Skip to main content

Poly(Lactic Acid): Flow-Induced Crystallization

  • Chapter
  • First Online:
Thermal Properties of Bio-based Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 283))

Abstract

Poly(lactic acid) is surely one of the most interesting commercially available biodegradable polymers. Being a slowly crystallizing material, it generally does not have the time to crystallize at the cooling rates involved in the common processing techniques. However, the properties induced by crystallinity are extremely interesting for tuning the characteristics of the obtained parts, and this leads the research to find the routes to an enhancement of PLA crystallization kinetics. During processing, polymer melts are subjected to very high deformation rates, and the stretch resulting from this orientation gives rise to shorter crystallization times and also to peculiar crystalline structures. The so-called flow-induced crystallization is therefore a phenomenon that for PLA can be considered strategic toward the realization of parts with enhanced properties. In this work, a state of the art on flow-induced crystallization of PLA is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

E :

Tensile modulus

ΔG f :

Energy barrier for flow-induced crystallization

ΔG q :

Quiescent nucleation energy barrier

ΔS f :

Degree of entropy reduction by shear

G :

Growth rate

k a :

Avrami kinetic constant

N :

Nucleation density

n a :

Avrami exponent

t 1/2 :

Half crystallization time

X :

Absolute crystallinity degree

\( \dot{\gamma\ } \) :

Shear rate

ε :

Ultimate strain

ξ :

Relative crystallinity degree

ρ :

Density

σ :

Tensile strength

References

  1. Roozemond PC, van Drongelen M, Peters GWM (2016) Modeling flow-induced crystallization. Springer, Berlin. https://doi.org/10.1007/12_2016_351

    Book  Google Scholar 

  2. Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab 95:1148–1159. https://doi.org/10.1016/j.polymdegradstab.2010.04.018

    Article  CAS  Google Scholar 

  3. Androsch R, Schick C, Di Lorenzo ML (2017) Kinetics of nucleation and growth of crystals of poly(L-lactic acid). Adv Polym Sci 279:235–272. https://doi.org/10.1007/12_2016_13

    Article  CAS  Google Scholar 

  4. Eling B, Gogolewski S, Pennings AJ (1982) Biodegradable materials of poly(L-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer 23:1587–1593. https://doi.org/10.1016/0032-3861(82)90176-8

    Article  CAS  Google Scholar 

  5. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B (2000) Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 41:8909–8919. https://doi.org/10.1016/S0032-3861(00)00234-2

    Article  CAS  Google Scholar 

  6. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677. https://doi.org/10.1016/j.progpolymsci.2012.07.005

    Article  CAS  Google Scholar 

  7. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84. https://doi.org/10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  8. Jalali A, Huneault MA, Elkoun S (2017) Effect of molecular weight on the nucleation efficiency of poly(lactic acid) crystalline phases. J Polym Res 24:182. https://doi.org/10.1007/s10965-017-1337-x

    Article  CAS  Google Scholar 

  9. De Meo A, De Santis F, Pantani R (2018) Dynamic local temperature control in micro-injection molding: effects on poly(lactic acid) morphology. Polym Eng Sci 58:586–591. https://doi.org/10.1002/pen.24784

    Article  CAS  Google Scholar 

  10. Volpe V, De Filitto M, Klofacova V, De Santis F, Pantani R (2018) Effect of mold opening on the properties of PLA samples obtained by foam injection molding. Polym Eng Sci 58:475–484. https://doi.org/10.1002/pen.24730

    Article  CAS  Google Scholar 

  11. Zaldua N, Mugica A, Zubitur M, Iturrospe A, Arbe A, Lo RG, Raquez J-M, Dubois P, Müller AJ (2016) The role of PLLA-g-montmorillonite nanohybrids in the acceleration of the crystallization rate of a commercial PLA. CrstEngComm 18:9334–9344. https://doi.org/10.1039/C6CE02005D

    Article  CAS  Google Scholar 

  12. Tsuji H, Sugiura Y, Sakamoto Y, Bouapao L, Polymer I-S (2008) Crystallization behavior of linear 1-arm and 2-arm poly (L-lactide) s: effects of coinitiators. Polymer 49:1385–1397. https://doi.org/10.1016/j.polymer.2008.01.029

