Skip to main content

Hydrophobically Associating Hydrogels with Microphase-Separated Morphologies

  • Chapter
  • First Online:
Self-Healing and Self-Recovering Hydrogels

Part of the book series: Advances in Polymer Science ((POLYMER,volume 285))

Abstract

Hydrophobically associating hydrogels based on copolymers of a water-soluble monomer with a fluoroacrylate or fluoromethacrylate possess microphase-separated morphologies that provide unique properties. Physical crosslinks in these hydrogels involve hydrophobic bonds between fluoro(meth)acrylate groups that associate into 2–6-nm-diameter core–shell nanodomains that represent multifunctional crosslinks. These hydrogels exhibit exceptional mechanical properties and fracture toughness values approaching 104 J/m2, are extrudable, and show self-healing behavior of the microstructure. This chapter reviews the characteristics of these microphase-separated, hydrophobically associating hydrogels and discusses potential applications of these materials as injectable in situ forming hydrogels, electrospun fiber mats suitable for tissue scaffolds, controlled drug release, antifreeze materials, and shape memory hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan D, Xu B (2016) Heterotypic supramolecular hydrogels. J Mater Chem B 4:5638–5649

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Seiffert S (2016) Supramolecular polymer networks and gels. In: Advances in polymer science, vol 42. Springer, Heidelberg

    Google Scholar 

  3. Okay O (2015) Self-healing hydrogels formed via hydrophobic interactions. Adv Polym Sci 268:101–142

    CAS  Google Scholar 

  4. Amis EJ, Ning H, Seery TAP, Hogen-Esch TE, Yassini M, Hwang F (1996) Associating polymers containing fluorocarbon hydrophobic units. In: Glass JE (ed) Hydrophilic polymers: performance with environmental acceptability, vol 248. ACS Books, Washington, pp 278–302

    Google Scholar 

  5. Xie X, Hogen-Esch TE (1996) Copolymers of N,N-dimethylacrylamide and 2-(N-ethylperfluorooctanesulfonamido)ethyl acrylate in aqueous media and in bulk. Synthesis and properties. Macromolecules 29:1734–1745

    CAS  Google Scholar 

  6. Zhang YX, Da AH, Hogen-Esch TE, Butler GB (1990) A fluorocarbon-containing hydrophobically-associating polymer. J Polym Sci C Polym Lett 28:213–218

    CAS  Google Scholar 

  7. Zhang YX, Da AH, Butler GB (1992) A fluorine-containing hydrophobically-associating polymer. I. Synthesis and solution properties of copolymers of acrylamide and fluorine-containing acrylates or methacrylates. J Polym Sci A Polym Chem 30:1383–1391

    CAS  Google Scholar 

  8. Bae SS, Chakrabarty K, Seery TAP, Weiss RA (1999) Thermoprocessible hydrogels I: synthesis and properties of polyacrylamides with perfluoroalkyl side chains. J Macromol Sci Pure Appl Chem A36(7–8):931–948

    CAS  Google Scholar 

  9. Tian J, Seery TAP, Weiss RA (2004) Physically crosslinked alkyl acrylamide hydrogels: phase behavior and microstructure. Macromolecules 37:9994–10000

    CAS  Google Scholar 

  10. Tian J, Seery TAP, Ho DL, Weiss RA (2004) Physically crosslinked alkyl acrylamide hydrogels: a SANS analysis of the microstructure. Macromolecules 37:10001–10008

    CAS  Google Scholar 

  11. Mullarney MP, Seery TAP, Weiss RA (2006) Drug diffusion in hydrophobically modified N,N-dimethylacrylamide hydrogels. Polymer 47:3845–3855

    CAS  Google Scholar 

  12. Hao JK, Weiss RA (2011) Viscoelastic and mechanical behavior of hydrophobically modified hydrogels. Macromolecules 44:9390–9398

    CAS  Google Scholar 

  13. Hao JK, Weiss RA (2013) Mechanical behavior of hybrid hydrogels composed of a physical network and a chemical network. Polymer 54:2174–2182

