Skip to main content

Recent Progress in Biomedical Applications of Chitosan Derivatives as Gene Carrier

  • Chapter
  • First Online:
Chitosan for Biomaterials IV

Part of the book series: Advances in Polymer Science ((POLYMER,volume 288))

Abstract

Appropriate gene carriers are vital components of gene therapy for treating numerous intractable diseases. Compared with viral carriers, non-viral carriers exhibit lower immunogenicity and higher biosafety, which have received increasing attention. In particular, among non-viral vectors, gene vectors based on chitosan derivatives are considered a promising gene therapy tool and have been extensively studied due to the biocompatibility, biodegradability, and modifiability of chitosan. In this review, we first discussed the influence of chitosan parameters on the efficiency of gene therapy. More importantly, we summarized the recent research progress in various diseases of chitosan derivatives to deliver different gene therapy substances including plasmid (pDNA), short interfering RNA (siRNA), short hairpin RNA (shRNA), microRNA (miRNA), and clustered regularly interspaced short palindromic repeats-associated endonuclease 9 (CRISPER-Cas9) system. Finally, the current challenges and future directions of chitosan derivatives as gene carriers are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gong JH, Wang Y, Xing L, Cui PF, Qiao JB, He YJ, Jiang HL (2018) Biocompatible fluorinated poly (β-amino ester)s for safe and efficient gene therapy. Int J Pharm 535:180–193

    Article  CAS  PubMed  Google Scholar 

  2. Luo CQ, Jang Y, Xing L, Cui PF, Qiao JB, Lee AY, Kim HJ, Cho MH, Jiang HL (2016) Aerosol delivery of folate-decorated hyperbranched polyspermine complexes to suppress lung tumorigenesis via Akt signaling pathway. Int J Pharm 513:591–601

    Article  CAS  PubMed  Google Scholar 

  3. Kim YD, Park TE, Singh B, Cho KS, Sangshetti JN, Choi YJ, Arote RB, Cho CS (2016) Efficient gene transfection to liver cells via the cellular regulation of a multifunctional polylactitol-based gene transporter. J Mater Chem B 4:2208–2218

    Article  CAS  PubMed  Google Scholar 

  4. Islam MA, Kim S, Firdous J, Lee AY, Hong SH, Seo MK, Park TE, Yun CH, Choi YJ, Chae C, Cho CS, Cho MH (2016) A high affinity kidney targeting by chitobionic acid-conjugated polysorbitol gene transporter alleviates unilateral ureteral obstruction in rats. Biomaterials 102:43–57

    Article  CAS  PubMed  Google Scholar 

  5. Liang H, Chen X, Jin R, Ke B, Barz M, Ai H, Nie Y (2020) Integration of indocyanine green analogs as near-infrared fluorescent carrier for precise imaging-guided gene delivery. Small 16:e1906538

    Article  PubMed  CAS  Google Scholar 

  6. Rajendrakumar SK, Uthaman S, Cho CS, Park IK (2017) Trigger-responsive gene transporters for anticancer therapy. Nanomaterials (Basel) 7:120

    Article  CAS  Google Scholar 

  7. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M (2018) Gene therapy comes of age. Science 359:eaan4672

    Article  PubMed  CAS  Google Scholar 

  8. Yang S, Ou C, Wang L, Liu X, Yang J, Wang X, Wang M, Shen M, Wu Q, Gong C (2020) Virus-esque nucleus-targeting nanoparticles deliver trojan plasmid for release of anti-tumor shuttle protein. J Control Release 320:253–264

    Article  CAS  PubMed  Google Scholar 

  9. Bez M, Foiret J, Shapiro G, Pelled G, Ferrara KW, Gazit D (2019) Nonviral ultrasound-mediated gene delivery in small and large animal models. Nat Protoc 14:1015–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang HL, Islam MA, Xing L, Firdous J, Cao W, He YJ, Zhu Y, Cho KH, Li HS, Cho CS (2017) Degradable polyethylenimine-based gene carriers for cancer therapy. Top Curr Chem (Cham) 375:34

    Article  CAS  Google Scholar 

  11. Cui PF, Qi LY, Wang Y, Yu RY, He YJ, Xing L, Jiang HL (2019) Dex-Aco coating simultaneously increase the biocompatibility and transfection efficiency of cationic polymeric gene vectors. J Control Release 303:253–262

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Z, Li H, Wang K, Guo Q, Li C, Jiang H, Hu Y, Oupicky D, Sun M (2017) Bioreducible cross-linked hyaluronic acid/calcium phosphate hybrid nanoparticles for specific delivery of siRNA in melanoma tumor therapy. ACS Appl Mater Interfaces 9:14576–14589