    Article  CAS  Google Scholar 

  13. Aziz AA, Hay JN, Jenkins MJ (2018) The melting of poly (L-lactic acid). Eur Polym J 100:253–257. https://doi.org/10.1016/j.eurpolymj.2018.01.041

    Article  CAS  Google Scholar 

  14. Wang J, Bai J, Zhang Y, Fang H, Wang Z (2016) Shear-induced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees. Sci Rep 6:26560. https://doi.org/10.1038/srep26560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang H, Zhang Y, Bai J, Wang Z (2013) Shear-induced nucleation and morphological evolution for bimodal long chain branched polylactide. Macromolecules 46:6555–6565. https://doi.org/10.1021/ma4012126

    Article  CAS  Google Scholar 

  16. Nam J, Ray S, Okamoto M (2003) Crystallization behavior and morphology of biodegradable {polylactide/layered} silicate nanocomposite. Macromolecules 36:7126–7131. https://doi.org/10.1021/ma034623j

    Article  CAS  Google Scholar 

  17. Bai J, Wang J, Wang W, Fang H, Xu Z, Chen X, Wang Z (2016) Stereocomplex crystallite-assisted shear-induced crystallization kinetics at a high temperature for asymmetric biodegradable PLLA/PDLA blends. ACS Sustain Chem Eng 4:273–283. https://doi.org/10.1021/acssuschemeng.5b01110

    Article  CAS  Google Scholar 

  18. De Santis F, Pantani R, Santis F (2013) Nucleation density and growth rate of polypropylene measured by calorimetric experiments. J Therm Anal Calorim 112:1–10. https://doi.org/10.1007/s10973-012-2732-5

    Article  CAS  Google Scholar 

  19. Li S, Hu Y (2015) Polylactide stereo-complex: from principles to applications. In: Jiménez A, Peltzer M, Ruseckaite R (eds) Poly(lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry, Cambridge, pp 37–65

    Google Scholar 

  20. Rahman N, Kawai T, Matsuba G, Nishida K, Kanaya T, Watanabe H, Okamoto H, Kato M, Usuki A, Matsuda M, Nakajima K, Honma N (2009) Effect of polylactide stereocomplex on the crystallization behavior of poly(L-lactic acid). Macromolecules 42:4739–4745. https://doi.org/10.1021/ma900004d

    Article  CAS  Google Scholar 

  21. Zou G, Qu X, Zhao C, He Y, Li J (2018) Self-nucleation efficiency of PDLA in PLAs: crystallization behavior and morphology. Polym Sci Ser A 60:206–214. https://doi.org/10.1134/S0965545X18020165

    Article  CAS  Google Scholar 

  22. Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Part B Polym Phys 39:300–313. https://doi.org/10.1002/1099-0488(20010201)39:3<300::AID-POLB1002>3.0.CO;2-M

    Article  CAS  Google Scholar 

  23. Song Y, Zhang X, Yin Y, de Vos S, Wang R, Joziasse CAP, Liu G, Wang D (2015) Enhancement of stereocomplex formation in poly(L-lactide)/poly(D-lactide) mixture by shear. Polymer 72:185–192. https://doi.org/10.1016/j.polymer.2015.07.023

    Article  CAS  Google Scholar 

  24. Fukushima K, Kimura Y (2006) Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym Int 55:626–642. https://doi.org/10.1002/pi.2010

    Article  CAS  Google Scholar 

  25. Ikada Y, Jamshidi K, Tsuji H, Hyon S (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906. https://doi.org/10.1021/ma00170a034

    Article  CAS  Google Scholar 

  26. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications – a comprehensive review. Adv Drug Deliv Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  27. Van De Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442. https://doi.org/10.1016/S0142-9418(01)00107-6

    Article  Google Scholar 

  28. Ma Z, Balzano L, Portale G, Peters GWM (2014) Flow induced crystallization in isotactic polypropylene during and after flow. Polymer 55(23):6140–6151. https://doi.org/10.1016/j.polymer.2014.09.039

    Article  CAS  Google Scholar 

  29. Flory PJ (1949) Thermodynamics of crystallization in high polymers. IV. A theory of crystalline states and fusion in polymers, copolymers, and their mixtures with diluents. J Chem Phys 17:223–240. https://doi.org/10.1063/1.1747230

