Skip to main content

Antimicrobial Properties of Chitosan and Its Derivatives

  • Chapter
  • First Online:
Chitosan for Biomaterials III

Part of the book series: Advances in Polymer Science ((POLYMER,volume 287))

Abstract

The investigations of chitosan as an antimicrobial substance came into focus in the 1990s. The number of publications on this topic has been rapidly increasing since then, with more than 2,500 papers published in 2020. Initially, the interest was mainly related to potential applications in agriculture and food products, but currently, the emphasis on the medical use of chitosan and chitosan derivatives is continuously increasing. Common derivatives of chitosan include carboxymethyl chitosan (CMC), N,N,N-trimethyl chitosan (TMC), N-(2-hydroxyl), propyl-3-trimethyl ammonium chitosan chloride (HTCC), hydroxypropyl chitosan (HPC), and glycol chitosan. All of these derivatives have been investigated as antimicrobial polymers in various applications, but most such studies involve using the cationic derivatives TMC and HTCC. Countless other antimicrobial chitosan derivatives have been reported in at least one publication. Many researchers have studied the antimicrobial mechanism of action against bacteria and fungi and found that the polymers affect the cell membrane, but the details of the interaction are still debated. Other studies have indicated intracellular nucleic acids, surface proteins, and lipopolysaccharides as possible targets. Various applications, including plant protection, food preservation, wound treatment, and water purification, have been considered to utilize the antimicrobial properties of chitosan-based materials. Structure-activity relationship studies are helpful to elucidate the function and importance of different structural characteristics that may influence activity, including the degree of acetylation (DA), charge, the structure of the substituted, degree of substitution (DS), and molecular weight (Mw).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hatta S, KUwambara S, Miyamoto H, Aoyama K, Utosnomyia N, Tanji S (1950) Macarmin, a new high molecluar antibacterial substance derived from chitin. Jpn Med J 3:119–123

    Article  CAS  Google Scholar 

  2. Ralston GB, Tracey MV, Wrench PM (1964) The inhibition of fermentation in baker's yeast by chitosan. Biochim Biophys Acta Gen Subj 93:652–655

    Article  CAS  Google Scholar 

  3. Allan CR, Hadwiger LA (1979) Fungicidal effect of chitosan on fungi of varying cell-wall composition. Exp Mycol 3:285–287

    Article  CAS  Google Scholar 

  4. Hadwiger LA, Beckman JM (1980) Chitosan as a component of pea-fusarium-solani interactions. Plant Physiol 66:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hadwiger LA, Loschke DC (1981) Molecular communication in host-parasite interactions – hexosamine polymers (chitosan) as regulator compounds in race-specific and other interactions. Phytopathology 71:756–762

    Article  CAS  Google Scholar 

  6. Kendra DF, Hadwiger LA (1984) Characterization of the smallest chitosan oligomer that is maximally antifungal to fusarium-solani and elicits pisatin formation in pisum-sativum. Exp Mycol 8:276–281

    Article  CAS  Google Scholar 

  7. Steinfeld L, Vafaei A, Rosner J, Merzendorfer H (2019) Chitin prevalence and function in bacteria, fungi and protists. In: Yang Q, Fukamizo T (eds) Targeting chitin-containing organisms, 2019, Springer, pp 19–59

    Google Scholar 

  8. Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE (1990) Antimicrobial properties of n-carboxybutyl chitosan. Antimicrob Agents Chemother 34:2019–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272

    Article  CAS  Google Scholar 

  10. Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51

    Article  CAS  Google Scholar 

  11. Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A 92:4095–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150

    Article  CAS  PubMed  Google Scholar 

  13. Yang Y, Chu LY, Yang SB, Zhang HB, Qin L, Guillaume O, Eglin D, Richards RG, Tang TT (2018) Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater 79:265–275

    Article  CAS  PubMed  Google Scholar 

  14. Bumgardner JD, Wiser R, Gerard PD, Bergin P, Chestnutt B, Marini M, Ramsey V, Elder SH, Gilbert JA (2003) Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J Biomat Sci Polym Ed 14:423–438

    Article  CAS  Google Scholar 

  15. Abruzzo A, Bigucci F, Cerchiara T, Cruciani F, Vitali B, Luppi B (2012) Mucoadhesive chitosan/gelatin films for buccal delivery of propranolol hydrochloride. Carbohydr Polym 87:581–588

    Article  CAS  PubMed  Google Scholar 

  16. Másson M (2021) Chitin and chitosan. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead publishing series in food science, technology and nutrition, 3rd edn. Elsevier, pp 1039–1072

    Google Scholar 

  17. Sahariah P, Masson M (2017) Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship. Biomacromolecules 18:3846–3868

    Article  CAS  PubMed  Google Scholar 

  18. Badawy MEI, Rabea EI, Rogge TM, Stevens CV, Smagghe G, Steurbaut W, Hofte M (2004) Synthesis and fungicidal activity of new N,O-acyl chitosan derivatives. Biomacromolecules 5:589–595

    Article  CAS  PubMed  Google Scholar 

  19. Peng YF, Han BQ, Liu WS, Xu XJ (2005) Preparation and antimicrobial activity of hydroxypropyl chitosan. Carbohydr Res 340:1846–1851

    Article  CAS  PubMed  Google Scholar 

  20. Anitha A, Rani VVD, Krishna R, Sreeja V, Selvamurugan N, Nair SV, Tamura H, Jayakumar R (2009) Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles. Carbohydr Polym 78:672–677

    Article  CAS  Google Scholar 

  21. Lee DS, Woo JY, Ahn CB, Je JY (2014) Chitosan-hydroxycinnamic acid conjugates: preparation, antioxidant and antimicrobial activity. Food Chem 148:97–104