    Article  CAS  PubMed  Google Scholar 

  13. Park TE, Singh B, Li H, Lee JY, Kang SK, Choi YJ, Cho CS (2015) Enhanced BBB permeability of osmotically active poly (mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer's disease. Biomaterials 38:61–71

    Article  CAS  PubMed  Google Scholar 

  14. Babu A, Ramesh R (2017) Multifaceted applications of chitosan in cancer drug delivery and therapy. Mar Drugs 15:96

    Article  PubMed Central  CAS  Google Scholar 

  15. Xie RL, Jang YJ, Xing L, Zhang BF, Wang FZ, Cui PF, Cho MH, Jiang HL (2015) A novel potential biocompatible hyperbranched polyspermine for efficient lung cancer gene therapy. Int J Pharm 478:19–30

    Article  CAS  PubMed  Google Scholar 

  16. Zhang M, Kim YK, Cui P, Zhang J, Qiao J, He Y, Lyu J, Luo C, Xing L, Jiang H (2016) Folate-conjugated polyspermine for lung cancer-targeted gene therapy. Acta Pharm Sin B 6:336–343

    Article  PubMed  PubMed Central  Google Scholar 

  17. Qindeel M, Ahmed N, Khan GM, Rehman AU (2019) Ligand decorated chitosan as an advanced nanocarrier for targeted delivery: a critical review. Nanomedicine (Lond) 14:1623–1642

    Article  CAS  Google Scholar 

  18. Pereira LA, da Silva RL, Batista FA, Mendes AN, Osajima JA, Silva-Filho EC (2019) Biological properties of chitosan derivatives associated with the ceftazidime drug. Carbohydr Polym 222:115002

    Article  CAS  PubMed  Google Scholar 

  19. Jiang HL, Cui PF, Xie RL, Cho CS (2014) Chemical modification of chitosan for efficient gene therapy. Adv Food Nutr Res 73:83–101

    Article  CAS  PubMed  Google Scholar 

  20. Chuan D, Jin T, Fan R, Zhou L, Guo G (2019) Chitosan for gene delivery: methods for improvement and applications. Adv Colloid Interface Sci 268:25–38

    Article  PubMed  CAS  Google Scholar 

  21. Nguyen MA, Wyatt H, Susser L, Geoffrion M, Rasheed A, Duchez AC, Cottee ML, Afolayan E, Farah E, Kahiel Z, Côté M, Gadde S, Rayner KJ (2019) Delivery of microRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo. ACS Nano 13:6491–6505

    Article  CAS  PubMed  Google Scholar 

  22. Santos-Carballal B, Fernández Fernández E, Goycoolea FM (2018) Chitosan in non-viral gene delivery: role of structure, characterization methods, and insights in cancer and rare diseases therapies. Polymers (Basel) 10:444

    Article  CAS  Google Scholar 

  23. Moran HBT, Turley JL, Andersson M, Lavelle EC (2018) Immunomodulatory properties of chitosan polymers. Biomaterials 184:1–9

    Article  CAS  PubMed  Google Scholar 

  24. Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K (2020) Chitosan derivatives and their application in biomedicine. Int J Mol Sci 21:487

    Article  PubMed Central  CAS  Google Scholar 

  25. Sato T, Ishii T, Okahata Y (2001) In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 22:2075–2080

    Article  CAS  PubMed  Google Scholar 

  26. Strand SP, Lelu S, Reitan NK, de Lange DC, Artursson P, Vårum KM (2010) Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials 31:975–987

    Article  CAS  PubMed  Google Scholar 

  27. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    Article  CAS  PubMed  Google Scholar 

  28. Kritchenkov AS, Andranovit S, Skorik YA (2017) Chitosan and its derivatives: vectors in gene therapy. Russ Chem Rev 86:231–239

    Article  CAS  Google Scholar 

  29. Huang M, Fong CW, Khor E, Lim LY (2005) Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J Control Release 106:391–406

    Article  CAS  PubMed  Google Scholar 

  30. Yang X, Yuan X, Cai D, Wang S, Zong L (2009) Low molecular weight chitosan in DNA vaccine delivery via mucosa. Int J Pharm 375:123–132

    Article  CAS  PubMed  Google Scholar 

  31. Weecharangsan W, Opanasopit P, Ngawhirunpat T, Apirakaramwong A, Rojanarata T, Ruktanonchai U, Lee RJ (2008) Evaluation of chitosan salts as non-viral gene vectors in CHO-K1 cells. Int J Pharm 348:161–168

