Skip to main content

Chemical Synthesis of Carbon Nanomaterials Through Bergman Cyclization

Part of the Advances in Polymer Science book series (POLYMER,volume 278)

Abstract

Bergman cyclization, an organic reaction that forms 1,4-benzene diradicals via intramolecular cyclization of enediyne (EDY) compounds, is a fascinating reaction and can be used to fabricate polyarylenes with various side chains and construct carbon nanomaterials with diverse morphologies. Bergman cyclization has had a strong impact on a number of fields, including pharmaceutics, polymer chemistry, and materials science. The homopolymerization of EDYs through Bergman cyclization is an ingenious strategy for fabrication of functional polyarylenes and has the advantages of facial operation, high efficiency, tailored structure, and being catalyst-free. Moreover, the obtained functionalized polyarylenes show many remarkable properties, such as excellent thermal stability, good solubility, and processability, which enable these polyarylenes to be further manufactured into carbon nanomaterials. Recently, extensive efforts have been devoted to the application of Bergman cyclization in polymer chemistry, materials science, and nanodevices. This chapter summarizes the synthetic strategies that have been developed for fabrication of structurally unique carbon-rich materials using Bergman cyclization, including formation of nanoparticles by intramolecular collapse of single polymer chains, fabrication of conjugated microporous polymers, and construction of carbon nanomembranes with different morphologies and their applications in nanodevices. The future development of Bergman cyclization in materials science is discussed, especially in the construction and application of carbon nanomaterials by altering the template types and morphologies to precisely control the microstructures and properties of carbon nanomaterials.

Keywords

  • Bergman cyclization
  • Carbon dots
  • Carbon nanomembranes
  • Confined catalysis
  • Enediyne
  • Microporous polymer
  • Polyarylenes
  • Single chain nanoparticles
  • Supercapacitor

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/12_2017_5
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-64170-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Abbreviations

AFM:

Atomic force microscopy

APTES:

N-Aminopropyltriethoxysilane

BET:

Brunauer–Emmett–Teller

BODA:

Bis-ortho-diynylarene

C-dot:

Carbon quantum dot

CMP:

Conjugated microporous polymer

CNM:

Carbon nanomembrane

CN:

Cyclo-1,4-naphthylene

CV:

Cyclic voltammetry

DMA:

Dynamic mechanical spectroscopy

DMF:

N,N-Dimethylformide

DNHD:

cis-1,6-di-2-naphthylhex-3-en-1,5-diyne

EC:

Electrochemical capacitor

EDLC:

Electric double layer capacitor

EDY:

Enediyne

FAR:

Fused aromatic ring

GPC:

Gel permeation chromatography

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

MMA:

Methyl methacrylate

MWNT:

Multiwalled carbon nanotube

NMP:

N-Methylpyrrolidone

PAA:

Poly(acrylic acid)

PBzA:

Poly(benzyl acrylate)

PEG:

Polyethylene glycol

PL:

Photoluminescence

PMA:

Poly(methyl acrylate)

PN:

Polynaphthalene

PPP:

Poly(p-phenylene)

QD:

Quantum dot

QY:

Quantum yield

SAED:

Selected area electron diffraction

SAM:

Self-assembly monolayer

SCMP:

Soluble conjugated microporous polymer

SCNP:

Single-chain polymer nanoparticle

SERS:

Surface-enhanced Raman scattering

SS-CNM:

Silica-supported carbon nanomembrane

STM:

Scanning tunneling microscopy

TBAF:

Tetrabutylammonium fluoride

TEM:

Transmission electron microscopy

TMS:

