Processing of Poly(lactic Acid)

  • Ines KühnertEmail author
  • Yvonne Spörer
  • Harald Brünig
  • Nguyen Hoai An Tran
  • Natalie Rudolph
Part of the Advances in Polymer Science book series (POLYMER, volume 282)


Polymer applications range from biomedical devices and structures, packaging, or toys to automotive and industrial items. So far, biopolymers could replace commodity polymers in a variety of products, especially for biomedical applications or food packaging. One of the most used and widely studied biopolymers is poly(lactic acid) (PLA). To generate new application fields and provide a broader application of PLA, research on processing behavior is still required. This chapter covers the processing relevant behavior of PLA and processing conditions for extrusion melt spinning, injection molding, and additive manufacturing. The processing-related behavior is compared to that of commodity polymers. The aim is to provide an overview of the state of the art and some recent new developments in this research field.


3D printing Additive manufacturing Crystallization Injection molding Interface Interphase Mechanical properties Melt spinning Morphology Poly(lactic acid) Processing Rheological behavior Skin-core morphology Thermal properties Weld line 



The authors thanks the Institute of Textile Machinery and High Performance Material Technology (ITM) and the Technical University in Dresden (TUD) for cooperation and support, especially in the melt spinning process.


  1. 1.
    Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852CrossRefGoogle Scholar
  2. 2.
    Ren J (2010) Processing of PLA in biodegradable poly(lactic acid): synthesis, modification, processing and applications. Springer, BerlinGoogle Scholar
  3. 3.
    Fachagentur Nachwachsender Rohstoffe (FNR) (2016) Processing of bioplastics – a guideline. ReportGoogle Scholar
  4. 4.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571CrossRefGoogle Scholar
  5. 5.
    Endres H-J, Siebert-Raths A (2011) Engineering biopolymers :markets, manufacturing, properties and applications. Hanser, MunichCrossRefGoogle Scholar
  6. 6.
    Fakirov S (2012) In: Bhattacharyya D, Fakirov S (eds) Synthetic polymer-polymer composites. Hanser, MunichGoogle Scholar
  7. 7.
    Jiménez A, Peltzer MA, Ruseckaite RA (2015) Poly(lactic acid) science and technology - processing, additives and applications. RSC, CambridgeGoogle Scholar
  8. 8.
    Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84CrossRefGoogle Scholar
  9. 9.
    Saba N, Jawaid M, Al-Othman O (2017) An overview on polylactic acid, its cellulosic composites and applications. Curr Org Synth 14(2):156–170CrossRefGoogle Scholar
  10. 10.
    Goebel L, Bonten C (2014) Influence of the phase morphology on the weldability of PLA/PBAT-blends by using butt-welding. In: Alstadt V, Keller JH, Fathi A (eds) Proceedings of PPS-29: The 29th International Conference of the Polymer Processing Society PPS 2014, AIP Conference Proceedings, vol 1593. pp 312–315.
  11. 11.
    Gottermann S, Weinmann S, Bonten C, Standau T, Altstadt V (2016) Modified standard polylactic acid (PLA) for extrusion foaming. In: Holzer CH, Payer M (eds) Proceedings of the Regional Conference Graz 2015, Polymer Processing Society PPS, AIP Conference Proceedings, vol 1779. p 060001.
  12. 12.
    Yamoum C, Maia J, Magaraphan R (2017) Rheological and thermal behavior of PLA modified by chemical crosslinking in the presence of ethoxylated bisphenol A dimethacrylates. Polym Adv Technol 28(1):102–112CrossRefGoogle Scholar
  13. 13.
    Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255CrossRefGoogle Scholar
  14. 14.
    Srithep Y, Pholharn D, Turng LS, Veang-in O (2015) Injection molding and characterization of polylactide stereocomplex. Polym Degrad Stab 120:290–299CrossRefGoogle Scholar
  15. 15.
    Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97(10):1898–1914CrossRefGoogle Scholar
  16. 16.
    Kolstad JJ (1996) Crystallization kinetics of poly(L-lactide-co-meso-lactide). J Appl Polym Sci 62(7):1079–1091CrossRefGoogle Scholar
  17. 17.
    Iannace S, Nicolais L (1997) Isothermal crystallization and chain mobility of poly(L-lactide). J Appl Polym Sci 64(5):911–919CrossRefGoogle Scholar
  18. 18.