    Article  CAS  PubMed  Google Scholar 

  22. Chirkov SN (2002) The antiviral activity of chitosan (review). Appl Biochem Microbiol 38:1–8

    Article  CAS  Google Scholar 

  23. Su XW, Zivanovic S, D'Souza DH (2009) Effect of chitosan on the infectivity of murine norovirus, feline calicivirus, and bacteriophage MS2. J Food Prot 72:2623–2628

    Article  CAS  PubMed  Google Scholar 

  24. Milewska A, Ciejka J, Kaminski K, Karewicz A, Bielska D, Zeglen S, Karolak W, Nowakowska M, Potempa J, Bosch BJ, Pyrc K, Szczubialka K (2013) Novel polymeric inhibitors of HCoV-NL63. Antiviral Res 97:112–121

    Article  CAS  PubMed  Google Scholar 

  25. Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 164:268–283

    Article  CAS  PubMed  Google Scholar 

  26. Young DH, Kauss H (1983) Release of calcium from suspension-cultured glycine-max cells by chitosan, other polycations, and polyamines in relation to effects on membrane-permeability. Plant Physiol 73:698–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Young DH, Kohle H, Kauss H (1982) Effect of chitosan on membrane-permeability of suspension-cultured glycine-max and phaseolus-vulgaris cells. Plant Physiol 70:1449–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol 71:235–244

    Article  CAS  PubMed  Google Scholar 

  29. Jeon YJ, Park PJ, Kim SK (2001) Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr Polym 44:71–76

    Article  CAS  Google Scholar 

  30. Muzzarelli RAA, Muzzarelli C, Tarsi R, Miliani M, Gabbanelli F, Cartolari M (2001) Fungistatic activity of modified chitosans against Saprolegnia parasitica. Biomacromolecules 2:165–169

    Article  CAS  PubMed  Google Scholar 

  31. Liu XF, Guan YL, Yang DZ, Li Z, De Yao K (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79:1324–1335

    Article  CAS  Google Scholar 

  32. Li XF, Feng XQ, Yang S, Fu GQ, Wang TP, Su ZX (2010) Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydr Polym 79:493–499

    Article  CAS  Google Scholar 

  33. Liu H, Du YM, Wang XH, Sun LP (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155

    Article  CAS  PubMed  Google Scholar 

  34. Je JY, Kim SK (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54:6629–6633

    Article  CAS  PubMed  Google Scholar 

  35. Xu JG, Zhao XM, Wang XL, Zhao ZB, Du YG (2007) Oligochitosan inhibits Phytophthora capsici by penetrating the cell membrane and putative binding to intracellular targets. Pestic Biochem Physiol 88:167–175

    Article  CAS  Google Scholar 

  36. Park Y, Kim MH, Park SC, Cheong H, Jang MK, Nah JW, Hahm KS (2008) Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J Microbiol Biotechnol 18:1729–1734

    CAS  PubMed  Google Scholar 

  37. Raafat D, von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74:3764–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential – a critical literature survey. J Microbial Biotechnol 2:186–201

    Article  CAS  Google Scholar 

  39. Kong M, Chen XG, Liu CS, Liu CG, Meng XH, Yu LJ (2008) Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E coli. Colloids Surf B Biointerfaces 65:197–202

    Article  CAS  PubMed  Google Scholar 

  40. Jeon SJ, Oh M, Yeo WS, Galvao KN, Jeong KC (2014) Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS One 9

    Google Scholar 

  41. Li PL, Wang FS (2015) Polysaccharides: candidates of promising vaccine adjuvants. Drug Discov Ther 9:88–93

    Article  CAS  PubMed  Google Scholar 

  42. Li XS, Min M, Du N, Gu Y, Hode T, Naylor M, Chen DJ, Nordquist RE, Chen WR (2013) Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013:387023

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hadwiger LA (2013) Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci 208:42–49

    Article  CAS  PubMed  Google Scholar 

  44. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  45. Antony R, Arun T, Manickam STD (2019) A review on applications of chitosan-based Schiff bases. Int J Biol Macromol 129:615–633

    Article  CAS  PubMed  Google Scholar 

  46. Benediktsdóttir BE, Gaware VS, Rúnarsson ÖV, Jónsdóttir S, Jensen KJ, Másson M (2011) Synthesis of N,N,N-trimethyl chitosan homopolymer and highly substituted N-alkyl-N,N dimethyl chitosan derivatives with the aid of di-tert-butyldimethylsilyl chitosan. Carbohydr Polym 86:1451–1460

    Article  CAS  Google Scholar 

  47. Hirano S, Osaka T (1983) Some o-stearoyl derivatives of chitosan prepared via its schiffs base intermediates. Agric Biol Chem 47:1389–1391

    CAS  Google Scholar 

  48. Verheul RJ, Amidi M, van der Wal S, van Riet E, Jiskoot W, Hennink WE (2008) Synthesis, characterization and in vitro biological properties of O-methyl free N,N,N-trimethylated chitosan. Biomaterials 29:3642–3649

    Article  CAS  PubMed  Google Scholar 

  49. Rúnarsson ÖV, Holappa J, Malainer C, Steinsson H, Hjálmarsdóttir M, Nevalainen T, Másson M (2010) Antibacterial activity of N-quaternary chitosan derivatives: synthesis, characterization, and structure activity relationship investigations (SAR). Eur Polym J 46:1251–1267

    Article  CAS  Google Scholar 

  50. Shagdarova BT, Il'ina AV, Varlamov VP (2016) Antibacterial activity of alkylated and acylated derivatives of low-molecular weight chitosan. Appl Biochem Microbiol 52:222–225