Trimethylsilyl

References

  1. Hirsch A (2010) Nat Mater 9:868

    CAS  CrossRef  Google Scholar 

  2. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Chem Rev 115:4744

    CAS  CrossRef  Google Scholar 

  3. Chen L, Hernandez Y, Feng X, Mullen K (2012) Angew Chem Int Ed 51:7640

    CAS  CrossRef  Google Scholar 

  4. Sun Z, Wu JS (2014) In: Siegel JS, Wu YT (eds) Polyarenes I, vol 349. Springer, Berlin, p 197

    Google Scholar 

  5. Jones RR, Bergman RG (1972) J Am Chem Soc 94:660

    CAS  CrossRef  Google Scholar 

  6. Bergman RG (1973) Acc Chem Res 6:25

    CAS  CrossRef  Google Scholar 

  7. Lee MD, Dunne TS, Siegel MM, Chang CC, Morton GO, Borders DB (1987) J Am Chem Soc 109:3464

    CAS  CrossRef  Google Scholar 

  8. Lee MD, Dunne TS, Chang CC, Ellestad GA, Siegel MM, Morton GO, McGahren WJ, Borders DB (1987) J Am Chem Soc 109:3466

    CAS  CrossRef  Google Scholar 

  9. Konishi M, Ohkuma H, Tsuno T, Oki T, VanDuyne GD, Clardy J (1990) J Am Chem Soc 112:3715

    CAS  CrossRef  Google Scholar 

  10. Golik J, Clardy J, Dubay G, Groenewold G, Kawaguchi H, Konishi M, Krishnan B, Ohkuma H, Saitoh K, Doyle TW (1987) J Am Chem Soc 109:3461

    CAS  CrossRef  Google Scholar 

  11. Golik J, Dubay G, Groenewold G, Kawaguchi H, Konishi M, Krishnan B, Ohkuma H, Saitoh K, Doyle TW (1987) J Am Chem Soc 109:3462

    CAS  CrossRef  Google Scholar 

  12. Long BH, Golik J, Forenza S, Ward B, Rehfuss R, Dabrowiak JC, Catino JJ, Musial ST, Brookshire KW, Doyle TW (1989) Proc Natl Acad Sci 86:2

    CAS  CrossRef  Google Scholar 

  13. Leet JE, Schroeder DR, Hofstead SJ, Golik J, Colson KL, Huang S, Klohr SE, Doyle TW, Matson JA (1992) J Am Chem Soc 114:7946

    CAS  CrossRef  Google Scholar 

  14. Nicolaou KC, Smith AL, Yue EW (1993) PNAS 90:5881

    CAS  CrossRef  Google Scholar 

  15. Smith AL, Nicolaou K (1996) J Med Chem 39:2103

    CAS  CrossRef  Google Scholar 

  16. Biggins JB, Onwueme KC, Thorson JS (2003) Science 301:1537

    CAS  CrossRef  Google Scholar 

  17. Basak A, Mandal S, Bag SS (2003) Chem Rev 103:4077

    CAS  CrossRef  Google Scholar 

  18. Kar M, Basak A (2007) Chem Rev 107:2861

    CAS  CrossRef  Google Scholar 

  19. Hatial I, Jana S, Bisai S, Das M, Ghosh AK, Anoop A, Basak A (2014) RSC Adv 4:28041

    CAS  CrossRef  Google Scholar 

  20. Song D, Sun S, Tian Y, Huang S, Ding Y, Yuan Y, Hu A (2015) J Mater Chem B 3:3195

    CAS  CrossRef  Google Scholar 

  21. Song D, Tian Y, Huang S, Li B, Yuan Y, Hu A (2015) J Mater Chem B 3:8584

    CAS  CrossRef  Google Scholar 

  22. Kraka E, Cremer D (2014) Wiley Interdiscip Rev Comput Mol Sci 4:285

    CAS  CrossRef  Google Scholar 

  23. Nicolaou KC, Ogawa Y, Zuccarello G, Schweiger EJ, Kumazawa T (1988) J Am Chem Soc 110:4866

    CAS  CrossRef  Google Scholar 

  24. Magnus P, Fortt S, Pitterna T, Snyder JP (1990) J Am Chem Soc 112:4986

    CAS  CrossRef  Google Scholar 

  25. Snyder JP (1990) J Am Chem Soc 112:5367

    CAS  CrossRef  Google Scholar 

  26. Klein M, Walenzyk T, Konig B (2004) Collect Czechoslov Chem Commun 69:945

    CAS  CrossRef  Google Scholar 

  27. Alabugin IV, Yang WY, Pal R (2012) In: Griesbeck A, Oelgemoeller M, Ghetti F (eds) CRC handbook of organic photochemistry and photobiology. Taylor and Francis, Boca Raton, p 549