    Miyata T, Masuko T (1998) Crystallization behaviour of poly(L-lactide). Polymer 39(22):5515–5521CrossRefGoogle Scholar
  19. 19.
    Di Lorenzo ML (2005) Crystallization behavior of poly(L-lactic acid). Eur Polym J 41(3):569–575CrossRefGoogle Scholar
  20. 20.
    Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K (2006) Crystallization behavior of poly(L-lactic acid). Polymer 47(21):7554–7563CrossRefGoogle Scholar
  21. 21.
    Androsch R, Schick C (2016) Interplay between the relaxation of the glass of random L/D-lactide copolymers and homogeneous crystal nucleation: evidence for segregation of chain defects. J Phys Chem B 120:4522–4528CrossRefPubMedGoogle Scholar
  22. 22.
    Di Lorenzo ML, Androsch R (2016) Stability and reorganization of alpha-crystals in random L/D-lactide copolymers. Macromol Chem Phys 217(13):1534–1538CrossRefGoogle Scholar
  23. 23.
    Sato Y, Inohara K, Takishima S, Masuoka H, Imaizumi M, Yamamoto H, Takasugi M (2000) Pressure-volume-temperature behavior of polylactide, poly(butylene succinate), and poly(butylene succinate-co-adipate). Polym Eng Sci 40(12):2602–2609CrossRefGoogle Scholar
  24. 24.
    Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab 95(7):1148–1159CrossRefGoogle Scholar
  25. 25.
    Ehrenstein G, Riedel G, Trawiel P (2004) Thermal analysis of plastics - theory and practice. Carl Hanser, MunichCrossRefGoogle Scholar
  26. 26.
    Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, BerlinGoogle Scholar
  27. 27.
    Desantis P, Kovacs AJ (1968) Molecular conformation of poly(S-lactic acid). Biopolymers 6(3):299–306CrossRefGoogle Scholar
  28. 28.
    Kalb B, Pennings AJ (1980) General crystallization behavior of poly(L-lactic acid). Polymer 21(6):607–612CrossRefGoogle Scholar
  29. 29.
    Ohtani Y, Okumura K, Kawaguchi A (2003) Crystallization behavior of amorphous poly(L-lactide). J Macromol Sci B42(3–4):875–888CrossRefGoogle Scholar
  30. 30.
    Di Lorenzo ML, Rubino P, Immirzi B, Luijkx R, Hélou M, Androsch R (2015) Influence of chain structure on crystal polymorphism 5 of poly(lactic acid). Part 2. Effect of molecular mass on the crystal growth rate and semicrystalline morphology. Colloid Polym Sci 293:2459–2467CrossRefGoogle Scholar
  31. 31.
    Burnett BB, McDevit WF (1957) Kinetics of spherulite growth in high polymers. J Appl Phys 28(10):1101–1105CrossRefGoogle Scholar
  32. 32.
    Androsch R, Iqbal HMN, Schick C (2015) Non-isothermal crystal nucleation of poly (L-lactic acid). Polymer 81:151–158CrossRefGoogle Scholar
  33. 33.
    Androsch R, Schick C, Di Lorenzo ML (2017) Kinetics of nucleation and growth of crystals of poly(l-lactic acid). Adv Polym Sci. Springer, Berlin, pp 1–38Google Scholar
  34. 34.
    Kolesov I, Mileva D, Androsch R, Schick C (2011) Structure formation of polyamide 6 from the glassy state by fast scanning chip calorimetry. Polymer 52(22):5156–5165CrossRefGoogle Scholar
  35. 35.
    Rhoades AM, Williams JL, Androsch R (2015) Crystallization kinetics of polyamide 66 at processing-relevant cooling conditions and high supercooling. Thermochim Acta 603:103–109CrossRefGoogle Scholar
  36. 36.
    Grellmann W, Altstädt V (2007) Polymer testing. Hanser, MunichCrossRefGoogle Scholar
  37. 37.
    Osswald TA, Rudolph N (2015) Polymer rheology :fundamentals and applications. Hanser, MunichGoogle Scholar
  38. 38.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864CrossRefGoogle Scholar
  39. 39.
    Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies - a review. J Chem Technol Biotechnol 81(7):1119–1129CrossRefGoogle Scholar
  40. 40.