    Article  CAS  Google Scholar 

  30. Flory PJ (1947) Thermodynamics of crystallization in high polymers II. Simplified derivation of melting-point relationships. J Chem Phys 15:684. https://doi.org/10.1063/1.1746627

    Article  CAS  Google Scholar 

  31. Flory PJ (1947) Thermodynamics of crystallization in high polymers. I. Crystallization induced by stretching. J Chem Phys 15:397–408. https://doi.org/10.1063/1.1746537

    Article  CAS  Google Scholar 

  32. Wang Z, Ma Z, Li L (2016) Flow-induced crystallization of polymers: molecular and thermodynamic considerations. Macromolecules 49:1505–1517. https://doi.org/10.1021/acs.macromol.5b02688

    Article  CAS  Google Scholar 

  33. van Meerveld J, Peters GWM, Hütter M (2004) Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheol Acta 44:119–134. https://doi.org/10.1007/s00397-004-0382-7

    Article  CAS  Google Scholar 

  34. Housmans RJA, Roozemond PC, Peters GWM, Meijer HEH (2009) Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene. Macromolecules 42:5728–5740. https://doi.org/10.1021/ma802479c

    Article  CAS  Google Scholar 

  35. Zhong Y, Fang H, Zhang Y, Wang Z, Yang J, Wang Z (2013) Rheologically determined critical shear rates for shear-induced nucleation rate enhancements of poly(lactic acid). ACS Sustain Chem Eng 1:663–672. https://doi.org/10.1021/sc400040b

    Article  CAS  Google Scholar 

  36. Xu H, Xie L, Hakkarainen M (2015) Beyond a model of polymer processing-triggered shear: reconciling shish-kebab formation and control of chain degradation in sheared poly(L-lactic acid). ACS Sustain Chem Eng 3:1443–1452. https://doi.org/10.1021/acssuschemeng.5b00320

    Article  CAS  Google Scholar 

  37. Cui K, Ma Z, Tian N, Su F, Liu D, Li L (2018) Multiscale and multistep ordering of flow-induced nucleation of polymers. Chem Rev 118:1840–1886. https://doi.org/10.1021/acs.chemrev.7b00500

    Article  CAS  PubMed  Google Scholar 

  38. Seo J, Takahashi H, Nazari B, Rhoades AM, Schaake RP, Colby RH (2018) Isothermal flow-induced crystallization of polyamide 66 melts. Macromolecules 51:4269–4279. https://doi.org/10.1021/acs.macromol.8b00082

    Article  CAS  Google Scholar 

  39. Mykhaylyk OO, Chambon P, Graham RS, Fairclough JPA, Olmsted PD, Ryan AJ (2008) The specific work of flow as a criterion for orientation in polymer crystallization. Macromolecules 41:1901–1904. https://doi.org/10.1021/ma702603v

    Article  CAS  Google Scholar 

  40. Rhoades AM, Gohn AM, Seo J, Androsch R, Colby RH (2018) Sensitivity of polymer crystallization to shear at low and high supercooling of the melt. Macromolecules 51:2785–2795. https://doi.org/10.1021/acs.macromol.8b00195

    Article  CAS  Google Scholar 

  41. Somani RH, Hsiao BS, Nogales A, Fruitwala H, Srinivas S, Tsou AH (2001) Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules 34:5902–5909. https://doi.org/10.1021/ma0106191

    Article  CAS  Google Scholar 

  42. Somani Hsiao BS, Nogales A, Srinivas S, Tsou AH, Sics I, Balta-Calleja FJ, Ezquerra TARH (2000) Structure development during shear flow-induced crystallization of i-PP: in-situ small-angle X-ray scattering study. Macromolecules 33:9385–9394. https://doi.org/10.1021/ma001124z

    Article  CAS  Google Scholar 

  43. Liu G, Zhang X, Wang D (2014) Tailoring crystallization: high-performance poly(lactic acid). Adv Mater 26:6905–6911. https://doi.org/10.1002/adma.201305413

    Article  CAS  PubMed  Google Scholar 

  44. Xie L, Xu H, Li Z-M, Hakkarainen M (2016) Structural hierarchy and polymorphic transformation in shear-induced shish-kebab of stereocomplex poly(lactic acid). Macromol Rapid Commun 37:745–751. https://doi.org/10.1002/marc.201500736