    CAS  Google Scholar 

  14. Hao JK, Weiss RA (2013) Mechanically tough, thermally activated shape memory hydrogels. ACS Macro Lett 2:86–89

    CAS  Google Scholar 

  15. Wiener CG, Weiss RA, Vogt BD (2014) Overcoming confinement limited swelling in hydrogel thin films using supramolecular interactions. Soft Matter 10:6705–6712

    CAS  PubMed  Google Scholar 

  16. Wiener CG, Tyagi M, Liu Y, Weiss RA, Vogt BD (2016) Supramolecular hydrophobic aggregates in hydrogels inhibit ice formation. J Phys Chem B 120:5543–5552

    CAS  PubMed  Google Scholar 

  17. Hao J, Weiss RA (2016) Tuning the viscoelastic behavior of hybrid hydrogels and organogels composed of a physical and a chemical network by the addition of an organic solvent. Macromolecules 49:6687–6693

    CAS  Google Scholar 

  18. Yang Y, Wang C, Wiener CG, Hao J, Shatas S, Weiss RA, Vogt BD (2016) Tough stretchable physically-crosslinked electrospun hydrogel fiber mats. ACS Appl Mater Interfaces 8:22774–22779

    CAS  PubMed  Google Scholar 

  19. Wang C, Wiener CG, Cheng Z, Vogt BD, Weiss RA (2016) Modulation of the mechanical properties of hydrophobically modified supramolecular hydrogels by surfactant-driven structural rearrangement. Macromolecules 49:9228–9238

    CAS  Google Scholar 

  20. Wiener CG, Wang C, Liu Y, Weiss RA, Vogt BD (2017) Nanostructure evolution during relaxation from a large step strain in a supramolecular copolymer-based hydrogel: a sans investigation. Macromolecules 50:1672–1680

    CAS  Google Scholar 

  21. Wang C, Wiener CG, Yang Y, Weiss RA, Vogt BD (2017) Structural rearrangement and stiffening of hydrophobically modified supramolecular hydrogels during thermal annealing. J Polym Sci B Polym Phys 55:1036–1044

    CAS  Google Scholar 

  22. Wang F, Weiss RA (2018) Thermoresponsive supramolecular hydrogels with high fracture toughness. Macromolecules 51:7386–7395

    CAS  Google Scholar 

  23. Sadman K, Wiener C, Weiss RA, White C, Shull K, Vogt BD (2018) Quantitative rheometry of thin soft materials using the quartz crystal microbalance with dissipation (QCM-D). Anal Chem 90:4079–4088

    CAS  PubMed  Google Scholar 

  24. Wang C, Wiener CG, Fukuto M, Li R, Yager G, Weiss RA, Vogt BD (2019) Strain rate dependent nanostructure of hydrogels with reversible hydrophobic associations during uniaxial extension. Soft Matter 15:227–236

    CAS  PubMed  Google Scholar 

  25. Wang C, Wiener CG, Li R, Fukuto M, Vogt BD, Weiss RA (2019) Antifreeze hydrogels formed from supramolecular copolymers. Chem Mater 31:135–145

    CAS  Google Scholar 

  26. Debnath D, Baughman JA, Datta S, Weiss RA, Pugh C (2018) Determination of the radical reactivity ratios of 2-(N-ethylperfluorooctanesulfonamido)ethyl acrylate and methacrylate in copolymerizations with N,N-dimethylacrylamide by in Situ1H NMR analysis as established for styrene–methyl methacrylate copolymerizations. Macromolecules 51:7951–7963

    CAS  Google Scholar 

  27. Griffith WL, Triolo R, Compere AL (1987) Analytical scattering function of a polydisperse Percus-Yevick fluid with Schulz- (Gamma -) distributed diameters. Phys Rev A 35:2200–2206

    CAS  Google Scholar 

  28. Abdurrahmanoglu S, Can V, Okay O (2009) Design of high toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 50:5449–5455

    CAS  Google Scholar 

  29. Tuncaboylu DC, Argun A, Sahin M, Sari M, Okay O (2012) Structure optimization of self-healing hydrogels formed via hydrophobic interactions. Polymer 53:5513–5552

    CAS  Google Scholar 

  30. Argun A, Algi MP, Tuncaboylu DC, Okay O (2014) Surfactant-induced healing of tough hydrogels formed via hydrophobic interactions. Colloid Polym Sci 292:511–517