    Naturworks (2015) Sheet extrusion processing guide. Broshure of Naturworks LLC, MinnetonkaGoogle Scholar
  41. 41.
    Osswald TA, Hernández-Ortiz JP (2006) Polymer processing :modeling and simulation. Hanser Gardner, MunichCrossRefGoogle Scholar
  42. 42.
    Corre YM, Duchet J, Reignier J, Maazouz A (2011) Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheol Acta 50(7–8):613–629CrossRefGoogle Scholar
  43. 43.
    Ljungberg N, Andersson T, Wesslen B (2003) Film extrusion and film weldability of poly(lactic acid) plasticized with triacetine and tributyl citrate. J Appl Polym Sci 88(14):3239–3247CrossRefGoogle Scholar
  44. 44.
    Zhou ZF, Huang GQ, Xu WB, Ren FM (2007) Chain extension and branching of poly(L-lactic acid) produced by reaction with a DGEBA-based epoxy resin. Express Polym Lett 1(11):734–739CrossRefGoogle Scholar
  45. 45.
    Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45(26):8809–8823CrossRefGoogle Scholar
  46. 46.
    Ljungberg N, Wesslen B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci 86(5):1227–1234CrossRefGoogle Scholar
  47. 47.
    Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 46(23):10290–10300CrossRefGoogle Scholar
  48. 48.
    Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219CrossRefGoogle Scholar
  49. 49.
    Hagen R (2013) The potential of PLA for the fiber market. Bioplast Mag 8:12ffGoogle Scholar
  50. 50.
    Schmack G, Tandler B, Optiz G, Vogel R, Kornber H, Haussler L, Voigt D, Weinmann S, Heinernann M, Fritz HG (2004) High-speed melt spinning of various grades of polylactides. J Appl Polym Sci 91(2):800–806CrossRefGoogle Scholar
  51. 51.
    Perepelkin K (2002) Chemistry and technology of chemical fibres – polylactid fibers: fabrication, properties, use, prospects. Fiber Chem 34(2):85–100CrossRefGoogle Scholar
  52. 52.
    Beyreuther R, Brünig H (2007) Dynamics of fibre formation and processing :modelling and application in fibre and textile industry. Springer, BerlinGoogle Scholar
  53. 53.
    Hahn J, Breier A, Brünig H, Heinrich G (2016) Mechanical adapted embroidered scaffolds based on polylactic acid melt spun multifilaments for ligament tissue engineering. Annual report of Leibniz-Institut für Polymerforschung Dresden e. V., Dresden. chapter: Biology-inspired interface and material design. pp. 42–44. Comment: The source is from the Leibniz-Institut für Polymerforschung Dresden e.V.
  54. 54.
    Tran NHA, Brünig H, Hinüber C, Heinrich G (2014) Melt spinning of biodegradable nanofibrillary structures from poly(lactic acid) and poly (vinyl alcohol) blends. Macromol Mater Eng 299(2):219–227CrossRefGoogle Scholar
  55. 55.
    Ghosh S, Viana JC, Reis RL, Mano JF (2007) Effect of processing conditions on morphology and mechanical properties of injection-molded poly(L-lactic acid). Polym Eng Sci 47(7):1141–1147CrossRefGoogle Scholar
  56. 56.
    Ghosh S, Viana JC, Reis RL, Mano JF (2008) Oriented morphology and enhanced mechanical properties of poly(L-lactic acid) from shear controlled orientation in injection molding. Mater Sci Eng A 490(1–2):81–89CrossRefGoogle Scholar
  57. 57.
    Siebert-Raths A (2012) Modifizierung von polylactid (PLA) für technische Anwendungen, Verfahrenstechnische Optimierung der Verarbeitungs- und Gebrauchseigenschaften. Dissertation, HannoverGoogle Scholar
  58. 58.
    Kuehnert I (2009) Cold and hot interfaces during injection molding. In: PPS-25 Polymer Processing Society. Goa, IndienGoogle Scholar
  59. 59.
    Kuehnert I, Pompsch I (2011) Morphology and strength of injection molded parts with interfaces. In: Proceedings of SPE Antec 2011, Society of Plastics Engineers, BostenGoogle Scholar
  60. 60.