    Article  CAS  PubMed  Google Scholar 

  32. Prasitsilp M, Jenwithisuk R, Kongsuwan K, Damrongchai N, Watts P (2000) Cellular responses to chitosan in vitro: the importance of deacetylation. J Mater Sci Mater Med 11:773–778

    Article  CAS  PubMed  Google Scholar 

  33. Köping-Höggård M, Tubulekas I, Guan H, Edwards K, Nilsson M, Vårum KM, Artursson P (2001) Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8:1108–1121

    Article  PubMed  Google Scholar 

  34. Alameh M, Dejesus D, Jean M, Darras V, Thibault M, Lavertu M, Buschmann MD, Merzouki A (2012) Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery. Int J Nanomedicine 7:1399–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nimesh S, Thibault MM, Lavertu M, Buschmann MD (2010) Enhanced gene delivery mediated by low molecular weight chitosan/DNA complexes: effect of pH and serum. Mol Biotechnol 46:182–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bravo-Anaya LM, Fernández-Solís KG, Rosselgong J, Nano-Rodríguez JLE, Carvajal F, Rinaudo M (2019) Chitosan-DNA polyelectrolyte complex: influence of chitosan characteristics and mechanism of complex formation. Int J Biol Macromol 126:1037–1049

    Article  CAS  PubMed  Google Scholar 

  37. Kolonko AK, Bangel-Ruland N, Goycoolea FM, Weber WM (2020) Chitosan nanocomplexes for the delivery of ENaC antisense oligonucleotides to airway epithelial cells. Biomol Ther 10:553

    CAS  Google Scholar 

  38. Alameh M, Lavertu M, Tran-Khanh N, Chang CY, Lesage F, Bail M, Darras V, Chevrier A, Buschmann MD (2018) siRNA delivery with chitosan: influence of chitosan molecular weight, degree of deacetylation, and amine to phosphate ratio on in vitro silencing efficiency, hemocompatibility, biodistribution, and in vivo efficacy. Biomacromolecules 19:112–131

    Article  CAS  PubMed  Google Scholar 

  39. Yazdian-Robati R, Bayat P, Oroojalian F, Zargari M, Ramezani M, Taghdisi SM, Abnous K (2020) Therapeutic applications of AS1411 aptamer, an update review. Int J Biol Macromol 155:1420–1431

    Article  CAS  PubMed  Google Scholar 

  40. Xing L, Fan YT, Shen LJ, Yang CX, Liu XY, Ma YN, Qi LY, Cho KH, Cho CS, Jiang HL (2019) pH-sensitive and specific ligand-conjugated chitosan nanogels for efficient drug delivery. Int J Biol Macromol 141:85–97

    Article  CAS  PubMed  Google Scholar 

  41. Bao X, Wang W, Wang C, Wang Y, Zhou J, Ding Y, Wang X, Jin Y (2014) A chitosan-graft-PEI-candesartan conjugate for targeted co-delivery of drug and gene in anti-angiogenesis cancer therapy. Biomaterials 35:8450–8466

    Article  CAS  PubMed  Google Scholar 

  42. Wang GH, Cai YY, Du JK, Li L, Li Q, Yang HK, Lin JT (2018) TAT-conjugated chitosan cationic micelle for nuclear-targeted drug and gene co-delivery. Colloids Surf B Biointerfaces 162:326–334

    Article  CAS  PubMed  Google Scholar 

  43. Lin JT, Chen H, Wang D, Xiong L, Li JZ, Chen GH, Chen GB (2019) Nuclear-targeted p53 and DOX co-delivery of chitosan derivatives for cancer therapy in vitro and in vivo. Colloids Surf B Biointerfaces 183:110440

    Article  CAS  PubMed  Google Scholar 

  44. Zhang M, Hu J, Zou Y, Wu J, Yao Y, Fan H, Liu K, Wang J, Gao S (2018) Modification of degradable nonviral delivery vehicle with a novel bifunctional peptide to enhance transfection in vivo. Nanomedicine (Lond) 13:9–24

    Article  CAS  Google Scholar 

  45. Zhao M, Li J, Ji H, Chen D, Hu H (2019) A versatile endosome acidity-induced sheddable gene delivery system: increased tumor targeting and enhanced transfection efficiency. Int J Nanomedicine 14:6519–6538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang L, Zhu Z, Wu D, Gan W, Zhu S, Li W, Tian J, Li L, Zhou C, Lu L (2019) Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydr Polym 225:115110