    Article  CAS  PubMed  Google Scholar 

  45. Cicero JA, Dorgan JR, Janzen J, Garrett J, Runt J, Lin JS (2002) Supramolecular morphology of two-step, melt-spun poly(lactic acid) fibers. J Appl Polym Sci 86:2828–2838. https://doi.org/10.1002/app.11267

    Article  CAS  Google Scholar 

  46. Cicero JA, Dorgan JR, Garrett J, Runt J, Lin JS (2002) Effects of molecular architecture on two-step, melt-spun poly(lactic acid) fibers. J Appl Polym Sci 86:2839–2846. https://doi.org/10.1002/app.11268

    Article  CAS  Google Scholar 

  47. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482. https://doi.org/10.1016/j.progpolymsci.2007.01.005

    Article  CAS  Google Scholar 

  48. Solarski S, Ferreira M, Devaux E (2005) Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry. Polymer 46:11187–11192. https://doi.org/10.1016/j.polymer.2005.10.027

    Article  CAS  Google Scholar 

  49. Barham P, Keller A (1975) A criterion for distinguishing between polymer fibers of fundamentally different origin. J Polym Sci Polym Lett Ed 13:197–202. https://doi.org/10.1002/pol.1975.130130402

    Article  CAS  Google Scholar 

  50. Mahendrasingam A, Blundell DJ, Parton M, Wright AK, Rasburn J, Narayanan T, Fuller W (2005) Time resolved study of oriented crystallisation of poly(lactic acid) during rapid tensile deformation. Polymer 46:6009–6015. https://doi.org/10.1016/j.polymer.2005.05.081

    Article  CAS  Google Scholar 

  51. Fitz BD, Jamiolkowski DD, Andjeli S (2002) Tg depression in poly (L (−)-lactide) crystallized under partially constrained conditions. Macromolecules 35:5869–5872

    Article  CAS  Google Scholar 

  52. Pogodina NV, Winter HH, Srinivas S (1999) Strain effects on physical gelation of crystallizing isotactic polypropylene. J Polym Sci Part B Polym Phys 37:3512–3519. https://doi.org/10.1002/(SICI)1099-0488(19991215)37:24<3512::AID-POLB12>3.0.CO;2-#

    Article  CAS  Google Scholar 

  53. Li X, Li Z, Zhong G-J, Li L-B (2008) Steady–shear-induced isothermal crystallization of poly(L-lactide) (PLLA). J Macromol Sci Part B 47:511–522. https://doi.org/10.1080/00222340801955313

    Article  CAS  Google Scholar 

  54. Huang S, Li H, Jiang S, Chen X, Polymer A-L (2011) Crystal structure and morphology influenced by shear effect of poly (L-lactide) and its melting behavior revealed by WAXD, DSC and in-situ POM. Polymer 15:3487. https://doi.org/10.1016/j.polymer.2011.05.044

    Article  CAS  Google Scholar 

  55. Li X, Zhong G, Li Z (2010) Non-isothermal crystallization of poly(L-lactide) (PLLA) under quiescent and steady shear conditions. Chinese J Polym Sci 28:357–366. https://doi.org/10.1007/s10118-010-9015-z

    Article  CAS  Google Scholar 

  56. Yamazaki S, Itoh M, Oka T, Journal K-K (2010) Formation and morphology of “shish-like” fibril crystals of aliphatic polyesters from the sheared melt. Eur Polym J 46:58–68. https://doi.org/10.1016/j.eurpolymj.2009.09.003

    Article  CAS  Google Scholar 

  57. Xu H, Zhong G-J, Fu Q, Lei J, Jiang W, Hsiao BS, Li Z-M (2012) Formation of Shish-Kebabs in injection-molded poly(L-lactic acid) by application of an intense flow field. ACS Appl Mater Interfaces 4:6774–6784. https://doi.org/10.1021/am3019756

    Article  CAS  PubMed  Google Scholar 

  58. De Santis F, Pantani R (2015) Melt compounding of poly (lactic acid) and talc: assessment of material behavior during processing and resulting crystallization. J Polym Res 22:242. https://doi.org/10.1007/s10965-015-0885-1