    Kuehnert I, Schoenfeldt A, Auf der Landwehr M (2013) New insights into interfaces in injection molded parts. In: Proceedings of SPE Antec 2013, Society of Plastics Engineers, CincinnatiGoogle Scholar
  61. 61.
    Kuehnert I, Spoerer Y, Zimmermann M (2016) Weld lines in injection molded parts: strength, morphology and improvement. In: Proceedings of SPE Antec 2016, Society of Plastics Engineers, IndianapolisGoogle Scholar
  62. 62.
    Market study and Database on Bio-based Polymers in the World – Capacity, Production and Applications: Status Quo and Trends towards 2020. 2013–7; Nova-Institut GmbH, Chemiepark Knapsack, Industriestraße 300, 50354 Huerth GermanyGoogle Scholar
  63. 63.
    Sundar V (2012) Manufacture and characterization of filament yarns with structured and collagen-coated surfaces for medical purposes. TU-Dresden and Leibniz-Institut für Polymerforschung Dresden e.VGoogle Scholar
  64. 64.
    Akram W (2015) Manufacturing and characterization of high-oriented, low-shrinkage and biodegradable filament yarns for medical applications. TU-Dresden and Leibniz-Institut für Polymerforschung Dresden e.VGoogle Scholar
  65. 65.
    Hahner J, Hinuber C, Breier A, Siebert T, Brunig H, Heinrich G (2015) Adjusting the mechanical behavior of embroidered scaffolds to lapin anterior cruciate ligaments by varying the thread materials. Text Res J 85(14):1431–1444CrossRefGoogle Scholar
  66. 66.
    Hahn J, Breier A, Brünig H, Heinrich G (2017) Long-term hydrolytic degradation study on polymer-based embroidered scaffolds for ligament tissue engineering. J Ind Text 804:1–16Google Scholar
  67. 67.
    Tran NHA, Brunig H, Auf der Landwehr M, Heinrich G (2016) Controlling micro- and nanofibrillar morphology of polymer blends in low-speed melt spinning process. Part III: Fibrillation mechanism of PLA/PVA blends along the spinline. J Appl Polym Sci 133(48):16CrossRefGoogle Scholar
  68. 68.
    Tran N (2016) Melt spinning and characterization of biodegradable micro- and nanofibrillar structures from poly(lactic acid) and poly(vinyl alcohol) blends. PhD-Thesis. TU-Dresden and Leibniz-Institut für Polymerforschung Dresden e.V. TUD Press. ISBN: 978-3-95908-051-4Google Scholar
  69. 69.
    Kamal M, Isayev I, Liu SJ (2009) Injection molding-technology and fundamentals. Hanser, MunichCrossRefGoogle Scholar
  70. 70.
    Battegazzore D, Bocchini S, Frache A (2011) Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym Lett 5(10):849–858CrossRefGoogle Scholar
  71. 71.
    Yin YG, Zhang XQ, Song Y, de Vos S, Wang RY, Joziasse CAP, Liu GM, Wang DJ (2015) Effect of nucleating agents on the strain-induced crystallization of poly(L-lactide). Polymer 65:223–232CrossRefGoogle Scholar
  72. 72.
    Jing ZX, Shi XT, Zhang GC (2016) Rheology and crystallization behavior of asymmetric PLLA/PDLA blends based on linear PLLA and PDLA with different structures. Polym Adv Technol 27(8):1108–1120CrossRefGoogle Scholar
  73. 73.
    Malguarnera SC (1982) Weld lines in polymer processing. Polym-Plast Technol Eng 18(1):1–45CrossRefGoogle Scholar
  74. 74.
    Mennig G (1995) Knit-line behaviour of polypropylene and polypropylene-blends. Polypropylene: structure, blends and composites, vol 1. Chapman & Hall, London, pp 205–226CrossRefGoogle Scholar
  75. 75.
    Nguyen-Chung T, Plichta C, Mennig G (1998) Flow disturbance in polymer melt behind an obstacle. Rheol Acta 37(3):299–305CrossRefGoogle Scholar
  76. 76.
    Fischer M, Ausias G, Kuehnert I (2016) Investigation of interfacial fracture behavior on injection molded parts. In: Rhee B (ed) Proceedings of PPS-31: The 31st International Conference of the Polymer Processing Society PPS 2015, AIP Conference Proceedings. vol 1713. pp 040011.