    Article  CAS  Google Scholar 

  51. Hirano S, Ohe Y, Ono H (1976) Selective n-acylation of chitosan. Carbohydr Res 47:315–320

    Article  CAS  PubMed  Google Scholar 

  52. Guo P, Anderson JD, Bozell JJ, Zivanovic S (2016) The effect of solvent composition on grafting gallic acid onto chitosan via carbodiimide. Carbohydr Polym 140:171–180

    Article  CAS  PubMed  Google Scholar 

  53. Khan I, Ullah S, Oh DH (2016) Chitosan grafted monomethyl fumaric acid as a potential food preservative. Carbohydr Polym 152:87–96

    Article  CAS  PubMed  Google Scholar 

  54. Huang HB, Li ZH, Chen Y, Liu WY, Zeng GS, Qin CR (2019) Synthesis, characterization and antibacterial activity of O-Ester functionalized chitosan. J Biobaased Mater Bioenergy 13:338–345

    Article  CAS  Google Scholar 

  55. Pranantyo D, Xu LQ, Kang ET, Chan-Park MB (2018) Chitosan-based peptidopolysaccharides as cationic antimicrobial agents and antibacterial coatings. Biomacromolecules 19:2156–2165

    Article  CAS  PubMed  Google Scholar 

  56. Curti E, de Britto D, Campana SP (2003) Methylation of chitosan with iodomethane: effect of reaction conditions on chemoselectivity and degree of substitution. Macromol Biosci 3:571–576

    Article  CAS  Google Scholar 

  57. Gabriel L, Heinze T (2020) Structure design of polysaccharides – chemoselective sulfoethylation of chitosan. Eur Polym J 140

    Google Scholar 

  58. Muzzarelli RAA, Tanfani F (1982) N-(ortho-carboxybenzyl) chitosan, n-carboxymethyl chitosan and dithiocarbamate chitosan – new chelating derivatives of chitosan. Pure Appl Chem 54:2141–2150

    Article  CAS  Google Scholar 

  59. Muzzarelli RAA, Tanfani F, Emanuelli M, Mariotti S (1982) N-(carboxymethylidene)chitosans and n-(carboxymethyl)-chitosans – novel chelating polyampholytes obtained from chitosan glyoxylate. Carbohydr Res 107:199–214

    Article  CAS  Google Scholar 

  60. Chen XG, Park HJ (2003) Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydr Polym 53:355–359

    Article  CAS  Google Scholar 

  61. Muzzarelli RAA, Ilari P, Petrarulo M (1994) Solubility and structure of n-carboxymethylchitosan. Int J Biol Macromol 16:177–180

    Article  CAS  PubMed  Google Scholar 

  62. Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym 83:452–461

    Article  CAS  Google Scholar 

  63. Dai YN, Li P, Zhang JP, Wang AQ, Wei Q (2008) A novel pH sensitive N-succinyl chitosan/alginate hydrogel bead for nifedipine delivery. Biopharm Drug Dispos 29:173–184

    Article  CAS  PubMed  Google Scholar 

  64. Laudenslager MJ, Schiffman JD, Schauer CL (2008) Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. Biomacromolecules 9:2682–2685

    Article  CAS  PubMed  Google Scholar 

  65. Sun LP, Du YM, Fan LH, Chen X, Yang JH (2006) Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer 47:1796–1804

    Article  CAS  Google Scholar 

  66. Patale RL, Patravale VB (2011) O,N-carboxymethyl chitosan-zinc complex: a novel chitosan complex with enhanced antimicrobial activity. Carbohydr Polym 85:105–110

    Article  CAS  Google Scholar 

  67. Xu QB, Xie LJ, Diao HLN, Li F, Zhang YY, Fu FY, Liu XD (2017) Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydr Polym 177:187–193

    Article  CAS  PubMed  Google Scholar 

  68. Maya S, Indulekha S, Sukhithasri V, Smitha KT, Nair SV, Jayakumar R, Biswas R (2012) Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. Int J Biol Macromol 51:392–399

    Article  CAS  PubMed  Google Scholar 

  69. Tan YL, Han F, Ma S, Yu WG (2011) Carboxymethyl chitosan prevents formation of broad-spectrum biofilm. Carbohydr Polym 84:1365–1370

    Article  CAS  Google Scholar 

  70. Sabaa MW, Mohamed NA, Mohamed RR, Khalil NM, El Latif SMA (2010) Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr Polym 79:998–1005

    Article  CAS  Google Scholar 

  71. Mohamed NA, Sabaa MW, El-Ghandour AH, Abdel-Aziz MM, Abdel-Gawad OF (2013) Quaternized N-substituted carboxymethyl chitosan derivatives as antimicrobial agents. Int J Biol Macromol 60:156–164

    Article  CAS  PubMed  Google Scholar 

  72. Wu MY, Long Z, Xiao HN, Dong CH (2016) Recent research progress on preparation and application of N, N, N-trimethyl chitosan. Carbohydr Res 434:27–32

    Article  CAS  PubMed  Google Scholar 

  73. Sieval AB, Thanou M, Kotze AF, Verhoef JE, Brussee J, Junginger HE (1998) Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride. Carbohydr Polym 36:157–165

    Article  CAS  Google Scholar 

  74. Rúnarsson ÖV, Holappa J, Jónsdóttir S, Steinsson H, Másson M (2008) N-selective ‘one pot’ synthesis of highly N-substituted trimethyl chitosan (TMC). Carbohydr Polym 74:740–744

    Article  CAS  Google Scholar 

  75. Benediktsdottir BE, Baldursson O, Masson M (2014) Challenges in evaluation of chitosan and trimethylated chitosan (TMC) as mucosal permeation enhancers: from synthesis to in vitro application. J Control Release 173:18–31