    Article  CAS  Google Scholar 

  59. Yang I-K, Wu C-H (2014) Real-time SAXS measurements and rheological behavior of poly(lactic acid) crystallization under continuous shear flow. J Polym Res 21:609. https://doi.org/10.1007/s10965-014-0609-y

    Article  CAS  Google Scholar 

  60. Bai H, Deng S, Bai D, Zhang Q, Fu Q (2017) Recent advances in processing of stereocomplex-type polylactide. Macromol Rapid Commun 38:1700454. https://doi.org/10.1002/marc.201700454

    Article  CAS  Google Scholar 

  61. Hemmi K, Matsuba G, Tsuji H, Kawai T, Kanaya T, Toyohara K, Oda A, Endou K (2014) Precursors in stereo-complex crystals of poly(L-lactic acid)/poly(D-lactic acid) blends under shear flow. J Appl Cryst 47:14–21. https://doi.org/10.1107/S1600576713031907

    Article  CAS  Google Scholar 

  62. Bojda J, Piorkowska E (2016) Shear-induced nonisothermal crystallization of two grades of PLA. Polym Test 50:172–181. https://doi.org/10.1016/j.polymertesting.2016.01.006

    Article  CAS  Google Scholar 

  63. Shao J, Xiang S, Bian X, Sun J, Li G, Chen X (2015) Remarkable melting behavior of PLA stereocomplex in linear PLLA/PDLA blends. Ind Eng Chem Res 54:2246–2253. https://doi.org/10.1021/ie504484b

    Article  CAS  Google Scholar 

  64. Song Y, Zhao Q, Yang S, Ru J, Lin J, Xu J, Lei J, Li Z (2018) Flow-induced crystallization of polylactide stereocomplex under pressure. J Appl Polym Sci 135:46378. https://doi.org/10.1002/app.46378

    Article  CAS  Google Scholar 

  65. Xu J-Z, Li Y, Li Y-K, Chen Y-W, Wang R, Liu G, Liu S-M, Ni H-W, Li Z-M (2018) Shear-induced stereocomplex cylindrites in polylactic acid racemic blends: morphology control and interfacial performance. Polymer 140:179–187. https://doi.org/10.1016/j.polymer.2018.02.048

    Article  CAS  Google Scholar 

  66. Refaa Z, Boutaous M, Xin S, Fulchiron R (2017) Synergistic effects of shear flow and nucleating agents on the crystallization mechanisms of poly (lactic acid). J Polym Res 24:18. https://doi.org/10.1007/s10965-016-1179-y

    Article  CAS  Google Scholar 

  67. Wei X-F, Bao R-Y, Gu L, Wang Y, Ke K, Yang W, Xie B-H, Yang M-B, Zhou T, Zhang A-M (2014) Synergistic effect of stereocomplex crystals and shear flow on the crystallization rate of poly(L-lactic acid): a rheological study. RSC Adv 4:2733–2742. https://doi.org/10.1039/C3RA45402A

    Article  CAS  Google Scholar 

  68. Yin Y, Zhang X, Song Y, de Vos S, Wang R, Joziasse CAP, Liu G, Wang D (2015) Effect of nucleating agents on the strain-induced crystallization of poly(L-lactide). Polymer 65:223–232. https://doi.org/10.1016/j.polymer.2015.03.061

    Article  CAS  Google Scholar 

  69. Tang H, Chen J-B, Wang Y, Xu J-Z, Hsiao BS, Zhong G-J, Li Z-M (2012) Shear flow and carbon nanotubes synergistically induced nonisothermal crystallization of poly(lactic acid) and its application in injection molding. Biomacromolecules 13:3858–3867. https://doi.org/10.1021/bm3013617

    Article  CAS  PubMed  Google Scholar 

  70. Xu J, Chen T, Yang C, Li Z, Mao Y, Zeng B, Hsiao B (2010) Isothermal crystallization of poly(L-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008. https://doi.org/10.1021/ma100304n

    Article  CAS  Google Scholar 

  71. Xie X-L, Sang Z-H, Xu J-Z, Zhong G-J, Li Z-M, Ji X, Wang R, Xu L (2017) Layer structure by shear-induced crystallization and thermal mechanical properties of injection-molded poly(L-lactide) with nucleating agents. Polymer 110:196–210. https://doi.org/10.1016/j.polymer.2017.01.004