  77. 77.
    Haufe A, Kuehnert I, Mennig G (1999) Zum Einfluss strömungsinduzierter Fehlerstellen auf das Versagensverhalten in spritzgegossenen Kunststoffbauteilen. GAK 4:354–358Google Scholar
  78. 78.
    Kuehnert I (2005) Grenzflächen beim Mehrkunststoff-Spritzgießen. Dissertation, Fakultät Maschinenbau. TU-Chemnitz, Hanser:Munich. orächen-beim-mehrkunststoffspritzgiessen-640067.html
  79. 79.
    Gutjahr L, Becker H (1989) Herstellen technischer Formteile mit dem Gegentaktspritzgießverfahren. Kunststoffe 79(11):1108–1112Google Scholar
  80. 80.
    Malloy RA (2011) Plastic part design for injection molding: an introduction, 2 edn. Hanser, MunichGoogle Scholar
  81. 81.
    Kuehnert I, Vetter K (2008) Sequential injection moulding as a method for eliminating weld lines - praxis and simulation. RFP 3(5):256–261Google Scholar
  82. 82.
    Wohlers T (2013) Wohlers report 2013: additive manufacturing and 3D printing: state of the industry: annual worldwide progress reportGoogle Scholar
  83. 83.
    Wohlers T (2015) Wohlers report 2015: additive manufacturing and 3D printing: state of the industry: annual worldwide progress reportGoogle Scholar
  84. 84.
    ASTM F2792-12a Standard Terminology for Additive Manufacturing Technologies (Withdrawn 2015) (2012) ASTM International West Conshohocken PAGoogle Scholar
  85. 85.
    Gebhardt A (2011) Understanding additive manufacturing :rapid prototyping, rapid tooling, rapid manufacturing. Hanser, MunichCrossRefGoogle Scholar
  86. 86.
    McDonnell B, Guzman X, Doblack M, Simpson T, and Cimbala J Cimbala JM (2016) 3D printing in the wild, a preliminary, investigation of air quality in college maker spaces. In: 27th Annual International Solid Freeform Fabrication Symposium. Austin, TX, USAGoogle Scholar
  87. 87.
    Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9:14CrossRefGoogle Scholar
  88. 88.
    Royte E (2013) What lies ahead for 3-D printing? The new technology promises a factory in every home – and a whole lot more. Smithonian Magazine.
  89. 89.
    Serra T, Mateos-Timoneda MA, Planell JA, Navarro M (2013) 3D printed PLA-based scaffolds A versatile tool in regenerative medicine. Organogenesis 9(4):239–244CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Korpela J, Kokkari A, Korhonen H, Malin M, Narhi T, Seppala J (2013) Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J Biomed Mater Res B Appl Biomater 101B(4):610–619CrossRefGoogle Scholar
  91. 91.
    Yen HJ, Tseng CS, Hsu SH, Tsai CL (2009) Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed Microdevices 11(3):615–624CrossRefPubMedGoogle Scholar
  92. 92.
    Kim J, McBride S, Tellis B, Alvarez-Urena P, Song YH, Dean D (2012) Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication 4:025003CrossRefPubMedGoogle Scholar
  93. 93.
    Shim JH, Moon TS, Yun MJ, Jeon YC, Jeong CM, Cho DW, Huh JB (2012) Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. J Mater Sci Mater Med 23(12):2993–3002CrossRefPubMedGoogle Scholar
  94. 94.
    Kim JY, Cho DW (2009) Blended PCL/PLGA scaffold fabrication using multi-head deposition system. Microelectron Eng 86(4-6):1447–1450CrossRefGoogle Scholar
  95. 95.
    Melchels FPW, Feijen J, Grijpma DW (2009) A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30(23–24):3801–3809CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ines Kühnert
    • 1
    Email author
  • Yvonne Spörer
    • 1
  • Harald Brünig
    • 1
  • Nguyen Hoai An Tran
    • 2
  • Natalie Rudolph
    • 3
  1. 1.Leibniz-Institut für Polymerforschung Dresden e. V.DresdenGermany
  2. 2.Institute of Textile Machinery and High Performance Material TechnologyTechnische Universität DresdenDresdenGermany
  3. 3.Polymer Engineering Center, Department of Mechanical EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations