Int J Pharm 511:1080–1087

    Article  CAS  PubMed  Google Scholar 

  55. Goto M, Ifuku S, Azuma K, Arima H, Kaneko S, Iohara D, Hirayama F, Anraku M (2019) Preparation and evaluation of freeze dried surface-deacetylated chitin nanofiber/sacran pellets for use as an extended-release excipient. Int J Biol Macromol 1:888–894

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Ifuku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ifuku, S., Anraku, M., Azuma, K. (2021). Preparation of Chitin Nanofiber and Its Derivatives from Crab Shell and Their Efficient Biological Properties. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials III. Advances in Polymer Science, vol 287. Springer, Cham. https://doi.org/10.1007/12_2021_87

Download citation

Publish with us

Policies and ethics