    Article  CAS  PubMed  Google Scholar 

  47. Wu D, Zhang Y, Xu X, Guo T, Xie D, Zhu R, Chen S, Ramakrishna S, He L (2018) RGD/TAT-functionalized chitosan-graft-PEI-PEG gene nanovector for sustained delivery of NT-3 for potential application in neural regeneration. Acta Biomater 72:266–277

    Article  CAS  PubMed  Google Scholar 

  48. Lopes CDF, Gonçalves NP, Gomes CP, Saraiva MJ, Pêgo AP (2017) BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury. Biomaterials 121:83–96

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Wang FQ, Shah Z, Cheng XJ, Kong M, Feng C, Chen XG (2016) Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery. Colloids Surf B Biointerfaces 145:492–501

    Article  CAS  PubMed  Google Scholar 

  50. Wu M, Zhao H, Li M, Yue Y, Xiong S, Xu W (2017) Intranasal vaccination with mannosylated chitosan formulated DNA vaccine enables robust IgA and cellular response induction in the lungs of mice and improves protection against pulmonary mycobacterial challenge. Front Cell Infect Microbiol 7:445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhao K, Han J, Zhang Y, Wei L, Yu S, Wang X, Jin Z, Wang Y (2018) Enhancing mucosal immune response of newcastle disease virus DNA vaccine using N-2-hydroxypropyl trimethylammonium chloride chitosan and N,O-carboxymethyl chitosan nanoparticles as delivery carrier. Mol Pharm 15:226–237

    Article  CAS  PubMed  Google Scholar 

  52. Picanço-Castro V, Pereira CG, Covas DT, Porto GS (2020) Emerging patent landscape for non-viral vectors used for gene therapy. Nat Biotechnol 38:151–157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lin WJ, Hsu WY (2015) Pegylation effect of chitosan based polyplex on DNA transfection. Carbohydr Polym 120:7–14

    Article  CAS  PubMed  Google Scholar 

  54. Bai H, Lester GMS, Petishnok LC, Dean DA (2017) Cytoplasmic transport and nuclear import of plasmid DNA. Biosci Rep 37:BSR20160616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gong N, Teng X, Li J, Liang XJ (2019) Antisense oligonucleotide-conjugated nanostructure-targeting incRNA MALAT1 inhibits cancer metastasis. ACS Appl Mater Interfaces 11:37–42

    Article  CAS  PubMed  Google Scholar 

  56. Raftery RM, Mencía Castaño I, Chen G, Cavanagh B, Quinn B, Curtin CM, Cryan SA, O'Brien FJ (2017) Translating the role of osteogenic-angiogenic coupling in bone formation: highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomaterials 149:116–127

    Article  CAS  PubMed  Google Scholar 

  57. Li H, Ji Q, Chen X, Sun Y, Xu Q, Deng P, Hu F, Yang J (2017) Accelerated bony defect healing based on chitosan thermosensitive hydrogel scaffolds embedded with chitosan nanoparticles for the delivery of BMP2 plasmid DNA. J Biomed Mater Res A 105:265–273

    Article  CAS  PubMed  Google Scholar 

  58. Lord MS, Ellis AL, Farrugia BL, Whitelock JM, Grenett H, Li C, O'Grady RL, DeCarlo AA (2017) Perlecan and vascular endothelial growth factor-encoding DNA-loaded chitosan scaffolds promote angiogenesis and wound healing. J Control Release 250:48–61

    Article  CAS  PubMed  Google Scholar 

  59. Lou D, Luo Y, Pang Q, Tan WQ, Ma L (2020) Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis. Bioact Mater 5:667–679

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee MC, Seonwoo H, Garg P, Jang KJ, Pandey S, Park SB, Kim HB, Lim J, Choung YH, Chung JH (2018) Chitosan/PEI patch releasing EGF and the EGFR gene for the regeneration of the tympanic membrane after perforation. Biomater Sci 6:364–371

    Article  CAS  PubMed  Google Scholar 

  61. Pereira Gomes C, Leiro V, Ferreira Lopes CD, Spencer AP, Pêgo AP (2018) Fine tuning neuronal targeting of nanoparticles by adjusting the ligand grafting density and combining PEG spacers of different length. Acta Biomater 78:247–259

    Article  CAS  PubMed  Google Scholar 

  62. Poecheim J, Barnier-Quer C, Collin N, Borchard G (2016) Ag85A DNA vaccine delivery by nanoparticles: influence of the formulation characteristics on immune responses. Vaccines (Basel) 4:32

    Article  CAS  Google Scholar 

  63. Xing L, Fan YT, Zhou TJ, Gong JH, Cui LH, Cho KH, Choi YJ, Jiang HL, Cho CS (2018) Chemical modification of chitosan for efficient vaccine delivery. Molecules 23:229