    Article  CAS  PubMed  Google Scholar 

  76. van der Merwe SM, Verhoef JC, Verheijden JHM, Kotze AF, Junginger HE (2004) Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm 58:225–235

    Article  PubMed  CAS  Google Scholar 

  77. Pardeshi CV, Belgamwar VS (2016) Controlled synthesis of N,N,N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability. Int J Biol Macromol 82:933–944

    Article  CAS  PubMed  Google Scholar 

  78. du Plessis LH, Kotze AF, Junginger HE (2010) Nasal and rectal delivery of insulin with chitosan and N-trimethyl chitosan chloride. Drug Deliv 17:399–407

    Article  PubMed  CAS  Google Scholar 

  79. Benediktsdottir BE, Gudjonsson T, Baldursson O, Masson M (2014) N-alkylation of highly quaternized chitosan derivatives affects the paracellular permeation enhancement in bronchial epithelia in vitro. Eur J Pharm Biopharm 86:55–63

    Article  CAS  PubMed  Google Scholar 

  80. Mao ZW, Ma L, Jiang Y, Yan M, Gao CY, Shen JC (2007) N,N,N-trimethylchitosan chloride as a gene vector: synthesis and application. Macromol Biosci 7:855–863

    Article  CAS  PubMed  Google Scholar 

  81. Liu M, Zhang J, Zhu X, Shan W, Li L, Zhong JJ, Zhang ZR, Huang Y (2016) Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release 222:67–77

    Article  CAS  PubMed  Google Scholar 

  82. Jin Y, Song YP, Zhu X, Zhou D, Chen CH, Zhang ZR, Huang Y (2012) Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 33:1573–1582

    Article  CAS  PubMed  Google Scholar 

  83. Gao YK, Wang ZY, Zhang JH, Zhang YX, Huo H, Wang TY, Jiang TY, Wang SL (2014) RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain. Biomacromolecules 15:1010–1018

    Article  CAS  PubMed  Google Scholar 

  84. Rúnarsson ÖV, Holappa J, Nevalainen T, Hjálmarsdóttir M, Järvinen T, Loftsson T, Einarsson JM, Jónsdóttir S, Valdimarsdótti M, Másson M (2007) Antibacterial activity of methylated chitosan and chitooligomer derivatives: synthesis and structure activity relationships. Eur Polym J 43:2660–2671

    Article  CAS  Google Scholar 

  85. Sahariah P, Gaware VS, Lieder R, Jónsdóttir S, Hjálmarsdóttir MÁ, Sigurjonsson OE, Másson M (2014) The effect of substituent, degree of acetylation and positioning of the cationic charge on the antibacterial activity of quaternary chitosan derivatives. Mar Drugs 12:4635–4658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Zhou ZZ, Yan D, Cheng XJ, Kong M, Liu Y, Feng C, Chen XG (2016) Biomaterials based on N,N,N-trimethyl chitosan fibers in wound dressing applications. Int J Biol Macromol 89:471–476

    Article  CAS  PubMed  Google Scholar 

  87. Stawski D, Sahariah P, Hjalmarsdottir M, Wojciechowska D, Puchalski M, Masson M (2017) N,N,N-trimethyl chitosan as an efficient antibacterial agent for polypropylene and polylactide nonwovens. J Text Inst 108:1041–1049

    Article  CAS  Google Scholar 

  88. Tabriz A, Alvi M, Niazi MBK, Batool M, Bhatti MF, Khan AL, Khan AU, Jamil T, Ahmad NM (2019) Quaternized trimethyl functionalized chitosan based antifungal membranes for drinking water treatment. Carbohydr Polym 207:17–25

    Article  CAS  PubMed  Google Scholar 

  89. Hanna DH, Saad GR (2019) Encapsulation of ciprofloxacin within modified xanthan gum-chitosan based hydrogel for drug delivery. Bioorg Chem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  90. Xu JJ, Xu BH, Shou D, Xia XJ, Hu Y (2015) Preparation and evaluation of vancomycin-loaded N-trimethyl chitosan nanoparticles. Polymers 7:1850–1870

    Article  CAS  Google Scholar 

  91. Sadeghi AMM, Amini A, Avadi MR, Siedi F, Rafiee-Tehrani M, Junginger HE (2008) Synthesis, characterization, and antibacterial effects of trimethylated and triethylated 6-NH2-6-deoxy chitosan. J Bioact Compat Polym 23:262–275

    Article  CAS  Google Scholar 

  92. Kim CH, Choi JW, Chun HJ, Choi KS (1997) Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity. Polym Bull 38:387–393

    Article  CAS  Google Scholar 

  93. Sahariah P, Benediktssdottir BE, Hjalmarsdottir MA, Sigurjonsson OE, Sorensen KK, Thygesen MB, Jensen KJ, Masson M (2015) Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and N,N-dialkyl chitosan derivatives. Biomacromolecules 16:1449–1460

    Article  CAS  PubMed  Google Scholar 

  94. Xu T, Xin MH, Li MC, Huang HL, Zhou SQ, Liu JZ (2011) Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan. Carbohydr Res 346:2445–2450

    Article  CAS  PubMed  Google Scholar 

  95. Baudner BC, Verhoef JC, Giuliani MM, Peppoloni S, Rappuoli R, Del Giudice G, Junginger HE (2005) Protective immune responses to meningococcal C conjugate vaccine after intranasal immunization of mice with the LTK63 mutant plus chitosan or trimethyl chitosan chloride as novel delivery platform. J Drug Target 13:489–498

    Article  CAS  PubMed  Google Scholar 

  96. Nevagi RJ, Dai W, Khalil ZG, Hussein WM, Capon RJ, Skwarczynski M, Toth I (2019) Self-assembly of trimethyl chitosan and poly(anionic amino acid)-peptide antigen conjugate to produce a potent self-adjuvanting nanovaccine delivery system. Bioorg Med Chem 27:3082–3088