    CAS  Google Scholar 

  31. Gulyuz U, Okay O (2015) Self-healing poly(N-isopropylacrylamide) hydrogels. Eur Polym J 72:12–22

    CAS  Google Scholar 

  32. Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005

    CAS  Google Scholar 

  33. Tuncaboylu DC, Sahin M, Argun A, Oppermann W, Okay O (2012) Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules 45:1991–2000

    CAS  Google Scholar 

  34. Jiang H, Duan L, Ren X, Gao G (2019) Hydrophobic association hydrogels with excellent mechanical and self-healing properties. Eur Polym J 112:660–669

    CAS  Google Scholar 

  35. Can V, Kochovski Z, Reiter V, Severin N, Siebenbürger M, Kent B, Just J, Rabe JP, Ballauff M, Okay O (2016) Nanostructural evolution and self-healing mechanism of micellar hydrogels. Macromolecules 49:2281–2287

    CAS  Google Scholar 

  36. Treloar LRG (1975) The physics of rubber elasticity. Oxford University Press, Oxford

    Google Scholar 

  37. Tian J, Seery TAP, Ho DL, Weiss RA (2004) Physically cross-linked alkylacrylamide hydrogels: a SANS analysis of the microstructure. Macromolecules 37:10001–10008

    CAS  Google Scholar 

  38. Pamuk AG, Saatci I, Cekirge HS, Aypar U (2005) A contribution to the controversy over dimethyl sulfoxide toxicity: anesthesia monitoring results in patients treated with Onyx embolization for intracranial aneurysms. Neuroradiology 47:380–386

    CAS  PubMed  Google Scholar 

  39. Wignall GD, Melnichenko YB (2005) Recent applications of small-angle neutron scattering in strongly interacting soft condensed matter. Rep Prog Phys 68:1761–1810

    CAS  Google Scholar 

  40. Okay O (2009) General properties of hydrogels. In: Gerlach G, Arndt KF (eds) Hydrogel sensors and actuators. Springer series on chemical sensors and biosensors (methods and applications), vol 6. Springer, Berlin

    Google Scholar 

  41. Naficy S, Brown HR, Joselito AB, Razal M, Spinks GM, Whitten G (2011) Progress toward robust polymer hydrogels. Aust J Chem 64:1007–1025

    CAS  Google Scholar 

  42. Simha NK, Carlson CS, Lewis JL (2004) Evaluation of fracture toughness of cartilage by micropenetration. J Mater Sci Mater Med 15:631–639

    CAS  PubMed  Google Scholar 

  43. Lozinsky VI, Damshkaln LG, Kurochkin IN, Kurochkin II (2012) Study of cryostructuring of polymer systems. 33. Effect of rate of chilling aqueous poly(vinyl alcohol) solutions during their freezing on physicochemical properties and porous structure of resulting cryogels. Colloid J 74:319–327

    CAS  Google Scholar 

  44. Shams Es-haghi S, Mayfield M, Weiss RA (2018) Effect of freeze/thaw process on mechanical behavior of double-network hydrogels in finite tensile deformation. Macromolecules 51:1052–1057

    CAS  Google Scholar 

  45. Zhu XK, Joyce JA (2012) Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng Fract Mech 85:1–46

    Google Scholar 

  46. Long R, Hui CY (2016) Fracture toughness of hydrogels: measurement and interpretation. Soft Matter 12:8069–8086

    CAS  PubMed  Google Scholar 

  47. Rivlin RS, Thomas AG (1953) Rupture of rubber. I. Characteristic energy for tearing. J Polym Sci 10:291–318

    CAS  Google Scholar 

  48. Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KHO, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Persson BN, Albohr O, Heinrich G, Ureba H (2005) Crack propagation in rubber-like materials. J Phys Condens Matter 17:R1071–R1142

    CAS  Google Scholar 

  50. Wang T, Zheng S, Sun W, Liu X, Fu S, Tong Z (2014) Notch insensitive and self-healing PNipam−PAM−clay nanocomposite hydrogels. Soft Matter 10:3506–3512

    CAS  PubMed  Google Scholar 

  51. Guo H, Sanson N, Hourdet D, Marcellan A (2016) Thermoresponsive toughening with crack bifurcation in phase-separated hydrogels under isochoric conditions. Adv Mater 28:5857–5864