    Article  PubMed Central  CAS  Google Scholar 

  64. Chandrasekar SS, Kingstad-Bakke B, Wu CW, Suresh M, Talaat AM (2020) A novel mucosal adjuvant system for immunization against avian coronavirus causing infectious bronchitis. J Virol 94:e01016–e01020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Singh B, Maharjan S, Cho KH, Cui L, Park IK, Choi YJ, Cho CS (2018) Chitosan-based particulate systems for the delivery of mucosal vaccines against infectious diseases. Int J Biol Macromol 110:54–64

    Article  CAS  PubMed  Google Scholar 

  66. Singh B, Maharjan S, Sindurakar P, Cho KH, Choi YJ, Cho CS (2018) Needle-free immunization with chitosan-based systems. Int J Mol Sci 19:3639

    Article  PubMed Central  CAS  Google Scholar 

  67. Islam MA, Park TE, Reesor E, Cherukula K, Hasan A, Firdous J, Singh B, Kang SK, Choi YJ, Park IK, Cho CS (2015) Mucoadhesive chitosan derivatives as novel drug carriers. Curr Pharm Des 21:4285–4309

    Article  CAS  PubMed  Google Scholar 

  68. Layek B, Lipp L, Singh J (2015) APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. J Control Release 207:143–153

    Article  CAS  PubMed  Google Scholar 

  69. Jesus S, Soares E, Borchard G, Borges O (2017) Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen. Nanomedicine (Lond) 12:2335–2348

    Article  CAS  Google Scholar 

  70. Leya T, Ahmad I, Sharma R, Tripathi G, Kurcheti PP, Rajendran KV, Bedekar MK (2020) Bicistronic DNA vaccine macromolecule complexed with poly lactic-co-glycolic acid-chitosan nanoparticles enhanced the mucosal immunity of Labeo rohita against Edwardsiella tarda infection. Int J Biol Macromol 156:928–937

    Article  CAS  PubMed  Google Scholar 

  71. Carroll EC, Jin L, Mori A, Muñoz-Wolf N, Oleszycka E, Moran HBT, Mansouri S, McEntee CP, Lambe E, Agger EM, Andersen P, Cunningham C, Hertzog P, Fitzgerald KA, Bowie AG, Lavelle EC (2016) The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44:597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Han L, Tang C, Yin C (2015) Enhanced antitumor efficacies of multifunctional nanocomplexes through knocking down the barriers for siRNA delivery. Biomaterials 44:111–121

    Article  CAS  PubMed  Google Scholar 

  73. Song Y, Tang C, Yin C (2018) Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells. Biomaterials 185:117–132

    Article  CAS  PubMed  Google Scholar 

  74. Ni S, Liu Y, Tang Y, Chen J, Li S, Pu J, Han L (2018) GABA(B) receptor ligand-directed trimethyl chitosan/tripolyphosphate nanoparticles and their pMDI formulation for survivin siRNA pulmonary delivery. Carbohydr Polym 179:135–144

    Article  CAS  PubMed  Google Scholar 

  75. Zhang W, Xu W, Lan Y, He X, Liu K, Liang Y (2019) Antitumor effect of hyaluronic-acid-modified chitosan nanoparticles loaded with siRNA for targeted therapy for non-small cell lung cancer. Int J Nanomedicine 14:5287–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Masjedi A, Ahmadi A, Atyabi F, Farhadi S, Irandoust M, Khazaei-Poul Y, Ghasemi Chaleshtari M, Edalati Fathabad M, Baghaei M, Haghnavaz N, Baradaran B, Hojjat-Farsangi M, Ghalamfarsa G, Sabz G, Hasanzadeh S, Jadidi-Niaragh F (2020) Silencing of IL-6 and STAT3 by siRNA loaded hyaluronate-N,N,N-trimethyl chitosan nanoparticles potently reduces cancer cell progression. Int J Biol Macromol 149:487–500

    Article  CAS  PubMed  Google Scholar 

  77. Han L, Tang C, Yin C (2015) Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA. Biomaterials 60:42–52

    Article  CAS  PubMed  Google Scholar 

  78. Zhang BF, Xing L, Cui PF, Wang FZ, Xie RL, Zhang JL, Zhang M, He YJ, Lyu JY, Qiao JB, Chen BA, Jiang HL (2015) Mitochondria apoptosis pathway synergistically activated by hierarchical targeted nanoparticles co-delivering siRNA and lonidamine. Biomaterials 61:178–189