    Google Scholar 

  28. Kaya K, Johnson M, Alabugin IV (2015) Photochem Photobiol 91:748

    CAS  CrossRef  Google Scholar 

  29. Campolo D, Arif T, Borie C, Mouysset D, Vanthuyne N, Naubron JV, Bertrand MP, Nechab M (2014) Angew Chem Int Ed 53:3227

    CAS  CrossRef  Google Scholar 

  30. Nösel P, Müller V, Mader S, Moghimi S, Rudolph M, Braun I, Rominger F, Hashmi ASK (2015) Adv Synth Catal 357:500

    CrossRef  Google Scholar 

  31. Xiao Y, Hu A (2011) Macromol Rapid Commun 32:1688

    CAS  CrossRef  Google Scholar 

  32. John JA, Tour JM (1994) J Am Chem Soc 116:5011

    CAS  CrossRef  Google Scholar 

  33. Smith DW, Shah HV, Perera KPU, Perpall MW, Babb DA, Martin SJ (2007) Adv Funct Mater 17:1237

    CAS  CrossRef  Google Scholar 

  34. Rettenbacher AS, Perpall MW, Echegoyen L, Hudson J, Smith DW (2007) Chem Mater 19:1411

    CAS  CrossRef  Google Scholar 

  35. Rule JD, Wilson SR, Moore JS (2003) J Am Chem Soc 125:12992

    CAS  CrossRef  Google Scholar 

  36. Rule JD, Moore JS (2005) Macromolecules 38:7266

    CAS  CrossRef  Google Scholar 

  37. Gerstel P, Barner-Kowollik C (2011) Macromol Rapid Commun 32:444

    CAS  CrossRef  Google Scholar 

  38. Chen S, Hu A (2015) Science China Chem 58:1710

    CAS  CrossRef  Google Scholar 

  39. Johnson JP, Bringley DA, Wilson EE, Lewis KD, Beck LW, Matzger AJ (2003) J Am Chem Soc 125:14708

    CAS  CrossRef  Google Scholar 

  40. Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W (2013) J Am Chem Soc 135:8448