    Article  CAS  Google Scholar 

  72. Li C, Guo J, Jiang T, Zhang X, Xia L, Wu H, Guo S, Zhang X (2018) Extensional flow-induced hybrid crystalline fibrils (shish) in CNT/PLA nanocomposite. Carbon 129:720–729. https://doi.org/10.1016/j.carbon.2017.12.063

    Article  CAS  Google Scholar 

  73. Avolio R, Castaldo R, Avella M, Cocca M, Gentile G, Fiori S, Errico ME (2018) PLA-based plasticized nanocomposites: effect of polymer/plasticizer/filler interactions on the time evolution of properties. Compos Part B Eng 152:267–274. https://doi.org/10.1016/j.compositesb.2018.07.011

    Article  CAS  Google Scholar 

  74. Kühnert I, Spörer Y, Brünig H, Tran NHA, Rudolph N (2017) Processing of poly(lactic acid). In: Di Lorenzo M, Androsch R (eds) Industrial applications of poly(lactic acid). Springer, Cham, pp 1–33

    Google Scholar 

  75. Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010) Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95:116–125. https://doi.org/10.1016/j.polymdegradstab.2009.11.045

    Article  CAS  Google Scholar 

  76. Ghosh S, Viana JC, Reis RL, Mano JF (2007) Effect of processing conditions on morphology and mechanical properties of injection-molded poly(L-lactic acid). Polym Eng Sci 47:1141–1147. https://doi.org/10.1002/pen.20799

    Article  CAS  Google Scholar 

  77. Pantani R, Sorrentino A (2013) Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym Degrad Stab 98:1089–1096. https://doi.org/10.1016/j.polymdegradstab.2013.01.005

    Article  CAS  Google Scholar 

  78. De Santis F, Volpe V, Pantani R (2017) Effect of molding conditions on crystallization kinetics and mechanical properties of poly(lactic acid). Polym Eng Sci 57:306–311. https://doi.org/10.1002/pen.24414

    Article  CAS  Google Scholar 

  79. Harris AM, Lee EC (2007) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255. https://doi.org/10.1002/app.27261

    Article  CAS  Google Scholar 

  80. Altpeter H, Bevis MJ, Grijpma DW, Feijen J (2004) Non-conventional injection molding of poly(lactide) and poly(epsilon-caprolactone) intended for orthopedic applications. J Mater Sci Mater Med 15:175–184. https://doi.org/10.1023/B:JMSM.0000011820.64572.a5

    Article  CAS  PubMed  Google Scholar 

  81. Ghosh S, Viana JC, Reis RL, Mano JF (2008) Oriented morphology and enhanced mechanical properties of poly(L-lactic acid) from shear controlled orientation in injection molding. Mater Sci Eng A 490:81–89. https://doi.org/10.1016/j.msea.2008.01.003

    Article  CAS  Google Scholar 

  82. Sang Z-H, Chen Y, Li Y, Xu L, Lei J, Yan Z, Zhong G-J, Li Z-M (2018) Simultaneously improving stiffness, toughness, and heat deflection resistance of polylactide using the strategy of orientation crystallization amplified by interfacial interactions. Polym Cryst 1:e10004. https://doi.org/10.1002/pcr2.10004

    Article  CAS  Google Scholar 

  83. Sankarpandi S, Park CB, Ghosh AK (2017) CO2-induced crystal engineering of polylactide and the development of a polymeric nacreous microstructure. Polym Int 66:1587–1597. https://doi.org/10.1002/pi.5417

    Article  CAS  Google Scholar 

  84. Tabatabaei A, Park CB (2017) In-situ visualization of PLA crystallization and crystal effects on foaming in extrusion. Eur Polym J 96:505–519. https://doi.org/10.1016/j.eurpolymj.2017.09.026

    Article  CAS  Google Scholar 

  85. Ameli A, Nofar M, Jahani D, Rizvi G, Park CB (2015) Development of high void fraction polylactide composite foams using injection molding: crystallization and foaming behaviors. Chem Eng J 262:78–87. https://doi.org/10.1016/j.cej.2014.09.087