    Article  CAS  PubMed  Google Scholar 

  79. Zhang CG, Zhu WJ, Liu Y, Yuan ZQ, Yang SD, Chen WL, Li JZ, Zhou XF, Liu C, Zhang XN (2016) Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci Rep 6:23859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Izadi S, Moslehi A, Kheiry H, Karoon Kiani F, Ahmadi A, Masjedi A, Ghani S, Rafiee B, Karpisheh V, Hajizadeh F, Atyabi F, Assali A, Mirzazadeh Tekie FS, Namdar A, Ghalamfarsa G, Sojoodi M, Jadidi-Niaragh F (2020) Codelivery of HIF-1α siRNA and dinaciclib by carboxylated graphene oxide-trimethyl chitosan-hyaluronate nanoparticles significantly suppresses cancer cell progression. Pharm Res 37:196

    Article  CAS  PubMed  Google Scholar 

  81. He C, Yin L, Tang C, Yin C (2013) Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials 34:2843–2854

    Article  CAS  PubMed  Google Scholar 

  82. Chu S, Tang C, Yin C (2015) Effects of mannose density on in vitro and in vivo cellular uptake and RNAi efficiency of polymeric nanoparticles. Biomaterials 52:229–239

    Article  CAS  PubMed  Google Scholar 

  83. Cheng W, Tang C, Yin C (2015) Effects of particle size and binding affinity for small interfering RNA on the cellular processing, intestinal permeation and anti-inflammatory efficacy of polymeric nanoparticles. J Gene Med 17:244–256

    Article  CAS  PubMed  Google Scholar 

  84. Xiao B, Ma P, Ma L, Chen Q, Si X, Walter L, Merlin D (2017) Effects of tripolyphosphate on cellular uptake and RNA interference efficiency of chitosan-based nanoparticles in raw 264.7 macrophages. J Colloid Interface Sci 490:520–528

    Article  CAS  PubMed  Google Scholar 

  85. Xiao B, Ma P, Viennois E, Merlin D (2016) Urocanic acid-modified chitosan nanoparticles can confer anti-inflammatory effect by delivering CD98 siRNA to macrophages. Colloids Surf B Biointerfaces 143:186–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de Souza R, Picola IPD, Shi Q, Petrônio MS, Benderdour M, Fernandes JC, Lima AMF, Martins GO, Martinez Junior AM, de Oliveira Tiera VA, Tiera MJ (2018) Diethylaminoethyl- chitosan as an efficient carrier for siRNA delivery: improving the condensation process and the nanoparticles properties. Int J Biol Macromol 119:186–197

    Article  PubMed  CAS  Google Scholar 

  87. Shi Q, Rondon-Cavanzo EP, Dalla Picola IP, Tiera MJ, Zhang X, Dai K, Benabdoune HA, Benderdour M, Fernandes JC (2018) In vivo therapeutic efficacy of TNFα silencing by folate-PEG-chitosan-DEAE/siRNA nanoparticles in arthritic mice. Int J Nanomedicine 13:387–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rondon EP, Benabdoun HA, Vallières F, Segalla Petrônio M, Tiera MJ, Benderdour M, Fernandes JC (2020) Evidence supporting the safety of pegylated diethylaminoethyl-chitosan polymer as a nanovector for gene therapy applications. Int J Nanomedicine 15:6183–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen H, Ma Y, Lan H, Zhao Y, Zhi D, Cui S, Du J, Zhang Z, Zhen Y, Zhang S (2018) Dual stimuli-responsive saccharide core based nanocarrier for efficient Birc5-shRNA delivery. J Mater Chem B 6:7530–7542

    Article  CAS  PubMed  Google Scholar 

  90. Liu T, Chen S, Zhang S, Wu X, Wu P, Miao B, Cai X (2018) Transferrin-functionalized chitosan-graft-poly (l-lysine) dendrons as a high-efficiency gene delivery carrier for nasopharyngeal carcinoma therapy. J Mater Chem B 6:4314–4325

    Article  CAS  PubMed  Google Scholar 

  91. Song Y, Tang C, Yin C (2018) Enhanced antitumor efficacy of arginine modified amphiphilic nanoparticles co-delivering doxorubicin and iSur-pDNA via the multiple synergistic effect. Biomaterials 150:1–13

    Article  PubMed  CAS  Google Scholar 

  92. Jia L, Li Z, Zheng D, Li Z, Zhao Z (2021) A targeted and redox/pH-responsive chitosan oligosaccharide derivatives based nanohybrids for overcoming multidrug resistance of breast cancer cells. Carbohydr Polym 251:117008