    CAS  CrossRef  Google Scholar 

  41. Cheng X, Ma J, Zhi J, Yang X, Hu A (2010) Macromolecules 43:909

    CAS  CrossRef  Google Scholar 

  42. Ma J, Ma X, Deng S, Li F, Hu A (2011) J Polym Sci Polym Chem 49:1368

    CAS  CrossRef  Google Scholar 

  43. Dong L, Zheng Z, Wang Y, Li X, Hua J, Hu A (2015) J Mater Chem A 3:11607

    CAS  CrossRef  Google Scholar 

  44. Miao C, Zhi J, Sun S, Yang X, Hu A (2010) J Polym Sci Polym Chem 48:2187

    CAS  CrossRef  Google Scholar 

  45. Sun S, Huang B, Li F, Song D, Hu A (2015) Chin J Polym Sci 33:743

    CAS  CrossRef  Google Scholar 

  46. Saito K, Rettenbacher AS, Smith DW, Fukuzumi S (2008) J Mater Chem 18:3237

    CAS  CrossRef  Google Scholar 

  47. Ma J, Cheng X, Ma X, Deng S, Hu A (2010) J Polym Sci Polym Chem 48:5541

    CAS  CrossRef  Google Scholar 

  48. Ma J, Deng S, Cheng X, Wei W, Hu A (2011) J Polym Sci Polym Chem 49:3951

    CAS  CrossRef  Google Scholar 

  49. Ma X, Li F, Wang Y, Hu A (2012) Chem Asian J 7:2547

    CAS  CrossRef  Google Scholar 

  50. Taranekar P, Park JY, Patton D, Fulghum T, Ramon GJ, Advincula R (2006) Adv Mater 18:2461

    CAS  CrossRef  Google Scholar 

  51. Tekade RK, Kumar PV, Jain NK (2009) Chem Rev 109:49

    CAS  CrossRef  Google Scholar 

  52. Parrott MC, Benhabbour SR, Saab C, Lemon JA, Parker S, Valliant JF, Adronov A (2009) J Am Chem Soc 131:2906

    CAS  CrossRef  Google Scholar 

  53. Helms B, Meijer EW (2006) Science 313:929

    CAS  CrossRef  Google Scholar 

  54. Mecerreyes D, Lee V, Hawker CJ, Hedrick JL, Wursch A, Volksen W, Magbitang T, Huang E, Miller RD (2001) Adv Mater 13:204