    Article  CAS  Google Scholar 

  86. Mihai M, Huneault MA, Favis BD (2009) Crystallinity development in cellular poly(lactic acid) in the presence of supercritical carbon dioxide. J Appl Polym Sci 113:2920–2932. https://doi.org/10.1002/app.30338

    Article  CAS  Google Scholar 

  87. Zhai W, Ko Y, Zhu W, Wong A, Park C (2009) A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO2. Int J Mol Sci 10:5381–5397. https://doi.org/10.3390/ijms10125381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yu L, Liu H, Xie F, Chen L, Li X (2008) Effect of annealing and orientation on microstructures and mechanical properties of polylactic acid. Polym Eng Sci 48:634–641. https://doi.org/10.1002/pen.20970

    Article  CAS  Google Scholar 

  89. Tsai CC, Wu RJ, Cheng HY, Li SC, Siao YY et al (2010) Crystallinity and dimensional stability of biaxial oriented poly (lactic acid) films. Polym Degrad Stab 95(8):1292–1298. https://doi.org/10.1016/j.polymdegradstab.2010.02.032

    Article  CAS  Google Scholar 

  90. Houichi H, Maazouz A, Elleuch B (2015) Crystallization behavior and spherulitic morphology of poly(lactic acid) films induced by casting process. Polym Eng Sci 55:1881–1888. https://doi.org/10.1002/pen.24028

    Article  CAS  Google Scholar 

  91. Schmack G, Jehnichen D, Vogel R, Tändler B, Beyreuther R, Jacobsen S, Fritz H-G (2001) Biodegradable fibres spun from poly (lactide) generated by reactive extrusion. J Biotechnol 86:151–160. https://doi.org/10.1016/S0168-1656(00)00410-7

    Article  CAS  PubMed  Google Scholar 

  92. Fambri L, Pegoretti A, Fenner R, Incardona SD, Migliaresi C (1997) Biodegradable fibres of poly (L-lactic acid) produced by melt spinning. Polymer 38:79–85. https://doi.org/10.1016/S0032-3861(96)00486-7

    Article  CAS  Google Scholar 

  93. Shim E, Pourdeyhimi B, Shiffler D (2016) Process-structure-property relationship of melt spun poly(lactic acid) fibers produced in the spunbond process. J Appl Polym Sci 133:47. https://doi.org/10.1002/app.44225

    Article  CAS  Google Scholar 

  94. Hossain KM, Parsons AJ, Rudd CD, Ahmed I, Thielemans W (2014) Mechanical, crystallisation and moisture absorption properties of melt drawn polylactic acid fibres. Eur Polym J 53:270–281. https://doi.org/10.1016/j.eurpolymj.2014.02.001

    Article  CAS  Google Scholar 

  95. Northcutt LA, Orski SV, Migler KB, Kotula AP (2018) Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer 154:182–187. https://doi.org/10.1016/j.polymer.2018.09.018

    Article  CAS  Google Scholar 

  96. McIlroy C, Graham RS (2018) Modelling flow-enhanced crystallisation during fused filament fabrication of semi-crystalline polymer melts. Addit Manuf 24:323–340. https://doi.org/10.1016/j.addma.2018.10.018

    Article  CAS  Google Scholar 

  97. Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246. https://doi.org/10.1016/j.matdes.2014.02.038

    Article  CAS  Google Scholar 

  98. Wang L, Gramlich WM, Gardner DJ (2017) Improving the impact strength of poly(lactic acid) (PLA) in fused layer modeling (FLM). Polymer 114:242–248. https://doi.org/10.1016/j.polymer.2017.03.011

    Article  CAS  Google Scholar 

  99. Chacón JM, Caminero MA, García-Plaza E, Núñez PJ (2017) Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143–157. https://doi.org/10.1016/j.matdes.2017.03.065

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicyn Rhoades .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rhoades, A., Pantani, R. (2019). Poly(Lactic Acid): Flow-Induced Crystallization. In: Di Lorenzo, M., Androsch, R. (eds) Thermal Properties of Bio-based Polymers. Advances in Polymer Science, vol 283. Springer, Cham. https://doi.org/10.1007/12_2019_49

Download citation

Publish with us

Policies and ethics