    Article  CAS  PubMed  Google Scholar 

  93. Li Z, Zhu L, Liu W, Zheng Y, Li X, Ye J, Li B, Chen H, Gao Y (2020) Near-infrared/pH dual-responsive nanocomplexes for targeted imaging and chemo/gene/photothermal tri-therapies of non-small cell lung cancer. Acta Biomater 107:242–259

    Article  CAS  PubMed  Google Scholar 

  94. Tu L, Wang M, Zhao WY, Zhang ZZ, Tang DF, Zhang YQ, Cao H, Zhang ZG (2017) miRNA-218-loaded carboxymethyl chitosan-tocopherol nanoparticle to suppress the proliferation of gastrointestinal stromal tumor growth. Korean J Couns Psychother 72:177–184

    CAS  Google Scholar 

  95. Liu C, Xie H, Yu J, Chen X, Tang S, Sun L, Chen X, Peng D, Zhang X, Zhou J (2018) A targeted therapy for melanoma by graphene oxide composite with microRNA carrier. Drug Des Devel Ther 12:3095–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tekie FSM, Soleimani M, Zakerian A, Dinarvand M, Amini M, Dinarvand R, Arefian E, Atyabi F (2018) Glutathione responsive chitosan-thiolated dextran conjugated miR-145 nanoparticles targeted with AS1411 aptamer for cancer treatment. Carbohydr Polym 201:131–140

    Article  CAS  PubMed  Google Scholar 

  97. Ning Q, Liu YF, Ye PJ, Gao P, Li ZP, Tang SY, He DX, Tang SS, Wei H, Yu CY (2019) Delivery of liver-specific miRNA-122 using a targeted macromolecular prodrug toward synergistic therapy for hepatocellular carcinoma. ACS Appl Mater Interfaces 11:10578–10588

    Article  CAS  PubMed  Google Scholar 

  98. Deng F, He S, Cui S, Shi Y, Tan Y, Li Z, Huang C, Liu D, Zhi F, Peng L (2019) A molecular targeted immunotherapeutic strategy for ulcerative colitis via dual-targeting nanoparticles delivering miR-146b to intestinal macrophages. J Crohns Colitis 13:482–494

    Article  PubMed  Google Scholar 

  99. Edson JA, Ingato D, Wu S, Lee B, Kwon YJ (2018) Aqueous-soluble, acid-transforming chitosan for efficient and stimuli-responsive gene silencing. Biomacromolecules 19:1508–1516

    Article  CAS  PubMed  Google Scholar 

  100. Qiao JB, Fan QQ, Xing L, Cui PF, He YJ, Zhu JC, Wang L, Pang T, Oh YK, Zhang C, Jiang HL (2018) Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis. J Control Release 283:113–125

    Article  CAS  PubMed  Google Scholar 

  101. Li L, Hu X, Zhang M, Ma S, Yu F, Zhao S, Liu N, Wang Z, Wang Y, Guan H, Pan X, Gao Y, Zhang Y, Liu Y, Yang Y, Tang X, Li M, Liu C, Li Z, Mei X (2017) Dual tumor-targeting nanocarrier system for siRNA delivery based on pRNA and modified chitosan. Mol Ther Nucleic Acids 8:169–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xin Y, Huang M, Guo WW, Huang Q, Zhang LZ, Jiang G (2017) Nano-based delivery of RNAi in cancer therapy. Mol Cancer 16:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Nikkhoo A, Rostami N, Farhadi S, Esmaily M, Moghadaszadeh Ardebili S, Atyabi F, Baghaei M, Haghnavaz N, Yousefi M, Aliparasti MR, Ghalamfarsa G, Mohammadi H, Sojoodi M, Jadidi-Niaragh F (2020) Codelivery of STAT3 siRNA and BV6 by carboxymethyl dextran trimethyl chitosan nanoparticles suppresses cancer cell progression. Int J Pharm 581:119236

    Article  CAS  PubMed  Google Scholar 

  104. Cui PF, Xing L, Qiao JB, Zhang JL, He YJ, Zhang M, Lyu JY, Luo CQ, Jin L, Jiang HL (2016) Polyamine metabolism-based dual functional gene delivery system to synergistically inhibit the proliferation of cancer. Int J Pharm 506:79–86