    CAS  PubMed  Google Scholar 

  52. Guo H, Mussault C, Brûlet C, Marcellan A, Hourdet D, Sanson NA (2016) Thermoresponsive toughening in LCST-type hydrogels with opposite topology: from structure to fracture properties. Macromolecules 49:4295–4306

    CAS  Google Scholar 

  53. Guo H, Sanson N, Hourdet D, Marcellan A, Sanson N, Hourdet D, Marcellan A (2016) Thermoresponsive toughening with crack bifurcation in phase-separated hydrogels under isochoric conditions. Adv Mater 28:5857–5864

    CAS  PubMed  Google Scholar 

  54. Li J, Illeperuma RK, Suo Z, Vlassak JJ (2014) Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett 3:520–523

    CAS  Google Scholar 

  55. Zhang M, Wang R, Shi Z, Huang X, Zhao W, Zhao C (2017) Multi-responsive, tough and reversible hydrogels with tunable swelling property. J Hazard Mater 322:499–507

    CAS  PubMed  Google Scholar 

  56. Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10:672–687

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xin H, Brown HR, Naficy S, Spinks GM (2015) Time dependent mechanical properties of tough ionic-covalent hybrid hydrogels. Polymer 65:253–261

    CAS  Google Scholar 

  58. Li J, Illeperuma WRK, Suo Z, Vlassak JJ (2014) Hydrogels with extremely high stiffness and toughness. ACS Macro Lett 3:520–523

    CAS  Google Scholar 

  59. Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12:932–937

    CAS  PubMed  Google Scholar 

  60. Zhu F, Lin XY, Wu ZL, Cheng L, Yin J, Song Y, Qian J, Zheng Q (2016) Crack blunting and advancing behaviors of tough and self-healing polyampholyte hydrogel. Polymer 95:9–17

    CAS  Google Scholar 

  61. Zheng SY, Ding H, Qian J, Yin J, Wu ZL, Song Y, Zheng Q (2016) Metal-coordination complexes mediated physical hydrogels with high toughness, stick−slip tearing behavior, and good processability. Macromolecules 49:9637–9646

    CAS  Google Scholar 

  62. Cooper W (1958) Copolymers of butadiene and unsaturated acids: crosslinking by metal oxides. J Polym Sci 28:195–206

    CAS  Google Scholar 

  63. Li J, Suo Z, Vlassak J (2014) Stiff, strong, and tough hydrogels with good chemical stability. J Mater Chem B 2:6708–6713

    PubMed  Google Scholar 

  64. Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and Mullins effect of tough double-network hydrotgels. Macromolecules 40:2919–2927

    CAS  Google Scholar 

  65. Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590

    CAS  Google Scholar 

  66. Mullins L, Tobiin NR (1965) Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber. J Appl Polym Sci 9:2993–3009

    CAS  Google Scholar 

  67. Diani J, Fayolle B, Gilormini PA (2009) A review on the Mullins effect. Eur Polym J 45:601–612

    CAS  Google Scholar 

  68. Qi HJ, Boyce MC (2005) Stress−strain behavior of thermoplastic polyurethanes. Mech Mater 37:817–839

    Google Scholar 

  69. Tang J, Chen X, Pei Y, Fang D (2016) Pseudoelasticity and nonideal Mullins effect of nanocomposite hydrogels. J Appl Mech 83:111010

    Google Scholar 

  70. Tang Z, Chen F, Chen Q, Zhu L, Yan X, Chen H, Ren B, Yang J, Qin G, Zheng J (2017) The energy dissipation and Mullins effect of tough polymer/graphene oxide hybrid nanocomposite hydrogels. Polym Chem 8:4659–4672

    CAS  Google Scholar 

  71. Wang Q, Gao Z (2016) A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers. J Mech Phys Solids 94:127–147

    CAS  Google Scholar 

  72. Yang JA, Hwang BW, Hoffman AS, Hahn SK (2014) In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 39:1973–1986

    CAS  Google Scholar 

  73. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    CAS  Google Scholar 

  74. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng B 16:371–383

    CAS  Google Scholar 

  75. de Lima GG, Lyons S, Devine DM, Nugent MJD (2018) Electrospinning of hydrogels for biomedical applications. In: Hydrogels. Springer, Berlin, pp 219–258