    CAS  CrossRef  Google Scholar 

  55. Adkins CT, Muchalski H, Harth E (2009) Macromolecules 42:5786

    CAS  CrossRef  Google Scholar 

  56. Moreno AJ, Lo Verso F, Sanchez-Sanchez A, Arbe A, Colmenero J, Pomposo JA (2013) Macromolecules 46:9748

    CAS  CrossRef  Google Scholar 

  57. Wong EHH, Lam SJ, Nam E, Qiao GG (2014) ACS Macro Lett 3:524

    CAS  CrossRef  Google Scholar 

  58. Croce TA, Hamilton SK, Chen ML, Muchalski H, Harth E (2007) Macromolecules 40:6028

    CAS  CrossRef  Google Scholar 

  59. Ergin M, Kiskan B, Gacal B, Yagci Y (2007) Macromolecules 40:4724

    CAS  CrossRef  Google Scholar 

  60. Jiang XY, Pu HT, Wang P (2011) Polymer 52:3597

    CAS  CrossRef  Google Scholar 

  61. Hansell CF, Lu A, Patterson JP, O'Reilly RK (2014) Nanoscale 6:4102

    CAS  CrossRef  Google Scholar 

  62. Zhu B, Ma J, Li Z, Hou J, Cheng X, Qian G, Liu P, Hu A (2011) J Mater Chem 21:2679

    CAS  CrossRef  Google Scholar 

  63. Zhu B, Qian G, Xiao Y, Deng S, Wang M, Hu A (2011) J Polym Sci Polym Chem 49:5330

    CAS  CrossRef  Google Scholar 

  64. Wang Y, Hu A (2014) J Mater Chem C 2:6921

    CAS  CrossRef  Google Scholar 

  65. Zhu B, Sun S, Wang Y, Deng S, Qian G, Wang M, Hu A (2013) J Mater Chem C 1:580

    CAS  CrossRef  Google Scholar 

  66. Qian G, Zhu B, Wang Y, Deng S, Hu A (2012) Macromol Rapid Commun 33:1393

    CAS  CrossRef  Google Scholar 

  67. Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Chem Soc Rev 42:8012

    CAS  CrossRef  Google Scholar 

  68. Chen L, Honsho Y, Seki S, Jiang D (2010) J Am Chem Soc 132:6742

    CAS  CrossRef  Google Scholar 

  69. Yang X, Yao SW, Yu M, Jiang JX (2014) Macromol Rapid Commun 35:834

    CAS  CrossRef  Google Scholar 

  70. Laybourn A, Dawson R, Clowes R, Hasell T, Cooper AI, Khimyak YZ, Adams DJ (2014) Polym Chem 5:6325

    CAS  CrossRef  Google Scholar 

  71. Bildirir H, Osken I, Ozturk T, Thomas A (2015) Chem Eur J 21:9306

    CAS  CrossRef  Google Scholar 

  72. Li B, Gong R, Wang W, Huang X, Zhang W, Li H, Hu C, Tan B (2011) Macromolecules 44:2410

    CAS  CrossRef  Google Scholar 

  73. Hu R, Lam JWY, Li M, Deng H, Li J, Tang BZ (2013) J Polym Sci Polym Chem 51:4752

    CAS  CrossRef  Google Scholar 

  74. Smith DW, Babb DA, Snelgrove RV, Townsend PH, Martin SJ (1998) J Am Chem Soc 120:9078

    CAS  CrossRef  Google Scholar 

  75. Shah HV, Brittain ST, Huang Q, Hwu SJ, Whitesides GM, Smith DW (1999) Chem Mater 11:2623

    CAS  CrossRef  Google Scholar 

  76. Perpall MW, Perera KPU, DiMaio J, Ballato J, Foulger SH, Smith DW (2003) Langmuir 19:7153

    CAS  CrossRef  Google Scholar 

  77. Zhang X-M, Ding X, Hu A, Han B-H (2015) Polym Chem 6:4734

    CAS  CrossRef  Google Scholar 

  78. Yang X, Li Z, Zhi J, Ma J, Hu A (2010) Langmuir 26:11244

    CAS  CrossRef  Google Scholar 

  79. Hu A, Li Z, Zhu X, Song D (2013) Chinese Sciencepaper Online 11:591

    Google Scholar 

  80. Li Z, Song D, Zhi J, Hu A (2011) J Phys Chem C 115:15829

    CAS  CrossRef  Google Scholar 

  81. Li Z, Zhu X, Chen S, Hu A (2013) Chem Asian J 8:560

    CAS  CrossRef  Google Scholar 

  82. Zhi J, Wang Y, Deng S, Hu A (2014) RSC Adv 4:40296

    CAS  CrossRef  Google Scholar 

  83. Wang Y, Xiong R, Dong L, Hu A (2014) J Mater Chem A 2:5212

    CAS  CrossRef  Google Scholar 

  84. Zhang Y, Wang YF, Hu AG (2015) RSC Adv 5:70297

    CAS  CrossRef  Google Scholar 

  85. Zhi J, Deng S, Zhang Y, Wang Y, Hu A (2013) J Mater Chem A 1:3171

    CAS  CrossRef  Google Scholar 

  86. Zhi J, Deng S, Wang Y, Hu A (2015) J Phys Chem C 119:8530

    CAS  CrossRef  Google Scholar 

  87. Zhi J, Song D, Li Z, Lei X, Hu A (2011) Chem Commun 47:10707

    CAS  CrossRef  Google Scholar 

  88. Deng S, Zhi J, Zhang X, Wu Q, Ding Y, Hu A (2014) Angew Chem Int Ed 53:14144

    CAS  CrossRef  Google Scholar 

  89. Deng S, Zhao P, Dai Y, Huang B, Hu A (2015) Polymer 64:216

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

Financial support by the National Natural Science Foundation of China (21674035, 21474027, 91023008, 20874026, 20704013), Shanghai Shuguang Project (07SG33), National Postdoctoral Program for Innovative Talents (BX201600101), New Century Excellent Talents in University, PhD Programs Foundation of Ministry of Education of China, and Shanghai Leading Academic Discipline Project (B502) are gratefully acknowledged. A.H. thanks the “Eastern Scholar Professorship” support from Shanghai local government. Y.W. thanks the scholarship from China Scholarship Council (CSC) to support his study at the University of Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, Y., Chen, S., Hu, A. (2017). Chemical Synthesis of Carbon Nanomaterials Through Bergman Cyclization. In: Müllen, K., Feng, X. (eds) From Polyphenylenes to Nanographenes and Graphene Nanoribbons. Advances in Polymer Science, vol 278. Springer, Cham. https://doi.org/10.1007/12_2017_5

Download citation