    Article  CAS  PubMed  Google Scholar 

  105. Ross NT, Lohmann F, Carbonneau S, Fazal A, Weihofen WA, Gleim S, Salcius M, Sigoillot F, Henault M, Carl SH, Rodríguez-Molina JB, Miller HR, Brittain SM, Murphy J, Zambrowski M, Boynton G, Wang Y, Chen A, Molind GJ, Wilbertz JH, Artus-Revel CG, Jia M, Akinjiyan FA, Turner J, Knehr J, Carbone W, Schuierer S, Reece-Hoyes JS, Xie K, Saran C, Williams ET, Roma G, Spencer M, Jenkins J, George EL, Thomas JR, Michaud G, Schirle M, Tallarico J, Passmore LA, Chao JA, Beckwith REJ (2020) CPSF3-dependent pre-mRNA processing as a druggable node in AML and Ewing’s sarcoma. Nat Chem Biol 16:50–59

    Article  CAS  PubMed  Google Scholar 

  106. Waljee AK, Higgins PDR, Jensen CB, Villumsen M, Cohen-Mekelburg SA, Wallace BI, Berinstein JA, Allin KH, Jess T (2020) Anti-tumour necrosis factor-α therapy and recurrent or new primary cancers in patients with inflammatory bowel disease, rheumatoid arthritis, or psoriasis and previous cancer in Denmark: a nationwide, population-based cohort study. Lancet Gastroenterol Hepatol 5:276–284

    Article  PubMed  Google Scholar 

  107. Rao DD, Vorhies JS, Senzer N, Nemunaitis J (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759

    Article  CAS  PubMed  Google Scholar 

  108. Yu B, Tang C, Yin C (2014) Enhanced antitumor efficacy of folate modified amphiphilic nanoparticles through co-delivery of chemotherapeutic drugs and genes. Biomaterials 35:6369–6378

    Article  CAS  PubMed  Google Scholar 

  109. Javan B, Atyabi F, Shahbazi M (2018) Hypoxia-inducible bidirectional shRNA expression vector delivery using PEI/chitosan-TBA copolymers for colorectal Cancer gene therapy. Life Sci 202:140–151

    Article  CAS  PubMed  Google Scholar 

  110. Leite-Moreira AM, Lourenço AP, Falcão-Pires I, Leite-Moreira AF (2013) Pivotal role of microRNAs in cardiac physiology and heart failure. Drug Discov Today 18:1243–1249

    Article  CAS  PubMed  Google Scholar 

  111. Song Q, Pang H, Qi L, Liang C, Wang T, Wang W, Li R (2019) Low microRNA-622 expression predicts poor prognosis and is associated with ZEB2 in glioma. Onco Targets Ther 12:7387–7397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhou J, Xu D, Xie H, Tang J, Liu R, Li J, Wang S, Chen X, Su J, Zhou X, Xia K, He Q, Chen J, Xiong W, Cao P, Cao K (2015) miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1α. Cancer Biol Ther 16:846–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Doudna JA (2020) The promise and challenge of therapeutic genome editing. Nature 578:229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhan T, Rindtorff N, Betge J, Ebert MP, Boutros M (2019) CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol 55:106–119

    Article  CAS  PubMed  Google Scholar 

  115. He XY, Liu BY, Peng Y, Zhuo RX, Cheng SX (2019) Multifunctional vector for delivery of genome editing plasmid targeting β-catenin to remodulate cancer cell properties. ACS Appl Mater Interfaces 11:226–237

    Article  CAS  PubMed  Google Scholar 

  116. Qiao J, Sun W, Lin S, Jin R, Ma L, Liu Y (2019) Cytosolic delivery of CRISPR/Cas9 ribonucleoproteins for genome editing using chitosan-coated red fluorescent protein. Chem Commun (Camb) 55:4707–4710

    Article  CAS  Google Scholar 

  117. Zhang H, Bahamondez-Canas TF, Zhang Y, Leal J, Smyth HDC (2018) PEGylated chitosan for nonviral aerosol and mucosal delivery of the CRISPR/Cas9 system in vitro. Mol Pharm 15:4814–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu BY, He XY, Xu C, Xu L, Ai SL, Cheng SX, Zhuo RX (2018) A dual-targeting delivery system for effective genome editing and in situ detecting related protein expression in edited cells. Biomacromolecules 19:2957–2968

    Article  CAS  PubMed  Google Scholar 

  119. Liu BY, He XY, Zhuo RX, Cheng SX (2018) Tumor targeted genome editing mediated by a multi-functional gene vector for regulating cell behaviors. J Control Release 291:90–98

    Article  CAS  PubMed  Google Scholar 

  120. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550:407–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Su Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, PS. et al. (2021). Recent Progress in Biomedical Applications of Chitosan Derivatives as Gene Carrier. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials IV. Advances in Polymer Science, vol 288. Springer, Cham. https://doi.org/10.1007/12_2021_106

Download citation

Publish with us

Policies and ethics