    Article  CAS  PubMed  Google Scholar 

  97. Wu J, Wei W, Wang LY, Su ZG, Ma GH (2007) A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 28:2220–2232

    Article  CAS  PubMed  Google Scholar 

  98. Xiao B, Wan Y, Wang XY, Zha QC, Liu HM, Qiu ZY, Zhang SM (2012) Synthesis and characterization of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride for potential application in gene delivery. Colloids Surf B Biointerfaces 91:168–174

    Article  CAS  PubMed  Google Scholar 

  99. Hoque J, Adhikary U, Yadav V, Samaddar S, Konai MM, Prakash RG, Pararnanandham K, Shome BR, Sanyal K, Haldar J (2016) Chitosan derivatives active against multidrug-resistant bacteria and pathogenic Fungi: in vivo evaluation as topical antimicrobials. Mol Pharm 13:3578–3589

    Article  CAS  PubMed  Google Scholar 

  100. Lim SH, Hudson SM (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 339:313–319

    Article  CAS  PubMed  Google Scholar 

  101. Lim SH, Hudson SM (2004) Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydr Polym 56:227–234

    Article  CAS  Google Scholar 

  102. Deng HB, Lin PH, Xin SJ, Huang R, Li W, Du YM, Zhou X, Yang JH (2012) Quaternized chitosan-layered silicate intercalated composites based nanofibrous mats and their antibacterial activity. Carbohydr Polym 89:307–313

    Article  CAS  PubMed  Google Scholar 

  103. Hu DY, Wang HX, Wang LJ (2016) Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. Lwt Food Sci Technol 65:398–405

    Article  CAS  Google Scholar 

  104. Huang JF, Zhong J, Chen GP, Lin ZT, Deng YQ, Liu YL, Cao PY, Wang BW, Wei YT, Wu TF, Yuan J, Jiang GB (2016) A hydrogel-based hybrid theranostic contact lens for fungal keratitis. ACS Nano 10:6464–6473

    Article  CAS  PubMed  Google Scholar 

  105. Ji QX, Zhao QS, Deng J, Lu R (2010) A novel injectable chlorhexidine thermosensitive hydrogel for periodontal application: preparation, antibacterial activity and toxicity evaluation. J Mater Sci Mater Med 21:2435–2442

    Article  CAS  PubMed  Google Scholar 

  106. Cao LD, Zhang HR, Cao C, Zhang JK, Li FM, Huang QL (2016) Quaternized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release. Nanomaterials (Basel) 6(7):126

    Article  CAS  Google Scholar 

  107. Aliabadi M, Dastjerdi R, Kabiri K (2013) HTCC-modified nanoclay for tissue engineering applications: a synergistic cell growth and antibacterial efficiency. Biomed Res Int 2013

    Google Scholar 

  108. Milewska A, Kaminski K, Ciejka J, Kosowicz K, Zeglen S, Wojarski J, Nowakowska M, Szczubialka K, Pyrc K (2016) HTCC: broad range inhibitor of coronavirus entry. PLoS One 11

    Google Scholar 

  109. Monti D, Saccomani L, Chetoni P, Burgalassi S, Saettone MF, Mailland F (2005) In vitro transungual permeation of ciclopirox from a hydroxypropyl chitosan-based, water-soluble nail lacquer. Drug Dev Ind Pharm 31:11–17

    Article  CAS  PubMed  Google Scholar 

  110. Monti D, Saccomani L, Chetoni P, Burgalassi S, Senesi S, Ghelardi E, Mailland F (2010) Hydrosoluble medicated nail lacquers: in vitro drug permeation and corresponding antimycotic activity. Br J Dermatol 162:311–317

    Article  CAS  PubMed  Google Scholar 

  111. Baran R, Tosti A, Hartmane I, Altmeyer P, Hercogova J, Koudelkova V, Ruzicka T, Combemale P, Mikazans I (2009) An innovative water-soluble biopolymer improves efficacy of ciclopirox nail lacquer in the management of onychomycosis. J Eur Acad Dermatol Venereol 23:773–781

    Article  CAS  PubMed  Google Scholar 

  112. Lu GZ, Ling K, Zhao P, Xu ZH, Deng C, Zheng H, Huang J, Chen JH (2010) A novel in situ-formed hydrogel wound dressing by the photocross-linking of a chitosan derivative. Wound Repair Regen 18:70–79

    Article  PubMed  Google Scholar 

  113. Prabaharan M, Mano JF (2005) Hydroxypropyl chitosan bearing beta-cyclodextrin cavities: synthesis and slow release of its inclusion complex with a model hydrophobic drug. Macromol Biosci 5:965–973

    Article  CAS  PubMed  Google Scholar 

  114. Xie WM, Xu PX, Wang W, Liu Q (2002) Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydr Polym 50:35–40

    Article  CAS  Google Scholar 

  115. Zhu C, Zou SQ, Rao ZQ, Min L, Liu M, Liu LL, Fan LH (2017) Preparation and characterization of hydroxypropyl chitosan modified with nisin. Int J Biol Macromol 105:1017–1024

    Article  CAS  PubMed  Google Scholar 

  116. Kim SE, Kim HJ, Rhee JK, Park K (2017) Versatile chemical derivatizations to design glycol chitosan-based drug carriers. Molecules 22

    Google Scholar 

  117. Kwon S, Park JH, Chung H, Kwon IC, Jeong SY, Kim IS (2003) Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5 beta-cholanic acid. Langmuir 19:10188–10193

    Article  CAS  Google Scholar 

  118. Kim JH, Kim YS, Park K, Lee S, Nam HY, Min KH, Jo HG, Park JH, Choi K, Jeong SY, Park RW, Kim IS, Kim K, Kwon IC (2008) Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release 127:41–49

    Article  CAS  PubMed  Google Scholar 

  119. Park JH, Kwon S, Lee M, Chung H, Kim JH, Kim YS, Park RW, Kim IS, Seo SB, Kwon IC, Jeong SY (2006) Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials 27:119–126

    Article  CAS  PubMed  Google Scholar 

  120. Uchegbu IF, Sadiq L, Arastoo M, Gray AI, Wang W, Waigh RD, Schatzleina AG (2001) Quaternary ammonium palmitoyl glycol chitosan – a new polysoap for drug delivery. Int J Pharm 224:185–199

    Article  CAS  PubMed  Google Scholar 

  121. Yan L, Crayton SH, Thawani JP, Amirshaghaghi A, Tsourkas A, Cheng Z (2015) A pH-responsive drug-delivery platform based on glycol chitosan-coated liposomes. Small 11:4870–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ding CX, Zhao LL, Liu FY, Cheng J, Gu JX, Shan D, Liu CY, Qu XZ, Yang ZZ (2010) Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. Biomacromolecules 11:1043–1051

    Article  CAS  PubMed  Google Scholar 

  123. Tripodo G, Trapani A, Rosato A, Di Franco C, Tamma R, Trapani G, Ribatti D, Mandracchia D (2018) Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity. Carbohydr Polym 198:124–130

    Article  CAS  PubMed  Google Scholar 

  124. Inbaraj BS, Tsai TY, Chen BH (2012) Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan. Sci Technol Adv Mater 13

    Google Scholar 

  125. Muzzarelli R, Weckx M, Filippini O, Lough C (1989) Characteristic properties of normal-carboxybutyl chitosan. Carbohydr Polym 11:307–320

    Article  CAS  Google Scholar 

  126. Muzzarelli RAA, Toschi E, Ferioli G, Giardino R, Fini M, Rocca M, Biagini G (1990) N-carboxybutyl chitosan and fibrin glue in cutaneous repair processes. J Bioact Compat Polym 5:396–411

    Article  CAS  Google Scholar 

  127. Rinaudo M, Desbrieres J, Le Dung P, Binh PT, Dong NT (2001) NMR investigation of chitosan derivatives formed by the reaction of chitosan with levulinic acid. Carbohydr Polym 46:339–348

    Article  CAS  Google Scholar 

  128. Rabea EI, El Badawy M, Rogge TM, Stevens CV, Steurbaut W, Hofte M, Smagghe G (2006) Enhancement of fungicidal and insecticidal activity by reductive alkylation of chitosan. Pest Manag Sci 62:890–897

    Article  CAS  PubMed  Google Scholar 

  129. Eweis M, Elkholy SS, Elsabee MZ (2006) Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Int J Biol Macromol 38:1–8

    Article  CAS  PubMed  Google Scholar 

  130. Zhong ZM, Xing RE, Liu S, Wang L, Cai SB, Li PC (2008) Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydr Res 343:566–570

    Article  CAS  PubMed  Google Scholar 

  131. Geisberger G, Gyenge EB, Hinger D, Kach A, Maake C, Patzke GR (2013) Chitosan-thioglycolic acid as a versatile antimicrobial agent. Biomacromolecules 14:1010–1017

    Article  CAS  PubMed  Google Scholar 

  132. Han B, Wei Y, Jia XL, Xu J, Li G (2012) Correlation of the structure, properties, and antimicrobial activity of a soluble thiolated chitosan derivative. J Appl Polym Sci 125:E143–E148

    Article  CAS  Google Scholar 

  133. Rathinam S, Solodova S, Kristjánsdóttir I, Hjálmarsdóttir MÁ, Másson M (2020) The antibacterial structure-activity relationship for common chitosan derivatives. Int J Biol Macromol 165:1686–1693

    Article  CAS  PubMed  Google Scholar 

  134. Huang RH, Du YM, Zheng LS, Liu H, Fan LH (2004) A new approach to chemically modified chitosan sulfates and study of their influences on the inhibition of Escherichia coli and Staphylococcus aureus growth. React Funct Polym 59:41–51

    Article  CAS  Google Scholar 

  135. Sun ZM, Shi CG, Wang XY, Fang Q, Huang JY (2017) Synthesis, characterization, and antimicrobial activities of sulfonated chitosan. Carbohydr Polym 155:321–328

    Article  CAS  PubMed  Google Scholar 

  136. Nagy V, Másson M (2010) Chitosan–antioxidant conjugates. In: Kim SK (ed) Encyclopedia of marine biotechnology. section IV: biomaterials. Wiley, pp 1031–1050

    Google Scholar 

  137. Sousa F, Guebitz GM, Kokol V (2009) Antimicrobial and antioxidant properties of chitosan enzymatically functionalized with flavonoids. Process Biochem 44:749–756

    Article  CAS  Google Scholar 

  138. Jagadish RS, Divyashree KN, Viswanath P, Srinivas P, Raj B (2012) Preparation of N-vanillyl chitosan and 4-hydroxybenzyl chitosan and their physico-mechanical, optical, barrier, and antimicrobial properties. Carbohydr Polym 87:110–116

    Article  CAS  PubMed  Google Scholar 

  139. Bozic M, Gorgieva S, Kokol V (2012) Laccase-mediated functionalization of chitosan by caffeic and gallic acids for modulating antioxidant and antimicrobial properties. Carbohydr Polym 87:2388–2398

    Article  CAS  Google Scholar 

  140. Su YJ, Tian L, Yu M, Gao Q, Wang DH, Xi YW, Yang P, Lei B, Ma PX, Li P (2017) Cationic peptidopolysaccharides synthesized by ‘click’ chemistry with enhanced broad-spectrum antimicrobial activities. Polym Chem 8:3788–3800

    Article  CAS  Google Scholar 

  141. Sahariah P, Sorensen KK, Hjalmarsdottir MA, Sigurjonsson OE, Jensen KJ, Masson M, Thygesen MB (2015) Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers. Chem Commun 51:11611–11614

    Article  CAS  Google Scholar 

  142. Chen MC, Mi FL, Liao ZX, Hsiao CW, Sonaje K, Chung MF, Hsu LW, Sung HW (2013) Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 65:865–879

    Article  CAS  PubMed  Google Scholar 

  143. Naskar S, Sharma S, Kuotsu K (2019) Chitosan-based nanoparticles: an overview of biomedical applications and its preparation. J Drug Deliv Sci Tech 49:66–81

    Article  CAS  Google Scholar 

  144. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28

    Article  CAS  PubMed  Google Scholar 

  145. Xu YM, Du YM, Huang RH, Gao LP (2003) Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials 24:5015–5022

    Article  CAS  PubMed  Google Scholar 

  146. Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W (2006) Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 111:107–116

    Article  CAS  PubMed  Google Scholar 

  147. Chen F, Shi ZL, Neoh KG, Kang ET (2009) Antioxidant and antibacterial activities of eugenol and Carvacrol-grafted chitosan nanoparticles. Biotechnol Bioeng 104:30–39

    Article  CAS  PubMed  Google Scholar 

  148. Piras AM, Maisetta G, Sandreschi S, Gazzarri M, Bartoli C, Grassi L, Esin S, Chiellini F, Batoni G (2015) Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front Microbiol 6

    Google Scholar 

  149. Friedman AJ, Phan J, Schairer DO, Champer J, Qin M, Pirouz A, Blecher-Paz K, Oren A, Liu PT, Modlin RL, Kim J (2013) Antimicrobial and anti-inflammatory activity of chitosan alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Investig Dermatol 133:1231–1239

    Article  CAS  PubMed  Google Scholar 

  150. Sathiyabama M, Parthasarathy R (2016) Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr Polym 151:321–325

    Article  CAS  PubMed  Google Scholar 

  151. Madhumathi K, Shalumon KT, Rani VVD, Tamura H, Furuike T, Selvamurugan N, Nair SV, Jayakumar R (2009) Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 45:12–15

    Article  CAS  PubMed  Google Scholar 

  152. He GH, Ke WW, Chen X, Kong YH, Zheng H, Yin YH, Cai WQ (2017) Preparation and properties of quaternary ammonium chitosan-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogels. React Funct Polym 111:14–21

    Article  CAS  Google Scholar 

  153. Peng ZX, Ao HY, Wang L, Guo SR, Tang TT (2015) Quaternised chitosan coating on titanium provides a self-protective surface that prevents bacterial colonisation and implant-associated infections. RSC Adv 5:54304–54311

    Article  CAS  Google Scholar 

  154. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnol 8:203–226

    Article  CAS  Google Scholar 

  155. Kurita K, Shimada K, Nishiyama Y, Shimojoh M, Nishimura S (1998) Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having alpha-mannoside branches. Macromolecules 31:4764–4769

    Article  CAS  PubMed  Google Scholar 

  156. Nishimura SI, Kohgo O, Kurita K, Kuzuhara H (1991) Chemospecific manipulations of a rigid polysaccharide – syntheses of novel chitosan derivatives with excellent solubility in common organic-solvents by regioselective chemical modifications. Macromolecules 24:4745–4748

    Article  CAS  Google Scholar 

  157. Kurita K, Akao H, Yang J, Shimojoh M (2003) Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having disaccharide maltose branches. Biomacromolecules 4:1264–1268

    Article  CAS  PubMed  Google Scholar 

  158. Yang JH, Cai J, Hu Y, Li DL, Du YM (2012) Preparation, characterization and antimicrobial activity of 6-amino-6-deoxychitosan. Carbohydr Polym 87:202–209

    Article  CAS  PubMed  Google Scholar 

  159. Ghiggi FF, Pollo LD, Cardozo NSM, Tessaro IC (2017) Preparation and characterization of polyethersulfone/N-phthaloyl-chitosan ultrafiltration membrane with antifouling property. Eur Polym J 92:61–70

    Article  CAS  Google Scholar 

  160. Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26:1921–1971

    Article  CAS  Google Scholar 

  161. Holappa J, Nevalainen T, Savolainen J, Soininen P, Elomaa M, Safin R, Suvanto S, Pakkanen T, Masson M, Loftsson T, Jarvinen T (2004) Synthesis and characterization of chitosan N-betainates having various degrees of substitution. Macromolecules 37:2784–2789

    Article  CAS  Google Scholar 

  162. Holappa J, Nevalainen T, Safin R, Soininen P, Asplund T, Luttikhedde T, Masson M, Jarvinen T (2006) Novel water-soluble quaternary piperazine derivatives of chitosan: synthesis and characterization. Macromol Biosci 6:139–144

    Article  CAS  PubMed  Google Scholar 

  163. Holappa J, Hjalmarsdottir M, Masson M, Runarsson O, Asplund T, Soininen P, Nevalainen T, Jarvinen T (2006) Antimicrobial activity of chitosan N-betainates. Carbohydr Polym 65:114–118

    Article  CAS  Google Scholar 

  164. Másson M, Holappa J, Hjálmarsdóttir M, Rúnarsson ÖV, Nevalainen T, Järvinen T (2008) Antimicrobial activity of piperazine derivatives of chitosan. Carbohydr Polym 74:566–571