    Google Scholar 

  76. Koombhongse S, Liu WX, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci B Polym Phys 39:2598–2606

    CAS  Google Scholar 

  77. Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygui RE, MacLellan WR (2008) Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29:2907–2914

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nakajima T, Furukawa H, Tanaka Y, Kurokawa T, Osada Y, Gong JP (2009) True chemical structure of double network hydrogels. Macromolecules 42:2184–2189

    CAS  Google Scholar 

  79. Tanaka Y, Kuwabara R, Na YH, Kurokawa T, Gong JP (2005) Determination of fracture energy of high strength double network hydrogels. J Phys Chem B 109:11559–11562

    CAS  PubMed  Google Scholar 

  80. Ferreira L, Vidal MM, Gil MH (2001) Design of a drug-delivery system based on polyacrylamide hydrogels. Evaluation of structural properties. Chem Educ 6:100–103

    CAS  Google Scholar 

  81. Chirani N, Yahia L, Gritsch L, Motta FL, Chirani S, Fare S (2015) History and applications of hydrogels. J Biomed Sci 4:13

    Google Scholar 

  82. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8:607–626

    PubMed  PubMed Central  Google Scholar 

  83. Mooney DJ, Li J (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:1–38

    Google Scholar 

  84. Controlled release drug delivery market analysis report by technology (implants, transdermal, microencapsulation, targeted delivery), by release mechanism, by application, and segment forecasts, 2018–2025. Grand View Research, San Francisco

    Google Scholar 

  85. Ashton P (2015) Huge therapeutic advances: bigger drug delivery opportunities. Opthamalic Drug Deliv Ondrug Deliv 54:4–6

    Google Scholar 

  86. Rupenthal I (2015) Ocular drug delivery technologies: exciting times ahead. Ondrug Deliv 54:4–6

    Google Scholar 

  87. Xu J, Xue Y, Hu G, Lin T, Gou J, Yin T, He H, Zhang Y, Tang X (2018) A comprehensive review on contact lens for ophthalmic drug delivery. J Control Release 281:97–118

    CAS  PubMed  Google Scholar 

  88. Weiss RA, Seery TAP (1998) Novel contact lens materials. Wesley Jessen Corp, Des Plaines

    Google Scholar 

  89. Yu H, Grainger DWJ (1995) Modified release of hydrophilic, hydrophobic and peptide agents from ionized amphiphilic gel networks. J Control Release 34:117–127

    CAS  Google Scholar 

  90. Gilbard JP (2000) Dry eye disorders. In: Albert DM, Jacobiec FA (eds) Principles and practice of ophthalmology-clinical practice, vol 3. WB Saunders, Philadelphia, pp 982–1001

    Google Scholar 

  91. Korsmeyerr RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35

    Google Scholar 

  92. Thomas NL, Windle AH (1982) A theory of case II diffusion. Polymer 23:529–543

    CAS  Google Scholar 

  93. RESTASIS® Ophthalmic Emulsion, Allergan, Inc. https://www.restasis.com

  94. Peng CC, Chauhan A (2011) Extended cyclosporine delivery by silicone–hydrogel contact lenses. J Control Release 154:267–274

    CAS  PubMed  Google Scholar 

  95. Rubinsky B (2000) Cryosurgery. Annu Rev Biomed Eng 2000(2):157–187

    Google Scholar 

  96. Fowler A, Toner M (2006) Cryo-injury and biopreservation. Ann N Y Acad Sci 1066:119–135

    Google Scholar 

  97. Gent RW, Dart NP, Cansdale JT (2000) Aircraft icing. Philos Trans R Soc A 358:2873–2911

    Google Scholar 

  98. Rumich-Bayer S, Krause GH (1986) Freezing damage and frost tolerance of the photosynthetic apparatus studied with isolated mesophyll protoplasts of Valerianella locusta L. Photosynth Res 8:161–174

    CAS  PubMed  Google Scholar 

  99. Ustun NS, Turhan S (2015) Antifreeze proteins: characteristics, function, mechanism of action, sources and application to foods. J Food Process Preserv 39:3189–3197

    CAS  Google Scholar 

  100. Davies PL (2014) Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 39:548–555

    CAS  PubMed  Google Scholar 

  101. Rasaiah JC, Garde S, Hummer G (2008) Water in nonpolar confinement: from nanotubes to proteins from nanotubes to proteins and beyond. Annu Rev Phys Chem 59:713–740

    CAS  PubMed  Google Scholar 

  102. Mochizuki K, Koga K (2015) Solid− liquid critical behavior of water in nanopores. Proc Natl Acad Sci U S A 112:8221–8226

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Pradzynski CC, Forck RM, Zeuch T, Slavicek P, Buck U (2012) A fully size-resolved perspective on the crystallization of water clusters. Science 337:1529–1532

    CAS  PubMed  Google Scholar 

  104. Teixeira J, Bellissentfunel MC, Chen SH, Dianoux AJ (1985) Experimental-determination of the nature of diffusive motions of water-molecules at low-temperatures. Phys Rev A 31:1913–1917

    CAS  Google Scholar 

  105. Gillen KT, Douglass DC, Hoch JR (1972) Self-diffusion in liquid water to −31°C. J Chem Phys 57:5117–5118

    CAS  Google Scholar 

  106. Sciortino F, Gallo P, Tartaglia P, Chen SH (1996) Supercooled water and the kinetic glass transition. Phys Rev E 54:6331–6343

    CAS  Google Scholar 

  107. Majumder M, Chapra N, Andrews R, Hinds BJ (2005) Hydrodynamics: enhanced flow in carbon nanotubes. Nature 438:44

    CAS  PubMed  Google Scholar 

  108. Rasaiah JC, Garde S, Himmer G (2008) Water in nonpolar confinement: from nanotubes to proteins and beyond. Ann Rev Phys Chem 59:713–740

    CAS  Google Scholar 

  109. Lendlein A, Kelch S (2002) Shape memory polymers. Angew Chem Int Ed 41:2034–2057

    CAS  Google Scholar 

  110. Wang K, Strandman S, Zhu XX (2017) A mini review: shape memory polymers for biomedical applications. Front Chem Sci Eng 11:143–153

    Google Scholar 

  111. Yakacki CM, Gall K (2010) Shape-memorypolymers for biomedical applications. Adv Polym Sci 226:147–175

    CAS  Google Scholar 

  112. Shang J, Le X, Zhang J, Chen T, Theato P (2019) Trends in polymeric shape memory hydrogels and hydrogel actuators. Polym Chem 10:1036–1055

    CAS  Google Scholar 

Download references

Acknowledgments

This review was derived from the research and journal papers of the following MS and PhD students and postdoctoral research associates from the University of Connecticut and the University of Akron: Sung-Su Bae, Kaushik Chakrabarty, Debashis Debnath, Jinkun Hao, Xing Lu, Matthew Mullarney, Siamak Shams Es-Haghi, Jun Tian, Chao Wang, Fei Wang, Clinton Wiener, and Yiming Yang. We also acknowledge the contributions to this research by Prof. Thomas A. P. Seery (University of Connecticut); Prof. Colleen Pugh (University of Akron (now, Wichita State University); Dr. Masatumi Fukuto and Dr. Ruipeng Li (Brookhaven National Laboratory, Upton, NY); Dr. Christopher White, Dr. Yun Liu, and Dr. Derek Ho (National Institute of Standards and Technology, Gaithersburg, MD); and Prof. Kenneth Shull and Kazi Sadman (Northwestern University). The nanostructure characterization of these hydrogels was enabled by user facilities for SAXS [Complex Materials Scattering (CMS/11-BM) beamline, operated by the National Synchrotron Light Source II and the Center for Functional Nanomaterials, which are US Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704] and SANS (Center for High Resolution Neutron Scattering, a partnership between the National Institute of Standards and Technology and the National Science Foundation under Agreement No. DMR-1508249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogt, B.D., Weiss, R.A. (2020). Hydrophobically Associating Hydrogels with Microphase-Separated Morphologies. In: Creton, C., Okay, O. (eds) Self-Healing and Self-Recovering Hydrogels. Advances in Polymer Science, vol 285. Springer, Cham. https://doi.org/10.1007/12_2019_54

Download citation

Publish with us

Policies and ethics