    Article  CAS  Google Scholar 

  165. Rúnarsson ÖV, Malainer C, Holappa J, Sigurdsson ST, Másson M (2008) Tert-butyldimethylsilyl O-protected chitosan and chitooligosaccharides: useful precursors for N-modifications in common organic solvents. Carbohydr Res 343:2576–2582

    Article  PubMed  CAS  Google Scholar 

  166. Song W, Gaware VS, Rúnarsson ÖV, Másson M, Mano JF (2010) Functionalized superhydrophobic biomimetic chitosan-based films. Carbohydr Polym 81:140–144

    Article  CAS  Google Scholar 

  167. Sahariah P, Oskarsson BM, Hjalmarsdottir MA, Masson M (2015) Synthesis of guanidinylated chitosan with the aid of multiple protecting groups and investigation of antibacterial activity. Carbohydr Polym 127:407–417

    Article  CAS  PubMed  Google Scholar 

  168. Sahariah P, Masson M, Meyer RL (2018) Quaternary ammoniumyl chitosan derivatives for eradication of Staphylococcus aureus biofilms. Biomacromolecules 19:3649–3658

    Article  CAS  PubMed  Google Scholar 

  169. Younes I, Sellimi S, Rinaudo M, Jellouli K, Nasri M (2014) Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int J Food Microbiol 185:57–63

    Article  CAS  PubMed  Google Scholar 

  170. Blagodatskikh IV, Kulikov SN, Vyshivannaya OV, Bezrodnykh EA, Tikhonov VE (2017) N-reacetylated oligochitosan: pH dependence of self-assembly properties and antibacterial activity. Biomacromolecules 18:1491–1498

    Article  CAS  PubMed  Google Scholar 

  171. Li KC, Xing RG, Liu S, Qin YK, Yu HH, Li PC (2014) Size and pH effects of chitooligomers on antibacterial activity against Staphylococcus aureus. Int J Biol Macromol 64:302–305

    Article  CAS  PubMed  Google Scholar 

  172. Park SC, Nah JW, Park Y (2011) pH-dependent mode of antibacterial actions of low molecular weight water-soluble chitosan (LMWSC) against various pathogens. Macromol Res 19:853–860

    Article  CAS  Google Scholar 

  173. Kulikov S, Tikhonov V, Blagodatskikh I, Bezrodnykh E, Lopatin S, Khairullin R, Philippova Y, Abramchuk S (2012) Molecular weight and pH aspects of the efficacy of oligochitosan against methicillin-resistant Staphylococcus aureus (MRSA). Carbohydr Polym 87:545–550

    Article  CAS  PubMed  Google Scholar 

  174. Chang SH, Lin HTV, Wu GJ, Tsai GJ (2015) pH effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym 134:74–81

    Article  CAS  PubMed  Google Scholar 

  175. Rathinam S, Ólafsdóttir S, Jónsdótti S, Hjálmarsdóttir MÁ, Másson M (2020) Selective synthesis of N, N,N-trimethylated chitosan derivatives at different degree of substitution and investigation of structure-activity relationship for activity against P. aeruginosa and MRSA. Int J Biol Macromol 160:548–557

    Article  CAS  PubMed  Google Scholar 

  176. Rhoades J, Roller S (2000) Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl Environ Microbiol 66:80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72

    Article  CAS  PubMed  Google Scholar 

  178. Zheng LY, Zhu JAF (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54:527–530

    Article  CAS  Google Scholar 

  179. Omura Y, Shigemoto M, Akiyama T, Saimoto H, Shigemasa Y, Nakamura I, Tsuchido T (2003) Atimicrobial activity of chtiosan wtih different degrees of aceylation and moelcular weights. Biocontrol Sci 8:25–30

    Article  CAS  Google Scholar 

  180. Qin CQ, Li HR, Xiao Q, Liu Y, Zhu JC, Du YM (2006) Water-solubility of chitosan and its antimicrobial activity. Carbohydr Polym 63:367–374

    Article  CAS  Google Scholar 

  181. Mellegard H, Strand SP, Christensen BE, Granum PE, Hardy SP (2011) Antibacterial activity of chemically defined chitosans: influence of molecular weight, degree of acetylation and test organism. Int J Food Microbiol 148:48–54

    Article  CAS  PubMed  Google Scholar 

  182. Kulikov SN, Lisovskaya SA, Zelenikhin PV, Bezrodnykh EA, Shakirova DR, Blagodatskikh MV, Tikhonov VE (2014) Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: molecular weight-activity relationship. Eur J Med Chem 74:169–178

    Article  CAS  PubMed  Google Scholar 

  183. Blagodatskikh IV, Vyshivannaya OV, Alexandrova AV, Bezrodnykh EA, Zelenikhin PV, Kulikov SN, Tikhonov VE (2018) Antibacterial activity and cytotoxicity of betainated oligochitosane derivatives. Microbiology 87:725–731

    Article  CAS  Google Scholar 

  184. Sahariah P, Cibor D, Zielinska D, Hjalmarsdottir MA, Stawski D, Masson M (2019) The effect of molecular weight on the antibacterial activity of N,N,N-trimethyl chitosan (TMC). Int J Mol Sci 20

    Google Scholar 

  185. Sahariah P, Snorradottir BS, Hjalmarsdottir MA, Sigurjonsson OE, Masson M (2016) Experimental design for determining quantitative structure activity relationship for antibacterial chitosan derivatives. J Mater Chem B 4:4762–4770

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Már Másson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Másson, M. (2021). Antimicrobial Properties of Chitosan and Its Derivatives. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials III. Advances in Polymer Science, vol 287. Springer, Cham. https://doi.org/10.1007/12_2021_104

Download citation

Publish with us

Policies and ethics